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CONNECTIVITY AND SOME OTHER PROPERTIES OF

GENERALIZED SIERPIŃSKI GRAPHS

Sandi Klavžar∗ and Sara Sabrina Zemljič

If G is a graph and n a positive integer, then the generalized Sierpiński graph
Sn
G is a fractal-like graph that uses G as a building block. The construction of

Sn
G generalizes the classical Sierpiński graphs Sn

p , where the role of G is played
by the complete graph Kp. An explicit formula for the number of connected
components in Sn

G is given and it is proved that the (edge-)connectivity of
Sn
G equals the (edge-)connectivity of G. It is demonstrated that Sn

G contains
a 1-factor if and only if G contains a 1-factor. Hamiltonicity of generalized
Sierpiński graphs is also discussed.

1. INTRODUCTION

Sierpiński graphs of base 3 were often studied because of their relation to
the famous Sierpiński triangle fractal(s), see [27] for the latter. Sierpiński graphs
of an arbitrary base still posses the same fractal-like structure. The generalized
Sierpiński graphs considered in this paper form even more general structures in
which a base graph G can be arbitrary and the resulting graphs are self-similar
fractal-like graphs with a structure originating from G.

Sierpiński graphs Snp equipped with the Sierpiński labeling were introduced
in [15]. Earlier, unlabelled graphs almost (but not completely) the same as the
unlabelled Sierpiński graphs were studied by Della Vecchia and Sanges in [5] as a
model for interconnection networks under the name WK-recursive networks. The
Sierpiński labeling which was, by the way, motivated by investigations of a type
of universal topological spaces, turned out to be the key tool in investigations
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2010 Mathematics Subject Classification. 05C40, 05C70, 05C45.
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of several aspects of Sierpiński graphs and their applications. In particular, this
labeling enabled Romik [22] to solve the so-called P2-decision problem for the
Tower of Hanoi puzzle by solving it on Sn3 by means of an automaton which is
now known as Romik’s automaton. Almost a decade later Hinz and Holz auf der
Heide [12] generalized Romik’s automaton to an arbitrary p. For more information
on the applicability of Sierpiński graphs in the theory of the Tower of Hanoi see
the book [13]. For additional investigations and applications of Sierpiński graphs
see the recent papers [1, 16] and the survey [14] which contains no less than 121
references.

In 2011, Gravier, Kovše, and Parreau [11] proposed an extension of Sierpiński
graphs in which an arbitrary graph can serve as a building block in the construction,
while in the case of the classical Sierpiński graphs this role is reserved for complete
graphs. The authors of [11] announced several results about generalized Sierpiński
graphs concerning their automorphism groups, distinguishing number, and perfect
codes. Unfortunately, the corresponding paper has not (yet) been written up. The
first published papers on the generalized Sierpiński graphs are thus due to Geetha
and Somasundaram [10] and to Rodŕıguez-Velázquez and Tomás-Andreu [20], deal-
ing with their total chromatic number and Randić index, respectively. Both papers
appeared in 2015 and were submitted at almost the same time in the fall of 2014.

Afterwards—very recently—several papers followed that examine the general-
ized Sierpiński graphs. First, the work from [20] on the Randić index was extended
in [8] to the generalized Randić index. In [21] the chromatic number, vertex cover
number, clique number, and domination number of generalized Sierpiński graphs
are investigated, while in [19] the focus is on their Roman domination number.
An extensive study of metric aspects of generalized Sierpiński graphs has just been
posted in [9]. For another metric aspect of generalized Sierpíski graphs, the strong
metric dimension, see [7].

In this paper we consider a couple of fundamental properties of general-
ized Sierpiński graphs. In the next section we formally introduce these fractal-like
graphs, recall or deduce some of their properties, and define additional concepts
needed. In Section 3 we first give an explicit formula for the number of connected
components of generalized Sierpiński graphs. We follow with a proof that their con-
nectivity and edge-connectivity are the same as those of the base graph. Then, in
Section 4, we prove that a generalized Sierpiński graph admits a perfect matching
if and only if the base graph admits it. We then discuss hamiltonicity and observe
that it is not preserved by the construction, that is, even if a base graph G is
Hamiltonian, its generalized Sierpiński graphs SnG need not be. We close the paper
with a connection between the generalized Sierpiński graphs and the so-called clone
graphs that were recently introduced in [18].

