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Abstract. We initiate the study of extended bicolorings of Steiner triple
systems (STS) which start with a k-bicoloring of an STS(v) and end up
with a k-bicoloring of an STS(2v + 1) obtained by a doubling construc-

tion, using only the original colors used in coloring the subsystem STS(v).
By producing many such extended bicolorings, we obtain several infinite
classes of orders for which there exist STSs with different lower and upper
chromatic number.

1.Introduction

A Steiner triple system (STS) is a pair (V,B) where V is a v-set and
B is a collection of 3-subsets of V called triples such that every 2-subset of
V is contained in exactly one triple, see [4]. A coloring of an STS (V,B)
is a mapping ϕ : V → C; the elements of C are called colors. If |C| = k,
we have a k-coloring. For each c ∈ C, the set ϕ−1(c) = {x : ϕ(x) = c}
is a color class. A coloring ϕ of (V,B) is a bicoloring if |ϕ(B)| = 2 for all
B ∈ B. Here ϕ(B) =

∪
x∈B ϕ(x). Thus in a bicoloring of (V,B), every triple

has two elements in one color class and one in another class, so there are
no monochromatic triples nor polychromatic triples (i.e. triples receiving
three colors). A strict k-bicoloring is one in which exactly k colors are
used. From now on we assume that all our bicolorings are strict, unless the
contrary is explicitly stated.

Considerations of bicolorings of Steiner triple systems arose from the
theory of mixed hypergraphs pioneered by Voloshin [22,23]. In a mixed hy-
pergraph setting, there are two kinds of edges: C-edges which must contain
two vertices colored with the same color, and D-edges which must contain
two vertices of different colors. Requiring all edges of a Steiner system to
be both, C-triples and D-triples leads to the concept of bicolorings. In the
literature, often the terms BSTS, BSQS, or bi-STS coloring are used instead
of bicoloring (cf. [6,14,15,16,17,18,19]). We can also find results related to
particular color patterns for different designs in [1,5,7,9,10,11,12,13,20].
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The minimum (maximum) possible number k in a strict k-bicoloring of
an STS is called the lower (upper) chromatic number of the STS. However,
not every STS has a bicoloring. The smallest such example occurs for STSs
of order 15: of the 80 nonisomorphic systems, 57 are uncolorable. In fact,
every STS(v) whose independence number is at most v

3 is uncolorable. It
is likely that almost all STSs have this property although to best of our
knowledge this remains unproved (cf. [4]).

Given a k-bicoloring C, if the cardinalities of the color classes are
n1, n2, . . . , nk, we will write for brevity C = C(n1, n2, . . . , nk), and assume,
unless stated to the contrary, that n1 ≤ n2 ≤ · · · ≤ nk.

In this paper, we want to initiate a study of extended bicolorings, i.e.
bicolorings of an STS(w) which start with a bicoloring of a sub-STS(v).
Essential for us in this endeavor will be a well-known recursive construction
known as a doubling construction (other names: v → 2v + 1 rule, doubling
plus one construction etc.) which starts with an STS(v) and ends with an
STS(2v + 1).

To obtain such a construction, all that is needed, apart from the sub-
system, is a 1-factorization of the complete graph Kv+1. Indeed, let (X,F)
where F = {F1, . . . , Fv} is a 1-factorization of Kv+1 (where |X| = v + 1
must be even). If (V,B), V = {a1, . . . , av}, is an STS(v), form the set of
triples C = {{ai, x, y} : ai ∈ V, {x, y} ∈ Fi}. Then (V ∪ X,B ∪ C) is an
STS(2v + 1) (cf. [4]).

An easy observation is that if a given STS(v), (V,B), admits a k-
bicoloring C = C(n1, . . . , nk), then any STS(2v + 1) obtained from (V,B)
by a doubling construction admits a (k+ 1)-bicoloring C(n1, . . . , nk, nk+1)
where the v + 1 vertices of X are colored with a new color, and so nk+1 =
v + 1. Another such (k + 1)-bicoloring that can be always obtained is
C ′ = C ′(n′

1, . . . , n
′
k, n

′
k+1) where n′

i = 2ni for i = 1, . . . , k, and n′
k+1 = 1

(see [3]).

