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CHROMATIC ZEROS AND GENERALIZED FIBONACCI

NUMBERS

Saeid Alikhani, Yee-hock Peng

In this article we consider the problem whether generalized Fibonacci constants
can be zeros of chromatic polynomials. We prove that all 2n-anacci numbers and
all their natural powers cannot be zeros of any chromatic polynomial. Also we
investigate (2n + 1)-anacci numbers as chromatic zeros.

1. INTRODUCTION

Let G be a simple graph and λ ∈ N. A mapping f : V (G) → {1, 2, . . . , λ} is called
a λ-colouring of G if f(u) 6= f(v) whenever the vertices u and v are adjacent in
G. The number of distinct λ-colourings of G, denoted by P (G, λ) is called the
chromatic polynomial of G. A zero of P (G, λ) is called a chromatic zero of G. An
interval is called a zero-free interval for a chromatic polynomial P (G, λ) if G has
no chromatic zero in this interval. It is well-known that (−∞, 0) and (0, 1) are two
maximal zero-free intervals for the family of all graphs (see [6]). Jackson [6] showed
that (1, 32

27 ] is another maximal zero-free interval for the family of all graphs and
the value 32

27 is best possible. A graph is planar if it can be drawn in the plane
with no edges crossing. Near-triangulation graph is plane graph with at most one
non-triangular face. A near- triangulation with 3-face is a triangulation.

We recall that a complex number ζ is called an algebraic number (respectively,
algebraic integer) if it is a zero of some monic polynomial with rational (respectively,
integer) coefficients (see [11]). Corresponding to any algebraic number ζ, there is a
unique monic polynomial p with rational coefficients, called the minimal polynomial
of ζ (over the rationals), with the property that p divides every polynomial with
rational coefficients having ζ as a zero. ( The minimal polynomial of ζ has integer
coefficients if and only if ζ is an algebraic integer.)
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Since the chromatic polynomial P (G, λ) is a monic polynomial in λ with integer
coefficients, its zeros are, by definition, algebraic integers. This naturally raises the
question: Which algebraic integers can occur as zeros of chromatic polynomials?
Clearly those lying in (−∞, 0) ∪ (0, 1) ∪ (1, 32

27 ] are forbidden. The n-th Beraha
number is given by Bn = 2+2 cos( 2π

n ) (see [2]). Tutte [13] proved that the Beraha
number B5 = 3+

√
5

2 cannot be a chromatic zero, for otherwise B∗5 = 3−
√

5
2 would

also be a chromatic zero, which is impossible since B∗5 ∈ (0, 1). Salas and Sokal
in [10] extended this result to show that the generalized Beraha numbers B

(k)
n =

4 cos2(kπ/n) for n = 5, 7, 8, 9 and n ≥ 11, with k coprime to n, are never chromatic
zeros. For n = 10 they showed the weaker result that B10 = 5+

√
5

2 and B∗10 = 5−
√

5
2

are not chromatic zeros of any plane near-triangulation.

In this paper we would like to prove some further results of this kind.

In Section 2, we prove that 2n-anacci numbers and all their natural powers, cannot
be zeros of any chromatic polynomials. In Section 3, we study (2n + 1)-anacci.
Finally, in the last section, we introduce numbers which are related to 2n-anacci
constants, and ask a question similar to the Beraha question [2].

2. Chromatic zeros and 2n-anacci constants

In this section, we investigate the 2n-anacci constant (defined below) as a chromatic
zero. We show that 2n-anacci, and their natural powers, cannot be chromatic zeros.

Definition 1. An n-step (n ≥ 2) Fibonacci sequence F
(n)
k , k = 1, 2, 3, . . .

is defined by letting F
(n)
1 = F

(n)
2 = . . . = F

(n)
n = 1 and other terms according

to the linear recurrence equation F
(n)
k =

∑k−1
i=1 F

(n)
k−i, (k > 2). The limit ϕn =

limk→∞
F

(n)
k

F
(n)
k−1

is called the n-anacci constant.

It is easy to see that ϕn is the real positive zero of fn(x) = xn−xn−1− . . .−x− 1,
and this polynomial is the minimal polynomial of ϕn over Z[x]. It is obvious that
ϕn is a zero of gn(x) = xn(2 − x) − 1. Note that ϕ2 = τ , where τ = 1+

√
5

2 is the
golden ratio, and limn→∞ ϕn = 2 (See [8], [14]).