To conclude the introduction we point out that the notation S(G,n) is used
in the first papers on the generalized Sierpiński graphs. To emphasize that these
graphs extend Sierpiński graphs Snp , and to be in line with the notation for Sierpiński-
type graphs as proposed in [14], we have decided to denote the generalized Sierpiński
graphs with SnG.
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2. PRELIMINARIES

If n ∈ N, then set [n] = {1, . . . , n} and [n]0 = {0, . . . , n − 1}. The minimum
degree and the maximum degree of a graph G are denoted with δ(G) and ∆(G),
respectively. A perfect matching of G is a set of independent edges F such that
every vertex of G is an endvertex of some edge of F . The subgraph of G induced
by the edges of F is then a 1-factor. The connectivity and edge-connectivity of G
are denoted with κ(G) and κ′(G), respectively. For other graph theory concepts
not defined here we refer to [26].

Now we (finally) formally introduce the generalized Sierpiński graphs. Let G
be a graph of order p with V (G) = [p]0. Then the generalized Sierpiński graph SnG
is the graph with the vertex set [p]n0 , where the vertex s = sn . . . s1 is adjacent to
the vertex t = tn . . . t1 if and only if there exists a d ∈ [n] such that

• sδ = tδ for δ > d,

• sd 6= td and {sd, td} ∈ E(G), and

• sδ = td and tδ = sd for δ < d.

The edge set of SnG can be written in a more compact form as follows:

E(SnG) =
{
{sijd−1, sjid−1} : d ∈ [n], s ∈ [p]n−d0 , {i, j} ∈ E(G)

}
.

In Fig. 1 a graph G of order 14 and the graph S2
G are shown.

Clearly, |V (SnG)| = pn. It is also not difficult to observe that ∆(SnG) =
∆(G) + 1 and δ(SnG) = δ(G), cf. [21]. That the minimum degree of G is preserved
in SnG follows from the fact that degSnG(in) = degG(i) for any vertex i ∈ V (G).

If s ∈ [p]n−1
0 and H is a subgraph of G, then let sH denote the subgraph of

SnG isomorphic to H with the vertex set {si : i ∈ V (H)}. In particular, sG = sS1
G

is isomorphic to G for any s ∈ [p]n−1
0 . Hence SnG contains pn−1 disjoint subgraphs

isomorphic to G, and the vertex sets of these subgraphs partition V (SnG). If X ⊆
V (G) and F ⊆ E(G), then we will also use the notation sX and sF to denote the
set of vertices and edges in sS1

G corresponding to X and F , respectively. See Fig. 2
for an illustration of this notation on S3

C4
.

To conclude the preliminaries we state the following fact that will be useful
later and follows directly from the definition of the generalized Sierpiński graphs.

Remark 1. Let G be a graph, i ∈ V (G), and n ≥ 2. Then a vertex in−1j of
in−1S1

G has a neighbor s /∈ in−1S1
G if and only if s is of the form in−2ji, where

{i, j} ∈ E(G).

For an example consider the subgraph 11C4 of S3
C4

in Fig. 2. The vertices 110
and 112 have respective neighbors 101 and 121 outside 11C4 because {0, 1} ∈ E(C4)
and {1, 2} ∈ E(C4). On the other hand, the vertex 113 has no neighbor outside
11C4.
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Figure 1: Graphs G (left) and S2
G (right)

3. CONNECTIVITY

In this section we give an explicit formula for the number of connected com-
ponents of SnG and determine its connectivity and edge-connectivity.

Let #cc(G) denote the number of connected components of a graph G and
let C(G) be the set of its connected components.