The question that we want to address is the following. Given an STS(v)
with a bicoloring C = C(n1, . . . , nk), when does there exist an STS(2v +
1) obtained by a doubling construction which admits a bicoloring C ′ =
C ′(n′

1, . . . , n
′
k)? In other words, when can we color the elements of X with

the original k colors of the k-bicoloring C without introducing an extra
color as above? If such a coloring exists, we call it an extended bicoloring
of C. Thus extended bicolorings may exist only for orders 2v + 1 ≡ 3 or
7 (mod 12) as v ≡ 1 or 3 (mod 6).

The importance of extended bicolorings lies in the fact that they enable
one to construct STSs with different lower and upper chromatic numbers;
there are only scarce results in the literature on the latter (cf., e.g., [14]).
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The extendibility of partial colorings is a relevant issue in graph theory (see
[2,21]), both for its theoretical interest and practical applications. Here we
initiate the study of extending bicolorings in Steiner triple systems, with
the aim to derive consequences in the coloring theory of mixed hypergraphs.
In this way the present work relates several intensively studied areas.

2. Extended bicolorings

Let S = (V,B) be an STS(v) which is k-bicolorable with C = C(n1, . . . ,
nk) and let S′ = (X, C) be an STS(2v + 1) obtained from S by a doubling
construction. We are trying to investigate the conditions under which there
exists an extended bicoloring of S′, say C ′ = C ′(n′

1, . . . , n
′
k) where the

elements of the subsystem (V,B) are colored as in C, and the elements
of Y = X \ V are colored with the same colors as those used in C. If
ci = n′

i − ni, 1 ≤ i ≤ k are the numbers of vertices in Y colored with

the color i ∈ C then clearly,
∑k

i=1 ci = v + 1 (it may happen that cj = 0
for some j ∈ {1, . . . , k}). Beside this obvious condition, the following is a
necessary condition for the existence of an extended k-bicoloring of S′.

Theorem 1. Let S = (V,B) be an STS(v) which is k-bicolorable with
C = C(n1, . . . , nk) and let S′ = (X, C) be an STS(2v + 1) obtained from S
by a doubling construction. With the notation as above,∑k

i=1 c
2
i +2

∑k
i=1 nici = (v+1)2. (1)

Proof. The number of pairs of elements of Y equals
(
v+1
2

)
. Clearly, the

number of monochromatic pairs among these is
∑k

i=1

(
ci
2

)
. On the other

hand, the number of two-colored pairs among these is
∑k

i=1 nici; indeed, if
ai ∈ V is colored with color j, then any pair {x, y} in the 1-factor Fi is either
monochromatic or else one of x, y is colored with color j. Consequently,
the number of two-colored pairs in Fi is nj . Thus we have∑k

i=1

(
ci
2

)
+

∑k
i=1 nici =

(
v+1
2

)
whence (1) follows easily. �

Solutions of (1) will be called solutions with respect to C. We stress
that condition (1) given by Theorem 1 is only necessary for the existence
of an extended bicoloring. It certainly is not sufficient: in [6] condition (1)
was determined for v = 2h − 1 and all of its solutions were determined for
h ≤ 10, nevertheless these solutions do not lead to any extended bicolorings.

Corollary 2. Let S′ be a k-bicolorable STS(2v+1) obtained by a doubling
construction from a k-bicolorable STS(v) with the coloring C = C(n1, . . . ,
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nk), and let (c1, . . . , ck) be a solution to (1) with respect to C.
1. If there is a cj = 0, then all ci’s are even.
2. If there is j such that cj >

v+1
2 , then there exists no extended bicoloring

of C.