We need the following two theorems to show our main results in this section.

Theorem 1. ([8]) The polynomial fn(x) = xn − xn−1 − . . . − x − 1 is an
irreducible polynomial over Q.

Theorem 2. ([5]) Let G be a graph with n vertices and k connected compo-
nents. Then the chromatic polynomial of G is of the form

P (G, λ) = anλn + an−1λ
n−1 + . . . + akλk
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with an, an−1, . . . , ak integers, an = 1, and (−1)n−lal > 0 for k ≤ l < n. Further-
more, if G has at least one edge, then

P (G, 1) = an + an−1 + . . . + ak = 0.

Now we prove that the 2n-anacci numbers cannot be zeros of any chromatic poly-
nomials.

Theorem 3. For every integer n ≥ 1, the 2n-anacci number ϕ2n cannot be
zero of any chromatic polynomial.

Proof. We know that ϕ2n is a zero of f2n(x) = x2n − x2n−1 − . . . − x − 1, which
is minimal polynomial for this root. It is obvious that f2n(x) is not a chromatic
polynomial (see Theorem 2). Now suppose that there exists a chromatic polynomial
P (x) such that P (ϕn) = 0. By Theorem 1, f2n(x)|P (x). Since f2n(0) = −1 < 0,
and f2n(−1) = 1 > 0, by the intermediate value theorem, f2n(x) and therefore
P (x) has a root in (−1, 0) and this is a contradiction. �

With arguments similar to the proof of Theorem 3, we prove that all natural powers
of 2n-anacci constant cannot be chromatic zero.

Theorem 4. All natural powers of ϕ2n cannot be chromatic zeros.

Proof. Suppose that ϕm
2n(m ∈ N) is a chromatic zero, that is there exists a

chromatic polynomial

P (G, λ) = λk + ak−1λ
k−1 + . . . + a1λ

such that P (G, ϕm
2n) = 0. Therefore,

ϕmk
2n + ak−1ϕ

m(k−1)
2n + . . . + a1ϕ

m
2n = 0.

So we can say that ϕ2n is a zero of the polynomial,

Q(λ) = λmk + ak−1λ
mk−m + . . . + a1λ

m

in Z[x]. But we know that f2n(λ) = λ2n − λ2n−1 − . . . − λ − 1 is the minimal
polynomial of ϕ2n over Z[x]. Therefore f2n(λ)|Q(λ). Since f2n(0) = −1 < 0 and
f2n(−1) = 1 > 0, f2n(λ) and so Q(λ) have a zero say α, in (−1, 0). Therefore, αm

is a root of P (G, λ). Since αm ∈ (−1, 0) ∪ (0, 1), we have a contradiction. �

Corollary 1. τn(n ∈ N) cannot be zero of any chromatic polynomials, where
τ = 1+

√
5

2 is the golden ratio.

Proof. Since τ = ϕ2, then we have the result by Theorems 3 and 4. �

Remark. We have obtained this result in [1] with a different approach.

3. Chromatic zeros and (2n + 1)-anacci constants
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We think that (2n + 1)-anacci numbers and all their natural powers also cannot
be chromatic zeros, but we are not able to prove it. In this section we study and
obtain a result for (2n + 1)-anacci numbers as chromatic zeros.
Now we obtain the following result related to ϕ2n+1.

Theorem 5. For every natural n, ϕ2n+1 cannot be a root of the chromatic
polynomial of a connected graph G with |V (G)| ≤ 4n + 2.

Proof. We know that ϕ2n+1 is a zero of f2n+1(x) = x2n+1 − x2n − . . . − x − 1,
which is the minimal polynomial for this root. It is obvious that f2n+1(x) is not a
chromatic polynomial (see Theorem 2). Now suppose that there exists a chromatic
polynomial

P (x) = amxm + am−1x
m−1 + . . . + a1x + a0, (m > 2n + 1)

such that P (ϕ2n+1) = 0, then f2n+1(x)|P (x). So P (x) = f2n+1(x)g(x). Let g(x) =
bm−2n−1x

m−2n−1 + bm−2n−2x
m−2n−2 + . . . + b1x + b0. Therefore the following

equalities hold between the coefficients of g(x) and P (x), when m−2n−1 ≤ 2n+1,
i.e. m ≤ 4n + 2:

a0 = b0 = 0,
a1 = −b1,
a2 = −b2 − b1,
a3 = −b3 − b2 − b1,

...
am−2n−1 = −bm−2n−1 − bm−2n−2 − . . .− b1

By Theorem 2, since P (x) is a chromatic polynomial, we have (x−1)|P (x). There-
fore we have