Lemma 2. If G is a graph and n ≥ 2, then

#cc(SnG) = #cc(Sn−1
G ) · |V (G)|+ #cc(G)− |V (G)| .

Proof. To prove the lemma we will prove the formula

(1) #cc(SnG) =
∑

C∈C(G)

[
|V (C)| ·

(
#cc(Sn−1

G )− 1
)

+ 1
]
.
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Figure 2: S3
C4

together with its labeling, subgraph 32C4, and edge subset 12F

Let C be an arbitrary connected component of G and x ∈ V (C). We consider
the following two cases.

Suppose first that C consists of a single vertex x. Then (by Remark 1), if
y ∈ V (G), y 6= x, no edge of the graph SnG connects a vertex of the subgraph
xSn−1

G with a vertex of the subgraph ySn−1
G of SnG. Hence xSn−1

G induces in SnG as
many connected components as there are components in Sn−1

G , that is, #cc(Sn−1
G ),

cf. Fig. 3. Since |V (C)| = 1, this number can in turn be written as |V (C)| ·(
#cc(Sn−1

G )− 1
)

+ 1.

Assume now that C has at least two vertices and let x ∈ C. By Remark 1,
only the edges from C can lead to edges between the subgraph xSn−1

G and a sub-
graph ySn−1

G , where y 6= x. Hence in the subgraph xSn−1
G (being isomorphic to

Sn−1
G ) we find #cc(Sn−1

G ) − 1 connected components that have no neighbor out-
side xSn−1

G . Summing over all vertices of C this gives |V (C)|
(
#cc(Sn−1

G )− 1
)

connected components. It remains to show that there is an edge between the
subgraphs of the form ySn−1

G , y ∈ V (C), because this will give us precisely one
additional component. This is indeed true, since C is connected and for an arbi-
trary edge {y, z} in C there is an edge {yzn−1, zyn−1} in SnG connecting ySn−1

G

with zSn−1
G (in particular, connecting the components yzn−2C and zyn−2C). (We

again refer to Fig. 3.) Therefore, when |V (C)| ≥ 2, the component C yields exactly
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|V (C)| ·
(
#cc(Sn−1

G )− 1
)

+ 1 connected components in SnG.

We have thus proved (1) from where the assertion of the lemma follows di-
rectly.

Figure 3: S3
G, where G is the disjoint union of K1, K2, and P3

Solving the recursion of Lemma 2 yields the following result.

Theorem 3. If G is a graph and n ≥ 2, then

#cc(SnG) =
1

|V (G)| − 1

[
|V (G)|n(#cc(G)− 1) + |V (G)| −#cc(G)

]
.

Note that Theorem 3 in particular asserts that if #cc(G) = 1, then #cc(SnG) =
1, that is, if G is connected, then SnG is connected. We now continue with the con-
nectivity of generalized Sierpiński graphs.

If x is a vertex of a graph G and U a set of its vertices, then an x, U -fan is a
set of paths from x to U such that any two of them share only the vertex x. We
will use the following result proved by Dirac [6], cf. [26, Theorem 4.2.23].

Theorem 4 (Fan Lemma). A graph G is k-connected if and only if |V (G)| ≥ k+1
and, for any choice of x, U with |U | ≥ k, there exists an x, U -fan of size k.
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We also need the following edge version of the Fan Lemma. Since we were
not able to find it explicitly (with a proof) in the literature, we prove it here.

Lemma 5. Let G be a graph with κ′(G) = k (k ≥ 1). If x ∈ V (G) and U is a
k-set of vertices of G, where x /∈ U , then there exist k edge-disjoint paths between
x and the respective vertices of U .

Proof. Let G, x, and U be as stated. Let G′ be the graph obtained from G by
adding a new vertex z and connecting z by an edge with each vertex from U . Then
it is straightforward to see that κ′(G′) = k. Hence, by the edge version of Menger’s
theorem, in G′ there exist k edge-disjoint x, z-paths. Omitting the edges of these
paths that are incident with z, the asserted paths between x and the vertices of U
in G are obtained.