Proof. 1. If there is a j such that cj = 0, then in any factor corre-
sponding to an element al ∈ V colored with the color j, all pairs must be
monochromatic which implies that every ci has to be even.
2. If cj >

v+1
2 for some j, then in all factors associated with elements of V

colored with color j, there must exist monochromatic pairs of color j, and
thus monochromatic triples, which is a contradiction. �

We illustrate the use of Corollary 2 on the example of a (potential) ex-
tended bicoloring of an STS(19). First notice that no extended bicolorings
of STS(v) exist for v = 7 or v = 15, as shown in [6]. The unique STS(9)
admits a bicoloring C = C(1, 4, 4), and no other bicolorings (see [3] or [17]).
The following are all solutions with respect to C: (a) (3, 2, 5), (b) (3, 5, 2),
(c) (5, 0, 5), (d) (5, 5, 0), (e) (8, 0, 2), and (f) (8, 2, 0). Corollary 2.1 elimi-
nates solutions (c), (d), (e) and (f) from contention. Concerning (a), since
c1 = 3 and c3 = 5, it must be that in the four 1-factors associated with
elements colored with color 2, there are exactly two 2-colored pairs colored
with colors 1 and 2 and with 2 and 3, one monochromatic pair of color 1,
and two monochromatic pairs of color 3. Since c1 = 3, this is easily seen to
be impossible, so solution (a) cannot lead to an extended bicoloring. The
same reasoning applies to the solution (b). Thus there exist no extended
bicolorings of any STS(19) (obtained from an STS(9) by a doubling con-
struction, of course). Thus the smallest w for which an STS(w) may admit
an extended bicoloring is w = 27 (where the STS(27) is obtained from an
STS(13) by a doubling construction).

We remark that due to the above, any uniquely 3-colorable STS(19), or
any 3- and 4-colorable STS(19) cannot contain a sub-STS(9). It was shown
in [14] that there exist uniquely 3-bicolorable, uniquely 4-bicolorable, and
also 3- and 4-bicolorable STS(19).

Theorem 3. Let S be a k-bicolorable STS(v) with the k-bicoloring C =
C(n1, . . . , nk). and suppose there exist i, j, i ̸= j, such that ni+nj =

v+1
2 ≡

0 (mod 2). Then there exists an STS(2v + 1), S′, obtained by a doubling
construction from S such that S′ has an extended k-bicoloring C ′.

Proof. Since v + 1 ≡ 0 (mod 4), we may use as the 1-factorization
F = {F1, . . . , Fv} in the doubling construction the following 1-factorization.
Write Y = Y1 ∪ Y2 where |Yi| = v+1

2 ; take F1, . . . , F v+1
2

to be the 1-

factors of any 1-factorization of the complete bipartite graph K v+1
2 , v+1

2
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with bipartition (Y1, Y2); for the remaining v−1
2 1-factors F v+3

2
, . . . , Fv,

take Fi = Gi ∪ Hi, i =
v+3
2 , . . . , v, where Gi,Hi are the 1-factors of any

1-factorization of K v+1
2

on Y1, and Y2, respectively. Color now the v+1
2 ver-

tices of Y1 with color i and the v+1
2 vertices of Y2 with color j. Associate

the 1-factors F1, . . . , F v+1
2

with the vertices of V colored in the coloring C

with either color i or color j, and associate the remaining 1-factors with the
elements of V colored in C with colors other than i or j. We obtain in this
way an extended k-bicoloring of the resulting STS(2v + 1). Indeed, if aq is
an element of V which is colored with i or j, then any triple T containing
aq is two-colored: one of the two elements of T other than aq is colored
with color i, and the other with color j. On the other hand, if ar is an
element of V colored in C with a color other than i or j, then any triple T
containing ar is also two-colored since the two elements of T other than ar
are both colored with i or both colored with j. �

A more general version of Theorem 3 is the following.

Theorem 4. Let S be a k-bicolorable STS(v) with the k-bicoloring C =
C(n1, . . . , nk). Suppose that there exist p integers nki , 1 ≤ i ≤ p < k such
that nk1 + nk2 = v+1

2p−1 is an even integer, and further nki = v+1
2p−i+1 for

3 ≤ i ≤ p are all even. Then there exists an STS(2v + 1) obtained by a
doubling construction from S which has an extended k-bicoloring.