(x− 1)|bm−2n−1x
m−2n−1 + bm−2n−2x

m−2n−2 + · · ·+ b1x + b0,

hence bm−2n−1+bm−2n−2+. . .+b1 = 0. By the above equalities, we have am−2n−1 =
0, contradicts the fact that the coefficients am, am−1, . . . , a1 of a chromatic poly-
nomial of a connected graph are different from zero. Since the above equalities
between the coefficients of P (x) and g(x) are valid provided that m ≤ 4n + 2,
ϕ2n+1 cannot be chromatic zero of any graph G with |V (G)| ≤ 4n + 2. �

Some questions and remarks

This section discusses results and conjectures going in the opposite direction to
those in the rest of the paper, namely, while the rest of the paper is concerned with
proving that 2n-anacci constants and all their natural powers cannot be chromatic
roots; here we are interested in showing that those numbers are accumulation points
of (real) chromatic roots.
Thomassen [12] stated the following significant result.
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n An,2 = 2 + ϕn Bn = 2 + 2 cos( 2π
n )

2 2 + τ 0
3 3.839286755 1
4 3.927561975 2
5 3.965948237 τ2 = 2.618033989
6 3.983582843 3
7 3.991964197 3.246979604
8 3.996031180 3.414213562
9 3.998029470 3.532088886
10 3.999018633 2+τ=3.618033989
...

...
...

Table 1. An,2 and Bn

Theorem 6. If G is a graph of order n and 1 ≤ λ ≤ 32
27 , then |P (G, λ)| ≥

λ(1 − λ)n−1. Moreover, if λ0 > 32
27 , ε > 0, then there exists a graph G such that

P (G, λ) has a root in (λ0 − ε, λ0 + ε).

Theorem 6 provides information on the general case when λ > 32
27 . But the problem

has been considered for some families of graphs as well. One of this families is the
family of triangulation graphs, and there are some open problems for it. We recall
the Beraha question, which says:

Question 1. (Beraha’s question [2]) Is it true that for every ε > 0, there
exists a plane triangulation G such that P (G, λ) has a root in (Bn − ε, Bn + ε),
where Bn = 2 + 2cos( 2π

n ) is called the n-th Beraha constant (or number)?

Beraha et al. [4] proved that B5 = τ2 = 1 + τ = 3+
√

5
2 ≈ 2.61803..., is an ac-

cumulation point of real chromatic roots of certain plane triangulations (namely
4per × nfree pieces of the triangulation lattice with an extra vertex at top and
bottom to complete the triangulation). Jacobsen et al. [7] extended this to show
that B7, B8, B9 and B10 are likewise accumulation points of real chromatic roots of
plane triangulations (namely, mper × nfree pieces of the triangular lattice of width
m up to 12). Finally, Royle [9] has recently exhibited a family of plane triangu-
lations with chromatic roots converging to 4. We know that the sequence Bn has
a limit 4. If the answer to Beraha’s question is positive, then there exist planar
graphs whose chromatic roots are arbitrarily close to 4. Note that by exhibition of
Royle [9], we have a family of plane triangulations with chromatic roots converging
to 4. Of course, it is an open question which other numbers in the interval (32

27 , 4)
can be accumulation points of real chromatic roots of planar graphs. The following
conjecture of Thomassen is one possible answer.

Conjecture 1. The set of chromatic roots of the family of planar graphs
consists of 0, 1 and a dense subset of ( 32

27 , 4). (See [12]).
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Now, let An,i = i + ϕn, where i ∈ {0, 1, 2}. In Table 1, we compare An,2 with Bn.
Here we ask the following question that is analogous to Beraha’s question.

Question 2. Is it true that, for any ε > 0, there exists a plane triangulation
graph G such that P (G, λ) has a root in (An,i − ε, An,i + ε) (n ≥ 2, i ∈ {0, 1, 2})?

Note that A2,2 = B10 = 2+τ . Beraha, Kahane and Reid [3] proved that the answer
to Question 2 (or respectively, Beraha’s question) is positive for i = 2, n = 2 (or
n = 10).

Acknowledgement. The authors wish to thank Prof. Dr. Saieed Akbari for his
helpful guidance, and thank four referees for their valuable comments that lead to
improved version of our work.
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