Now all is ready for our first main result.

Theorem 6. If n ∈ N and G is a graph, then κ(SnG) = κ(G) and κ′(SnG) = κ′(G).

Proof. Since S1
G = G, there is nothing to be proved for n = 1. In the rest of the

proof we thus assume that n > 1. Furthermore, since it is known that κ(SnKp) =

κ′(SnKp) = κ(Kp) = κ′(Kp) = p−1 ([3, Theorem 2.3], see also [13, Exercise 4.7]), we
may also assume in the rest that G is not a complete graph. In addition, the result
is also clear if G is not connected. So we are left with a connected, non-complete
graph G and n > 1.

Let X be a separating set of G with |X| = κ(G) and let H and H ′ be
arbitrary connected components of G − X. If i ∈ V (H), then we claim that
in−1X = {in−1j : j ∈ X} is a separating set of SnG. For this sake consider an
arbitrary vertex t = in−1j ∈ V (in−1H ′). By Remark 1, any possible neighbor of t
that does not lie in in−1S1

G is of the form in−2ji, where {j, i} ∈ E(G). But X is a
separating set of G hence no such edge {j, i} exists. Moreover, the fact that X is a
separating set of G (and hence a separating set of in−1S1

G) also implies that in−1H ′

and in−1H lie in different connected components of SnG \ in−1X. This proves the
claim from which we conclude that κ(SnG) ≤ |in−1X| = |X| = κ(G).

To prove that κ(SnG) ≥ κ(G), let s = sis and t = sjt be arbitrary vertices
of SnG, where s ∈ [p]n−d0 (d ∈ [n]), i, j ∈ [p]0 (i 6= j), and s, t ∈ [p]d−1

0 . By
the global version of Menger’s theorem it suffices to show that there exist κ(G)
pairwise internally disjoint paths between s and t. This reduces to showing that
there are κ(G) pairwise internally disjoint paths between s′ = is and t′ = jt in SdG.
(Indeed, once we have these paths we just add the prefix s to all the vertices of the
paths to obtain κ(G) pairwise internally disjoint paths between s and t in SnG.)

We proceed by induction on d, where the base case d = 1 is trivial since in that
case s′, t′ ∈ V (S1

G), and S1
G is isomorphic to G. Let now d ≥ 2, so that s′ ∈ iSd−1

G

and t′ ∈ jSd−1
G . To simplify the notation set κ = κ(G). Let P1, . . . , Pκ be pairwise

internally disjoint i, j-paths in G and let the consecutive vertices of P`, ` ∈ [κ],
be i = k`,1, k`,2, . . . , k`,r` = j. By the induction hypothesis, κ(iSd−1

G ) ≥ κ, and

hence Theorem 4 (having in mind that iSd−1
G is not complete, so that |iSd−1

G | > κ),
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implies that there exists an s′, {ikd−1
1,2 , . . . , ikd−1

κ,2 }-fan in iSd−1
G . Let Q1, . . . , Qκ

be the paths of this fan and note that if s′ ∈ {ikd−1
1,2 , . . . , ikd−1

κ,2 }, then one of

these paths is the path of length 0. Similarly, since κ(jSd−1
G ) ≥ κ, there exists

a t′, {jkd−1
1,r1−1, . . . , jk

d−1
κ,rκ−1}-fan in jSd−1

G ; let Q′1, . . . , Q
′
κ be the paths of this fan.

We now construct internally disjoint s′, t′-paths R1, . . . , Rκ as follows. If λ ∈ [κ],
then let Rλ be a path of the form

is → Qλ → ikd−1
λ,2 → kλ,2i

d−1 → P [kλ,2i
d−1, kλ,2k

d−1
λ,3 ]→ · · ·

→ P [kλ,rλ−1k
d−1
λ,rλ−2, kλ,rλ−1j

d−1]→ kλ,rλ−1j
d−1 → jkd−1

λ,rλ−1 → Q′λ → jt ,

where P [kλ,`x, kλ,`y] denotes an arbitrary fixed kλ,`x, kλ,`y-path in kλ,`S
d−1
G . It is

clear that R1, . . . , Rκ are internally disjoint s′, t′-paths which proves that κ(SnG) ≥
κ(G) and consequently κ(SnG) = κ(G).