The proof of this theorem is more technical than that of Theorem 3,
especially in the description of the 1-factorization F involved in the dou-
bling construction. Since in what follows we do not make use of this more
general version, with one exception, this proof is omitted (see Appendix
[8]).

3. Small extended bicolorings

As shown earlier, there exist no extended bicolorings of STS(w) for
w ≤ 19. Since w ≡ 3 or 7 (mod 12), the smallest w for which there might
exist an extended bicoloring is w = 27. Such an extended bicoloring does
indeed exist.

Theorem 5. There exists an STS(27), (W, C) obtained by a doubling con-
struction from an STS(13), (V,B), which has an extended 3-bicoloring
C = C(2, 5, 6). For this system, χ = 3 and χ̄ = 4.

Proof. All solutions (c1, c2, c3) with respect to the coloring C (cf. Theorem
1) are as follows: (a) (4, 4, 6), (b) (7, 1, 6), (c) (4, 7, 3), (d) (7, 7, 0), (e)
(10, 1, 3), (f) (10, 4, 0). By Corollary 2, solutions (d), (e), and (f) cannot
lead to an extended bicoloring of C. Concerning solution (c), there are
three monochromatic pairs of elements of color 3. Two of these pairs may
occur in the two 1-factors corresponding to the vertices of V of color 1 but
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the third pair cannot occur in a 1-factor corresponding to a vertex of V of
color 2 (as there are 7 vertices of W \ V of color 2, and that would force
a monochromatic triple of color 2), nor clearly in a 1-factor corresponding
to a vertex of color 3. Thus solution (c) does not lead to an extended
bicoloring of C either.

On the other hand, each of the first two solutions, namely (4, 4, 6)
and (7, 1, 6), lead to an extended bicoloring C ′ = C ′(6, 9, 12). The 1-
factorizations F used in the respective doubling constructions are given
in the Appendix [8]. Our STS(27), (W, C), besides having an extended 3-
bicoloring with respect to C, is also 4-bicolorable with the coloring C” =
C”(2, 5, 6, 14). At the same time, a 5-bicoloring of (W, C) is impossible due
to [20], since 27 < 25 − 1. Thus χ = 3, χ̄ = 4, as claimed. �

Concerning order 31, an inspection of the tables in [3] shows that there
exists no extended bicoloring for this order: there exists no 3-bicoloring of
an STS(15), and no 4-bicoloring of STS(31) whatsoever. However, the next
admissible order 39 shows a quite different behaviour.

Theorem 6. There exist STS(39) admitting extended bicolorings obtained
from extended bicolorings of STS(19) of type C1 = C(4, 6, 9) and C2 =
C(1, 2, 8, 8). More specifically, there exist STS(39) with (χ, χ̄) equal to ei-
ther (3, 4), or (4, 5), or (3, 5).

Proof. It was shown in [14] that there exist STS(19) (a) admitting only
the 3-bicoloring C(4, 6, 9), (b) admitting only the 4-bicoloring C(1, 2, 8, 8),
and (c) admitting both, the 3-bicoloring C(4, 6, 9) and the 4-bicoloring
C(1, 2, 8, 8). By Theorem 3, both C1 and C2 are extendable bicolorings
(since we have 4 + 6 = 10 and 2 + 8 = 10, respectively). Starting with an
STS(19) of type (a), (b), or (c), we obtain an STS(39) of the respective
kind as claimed. �

In what follows we discuss in somewhat less detailed manner the exis-
tence of extended bicolorings for those STS(v) of orders 43 ≤ v ≤ 99 which
can be obtained by a doubling construction.

Theorem 7. For an STS(v), v ∈ {51, 63, 67, 75}, there exists no extended
bicoloring.

Proof. (i) For an STS(25), the only types of bicoloring that are possible are
C1 = C(5, 10, 10) and C2 = C(1, 4, 8, 12). While there exist 12 solutions
with respect to C1, none satisfies the condition of Corollary 2 and thus
cannot lead to an extended bicoloring. There exist no solutions with respect
to C2, and so no STS(51) can have an extended bicoloring.
(ii) By [6], no STS(63) obtained by doubling from an STS(31) can have an
extended bicoloring.
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(iii) None of the bicolorings of any STS(33) or STS(37) (cf. [3]) yields a
solution with respect to such a coloring, thus there is no extended bicoloring
of any STS(67) or STS(75). �

Theorem 8. For an STS(v), v ∈ {43, 55, 79, 87, 91, 99}, there exist ex-
tended bicolorings. More specifically, there exists an extended 3-bicoloring
of an STS(43), extended 4-bicolorings of an STS(v) for v ∈ {55, 87, 91},
and extended 4- and 5-bicolorings of an STS(v) for v ∈ {79, 99}.
Proof. (i) A bicolorable STS(21) can only be 3-bicolorable, with colorings
C1 = C(5, 6, 10) or C2 = C(4, 8, 9) (see [3] or [14]). Both are extendable to
a 3-bicoloring C = C(10, 16, 17) of an STS(43) for which we have χ = 3 and
χ̄ = 4 (there exists no 5-bicolorable STS(43), cf. [3]). The 1-factorization
F in the corresponding doubling construction is given in the Appendix [8].
(ii) By Theorem 3, the 4-bicoloring C(1,4,10, 12) of an STS(27) is ex-
tendable to a 4-bicoloring C(1, 12, 18, 24) of an STS(55), further the 4-
bicoloring C(1,8,12, 18), and the 4-bicoloring C(2, 6, 13,18), respectively,
of an STS(39) is extendible to a 4-bicoloring C(1, 18, 28, 32), and to a 4-
bicoloring C(6, 13, 22, 38) of an STS(79), respectively; finally, the 4-bicolo-
ring C(1,10,12, 20), and the 4-bicoloring C(4, 4, 17,18), respectively, of
an STS(43) is extendable to a 4-bicoloring C(1, 20, 32, 34), and to a 4-
bicoloring C(4, 17, 26, 40), respectively. (The two essential colors are indi-
cated in bold.)
(iii) Extendability of the 5-bicolorings C(1, 2, 8, 8, 20) and C(1, 4, 4, 10, 20)
of an STS(43) follows from the more general Theorem 4.
(iv) There are only two possible types of a 4-bicoloring of an STS(45),
namely C1 = C(2, 8, 14, 21) and C2 = C(4, 6, 13, 22). There are 12 solu-
tions with respect to C1 but none of them leads to an extended bicoloring.
Similarly, there are 12 solutions with respect to C2 but only one of them,
namely (c1, c2, c3, c4) = (4, 8, 12, 22) leads to an extended 4-bicoloring. The
corresponding 1-factorization F in the doubling construction that leads to
this extended bicoloring is given in the Appendix [8].
(v) Although there exist 3-, 4-, and 5-bicolorable STS(49), none of the 3-
bicolorings is extendable. On the other hand, 4-bicolorings C(2, 8, 18, 21)
and C(5, 6, 14, 24) as well as the 5-bicoloring C(1, 4, 4, 20, 20) are all extend-
able. This is shown by examining all solutions with respect to the particular
bicoloring C. Due to the considerable number of these solutions (84, 29 and
27, respectively), we omit the details. The 1-factorizations occurring in the
doubling constructions leading to the respective extended bicolorings are
given in the Appendix [8].

Theorem 9. There exist extended 4-bicolorings for each order w ∈ {127,
151, 159, 175}; there exist extended 5-bicolorings for each order w ∈ {103,
111, 127, 135, 151, 159, 175}.
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Proof. Below we list 4- and 5-bicolorings (known to exist by [3]) to which
it is possible to apply Theorem 3; the two essential colors are in bold.

order 2v + 1 extendable colorings of an STS(v)
103 (1,2, 8, 16,24)
111 (1, 2,8,20, 24)
127 (2,14,18, 29), (4, 9, 22,28), (2, 5, 6, 20,30)
135 (1,2, 16, 16,32)
151 (4,12,26, 33), (1, 4,10,28, 32)
159 (4, 14, 25,36), (6, 10, 29,34), (1,4, 12, 26,36),

(1, 2,16,24, 36)
175 (4, 17, 26,40, (2, 5,10,34, 36).