The proof for the edge-connectivity proceeds along similar lines as the above
proof for the vertex-connectivity. In short, given an edge-cut F of a graph G, one
can prove that if H is an arbitrary connected component of G− F and i ∈ V (H),
then the set of edges in−1F forms an edge-cut of SnG. Consequently, κ′(SnG) ≤ κ′(G).
To prove the other inequality, κ′(G) internally edge-disjoint paths are constructed
between arbitrary two vertices of SnG. For this sake we apply Lemma 5 and combine
the edge-fans with the lifts of the κ′(G) edge-disjoint paths from G to SdG in an
analogous way as we have lifted the paths for vertex-connectivity.

4. ADDITIONAL ASPECTS OF SnG

In this section additional properties of generalized Sierpiński graphs SnG are
considered. We first characterize the graphs SnG that admit perfect matchings and
discuss the number of their perfect matchings. We follow with the hamiltonicity
and show that if G is a graph with δ(G) ≤ 2, then SnG is not Hamiltonian. At
the end we point to the connection between the graphs S2

G and the so-called clone
covers.

4.1. Perfect matchings

If G is a graph, then o(G) denotes the number of odd components of G. To
characterize the generalized Sierpiński graphs that admit 1-factors, we will apply
the following celebrated result.

Theorem 7 (Tutte’s 1-factor theorem). A graph G has a perfect matching if and
only if o(〈V (G)−X〉) ≤ |X| holds for any X ⊆ V (G).

In addition, we will also need:

Lemma 8. [26, Remark 3.3.5] Let G be a graph with an even number of vertices.
If G has no 1-factor, then there exists X ⊆ V (G) such that o(G−X) ≥ |X|+ 2.
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Our next main result reads as follows.

Theorem 9. Let n ∈ N and let G be a connected graph. Then SnG has a 1-factor
if and only if G has a 1-factor.

Proof. If G has a 1-factor then it is easy to see that SnG also has a 1-factor. Indeed,
if F is a 1-factor of G, then ⋃

s∈[p]n−1
0

sF

forms a 1-factor of SnG.

Conversely, assume that G has no 1-factor. If G is of odd order, then SnG also
is of odd order because |V (SnG)| = |V (G)|n. So neither SnG has a 1-factor. Hence
assume in the rest that |V (G)| is even. By Theorem 7 there exists a set X ⊆ V (G),
X 6= ∅, such that o(G − X) > |X|. Let H1, . . . ,Hk be the odd components of
G−X.

Let i be an arbitrary vertex of H1 and consider the subgraph in−1S1
G of SnG.

Applying Remark 1 again we infer that only the vertices from in−1H1∪ in−1X (the
latter being removed) can be adjacent to vertices outside of in−1S1

G. Hence since
X separates H2, . . . ,Hk in G (and hence in−1X separates in−1H2, . . . , i

n−1Hk in
in−1S1

G), the subgraphs in−1H2, . . . , i
n−1Hk form odd components of SnG− in−1X.

Since Lemma 8 implies that k ≥ |X|+2, we conclude that o(SnG−in−1X) ≥ k−1 ≥
|in−1X|+ 1. Hence, by Theorem 7, SnG has no 1-factor.

Let #pm(G) denote the number of perfect matchings in G. To determine this
number is a computationally hard problem, cf. [25]. Since SnG contains |V (G)|n−1

disjoint subgraphs isomorphic to G, we find that

#pm(SnG) ≥ (#pm(G))|V (G)|n−1

.

Hence it seems an interesting problem to determine #pm(SnG), at least asymptot-
ically. A related problem is to determine the number of matchings of SnG. In this
direction Teufl and Wagner [24, Example 6.3] determined the asymptotic behavior
of the number of matchings of Sn3 , while Chen et al. in [4, Proposition 5] obtained
a parallel result by computing the average entropy of Sn3 . We also refer to [2, 23]
additional investigations of perfect matchings in related graphs.

4.2. Hamiltonicity

Another fundamental property of generalized Sierpiński graphs that would be
interesting to look at is their hamiltonicity. It is well-known that Snp is Hamiltonian
for p ≥ 3 and n ≥ 1, see [5, Theorem 2.2] and [15, Proposition 3]. In the general
case the situation seems to be more involved, which we illustrate with the following
observation.

Proposition 10. If G is a graph of order at least 4 with δ(G) ≤ 2 and if n ≥ 2,
then SnG is not Hamiltonian.
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Proof. Let G be a graph of order at least 4 with δ(G) = 2, and let n ≥ 2. Let i be a
vertex of G of degree 2 and let N(i) = {j, k}. Clearly, {in−1j, in−1k} is a separating
set of in−1S1

G. Since G has at least 4 vertices, in−1S1
G−{in−1j, in−1k} has at least

two components, one of them being the isolated vertex in. Applying Remark 1
again, these components are also components considered in SnG − {in−1j, in−1k}.
Since (by Remark 1) the only vertices of in−1S1

G that connect to other subgraphs
sS1

G are of the form in−1`, where {i, `} ∈ E(G), we infer that SnG − {in−1j, in−1k}
consists of at least three components, hence SnG is not Hamiltonian.

Suppose next that G has a vertex i of degree 1, where j is its neighbor. Then
in−1j is a cut vertex of SnG and hence SnG is again not Hamiltonian.

Proposition 10 thus implies that the hamiltonicity of G does not guarantee
the hamiltonicity of SnG. For instance, this happens if G is a cycle or a graph
obtained from a cycle by adding arbitrary edges to it just by keeping one vertex
of degree 2. On the other hand, if κ(G) = 2 and G is Hamiltonian-connected
(recall that G is Hamiltonian-connected if there is a Hamiltonian path connecting
any two fixed vertices of G, cf. [17]), then it is not difficult to observe that S2

G is
Hamiltonian. For instance, such a graph is obtained from the disjoint union of two
complete graphs on four vertices by identifying an edge of one of them with an edge
of the other.

Based on the above discussion we propose:

Problem 11. Characterize Hamiltonian generalized Sierpiński graphs. In partic-
ular, characterize Hamiltonian generalized Sierpiński graphs among the graphs G
with κ(G) = 2.

4.3. Clone covers

We conclude by pointing to a construction from [18] that is similar to the
second power of generalized Sierpiński graphs. If G is a graph with V (G) = [p]0,
then let Cloneg(G) be the graph obtained from the collection of |V (G)| vertex-
deleted subgraph Gi = G− i by adding, for each edge i, j of G an edge joining the
vertex i of Gj with the vertex j of Gi. Then

Cloneg(G) = S2
G − {ii : i ∈ [p]0} .
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generalized Sierpiński graphs. Discuss. Math. Graph Theory 37 (2017) 547–560.

22. D. Romik: Shortest paths in the Tower of Hanoi graph and finite automata. SIAM J.
Discrete Math. 20 (2006) 610–622.

23. E. Teufl, S. Wagner: Stephan Exact and asymptotic enumeration of perfect match-
ings in self-similar graphs. Discrete Math. 309 (2008) 6612–6625.

24. E. Teufl, S. Wagner: Enumeration of matchings in families of self-similar graphs.
Discrete Appl. Math. 158 (2010) 1524–1535.

25. S. Straub, T. Thierauf, F. Wagner: Counting the number of perfect matchings
in K5-free graphs. Theory Comput. Syst. 59 (2016) 416–439.

26. D.B. West: Introduction to Graph Theory, Second Edition. Prentice Hall, Inc., Upper
Saddle River, NJ, 2001.

27. Z.-Y. Zhu: Lipschitz equivalence of totally disconnected general Sierpiński triangles.
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