We summarize our results as follows.

Theorem 10. Let Ω = {27, 39, 43, 55, 79, 87, 91, 99, 103, 111, 127, 135, 151,
159, 175}. For each v ∈ Ω, there exists an STS(v) with an extended bicol-
oring, and thus for all v ∈ Ω, we have χ ̸= χ̄.

Proof. For each v ∈ Ω we have an extended k-coloring for some k, and
also (at least) a (k + 1)-bicoloring (with nk+1 = v + 1). �

Corollary 11. For each v ∈ Ω′ = {27, 39, 43, 91, 99, 103, 127, 135, 151},
there exists an infinite class of STS(w), where w = 2t(v + 1) − 1, t ≥ 1,
such that χ ̸= χ̄.

Proof. Apply repeatedly the doubling construction to the appropriate
STS(v). �

4. Conclusion

In this paper, we have investigated extended bicolorings with the ex-
plicit aim to prove the existence of STSs with χ ̸= χ̄, that is, with different
lower and upper chromatic number. We established the existence of ex-
tended bicolorings and of such STSs for several infinite classes of orders
2v+1 ≡ 3 or 7 (mod 12), by utilizing the doubling construction. The prob-
lem of determining for which orders v ≡ 1 or 3 (mod 6) does there exist
an STS(v) with different lower and upper chromatic number is certainly
worthwhile. Another interesting question is, how large can the difference
χ̄ − χ be? It is also a legitimate question to ask whether an analogue
of extended bicolorings may exist for other recursive constructions, such as
the known v → 2v+ t rules where t > 1 (cf. [4]). For example, is it possible
to use the v → 2v + 5 rule starting with an STS(7) and ending up with an
STS(19) to show that the 3-bicoloring (1, 2, 4) for STS(7) can be extended
to a 3-bicoloring (4, 6, 9) for an STS(19)? The next example answers this
question.
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Example 12. The following STS(19) with a sub-STS(7) has a 3-bicoloring
and these triples: {0, 1, 9}, {2, 3, 9}, {0, 2, 10}, {1, 3, 10}, {0, 3, 15},
{1, 2, 15}, {9, 10, 15}, {0, 4, 11}, {0, 5, 12}, {0, 6, 13}, {0, 7, 14}, {0, 8, 16},
{1, 4, 12}, {1, 5, 11}, {1, 6, 14}, {1, 7, 13}, {1, 8, 17}, {2, 4, 13}, {2, 5, 14},
{2, 6, 11}, {2, 7, 12}, {2, 8, 18}, {3, 4, 14}, {3, 5, 16}, {3, 6, 17}, {3, 7, 18},
{3, 8, 11}, {4, 5, 9}, {4, 6, 18}, {4, 7, 16}, {4, 8, 10}, {5, 6, 10}, {5, 7, 17},
{5, 8, 13}, {6, 7, 9}, {6, 8, 12}, {7, 8, 15}, {9, 11, 16}, {9, 12, 17}, {9, 13, 18},
{8, 9, 14}, {7, 10, 11}, {10, 12, 16}, {10, 13, 17}, {10, 14, 18}, {11, 12, 18},
{11, 13, 15}, {11, 14, 17}, {3, 12, 13}, {12, 14, 15}, {13, 14, 16}, {6, 15, 16},
{4, 15, 17}, {5, 15, 18}, {2, 16, 17}, {1, 16, 18}, {0, 17, 18}.
The first seven triples are those of an STS(7) on {0, 1, 2, 3, 9, 10, 15}; the
three color classes are {0, 1, 2, 3, 4, 5, 6, 7, 8}, {9, 10, 11, 12, 13, 14} and
{15, 16, 17, 18}.

Even if the answer in this case proved to be affirmative, and may proved
so in similar cases, it is not immediately clear that this will have as a conse-
quence the existence of STSs with χ ̸= χ̄. Thus the doubling construction
appears to offer most benefits from the stated applications point of view.
Nevertheless, it seems to us worthwhile to study “extended” bicolorings for
recursive rules for STSs other than doubling.
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