GROUPIES IN RANDOM BIPARTITE GRAPHS

Yilun Shang

A vertex \(v \) of a graph \(G \) is called a groupie if its degree is not less than the average of the degrees of its neighbors. In this letter we study the influence of bipartition \((B_1, B_2)\) on groupies in random bipartite graphs \(G(B_1, B_2, p) \) with both fixed \(p \) and \(p \) tending to zero.

1. INTRODUCTION

A vertex of a graph \(G \) is called a groupie if its degree is not less than the arithmetic mean of the degrees of its neighbors. Some results concerning groupies have been obtained in deterministic graph theory; see e.g. [1, 5, 6]. Recently, Fernandez de la Vega and Tuza [3] investigate groupies in Erdős-Rényi random graphs \(G(n, p) \) and shows that the proportion of the vertices which are groupies is almost always very near to \(1/2 \).

In this letter, we follow the idea of [3] and deal with groupies in random bipartite graph \(G(B_1, B_2, p) \). Our results indicate the proportion of groupies depends on the bipartition \((B_1, B_2)\). First, we give a formal definition for \(G(B_1, B_2, p) \) as follows.

Definition 1. A random bipartite graph \(G(B_1, B_2, p) \) with vertex set \([n] = \{1, 2, \ldots, n\}\) is defined by partitioning the vertex set into two classes \(B_1 \) and \(B_2 \) and taking \(p_{ij} = 0 \) if \(i, j \in B_1 \) or \(i, j \in B_2 \), while \(p_{ij} = p \) if \(i \in B_1 \) and \(j \in B_2 \) or vice versa. Here, independently for each pair \(i, j \in [n] \), we add the edge \(ij \) to the random graph with probability \(p_{ij} \).

By convention, for a set \(A \), let \(|A|\) denote the number of elements in \(A \). We denote by \(\text{Bin}(m, q) \) the binomial distribution with parameters \(m \) and \(q \).

2. MAIN RESULTS
Theorem 1. Suppose that $0 < p < 1$ is fixed. Let N denote the number of groupies in the random bipartite graph $G(B_1, B_2, p)$. For $i = 1, 2$, let $N(B_i)$ denote the number of groupies in B_i. Then the following is true

(i) Assume $|B_1| = a n$ and $|B_2| = (1 - a)n$ for some $a \in (0, 1)$. If $a = 1/2$, then

$$P\left(\frac{n}{4} - \omega(n)\sqrt{n} \leq N(B_1) \leq \frac{n}{4} + \omega(n)\sqrt{n}, \text{ for } i = 1, 2\right) \to 1$$

as $n \to \infty$, where $\omega(n) = \Omega(\ln n)$. If $a < 1/2$, then

$$P\left(\frac{an}{2} - \omega(n)\sqrt{n} \leq N(B_1) \text{ and } N(B_2) \leq \frac{an}{2} + \omega(n)\sqrt{n}\right) \to 1$$

as $n \to \infty$, where $\omega(n)$ is defined as above.

(ii) Assume $|B_1| = b_n n$ and $|B_2| = (1 - b_n)n$ with $\ln n/n \ll 1 - b_n \to 0$, as $n \to \infty$. Then

$$P(N = N(B_2) = |B_2|) \to 1$$

as $n \to \infty$.

Proof. For (i) we take vertex $x \in B_1$ and let d_x denote the degree of x in $G(B_1, B_2, p)$. Denote by S_x the sum of the degrees of the neighbors of x. Assuming that x has degree d_x, we have $S_x \sim d_x + Bin((an-1)d_x, p)$, where \sim represents identity of distribution. For any d_x, the expectation $ES_x = d_x[1 + (an-1)p]$. Since $S_x - d_x \sim Bin((an-1)d_x, p)$ and $(an-1)d_x \geq a(1 - a)n^2p^2/2$ when $(1 - a)np/2 \leq d_x \leq 3(1 - a)np/2$, by using a large deviation bound (see [4] pp.29, Remark 2.9), we get

$$P\left(|S_x - d_x anp| \leq 10n\sqrt{\ln n} \mid \frac{(1 - a)np}{2} \leq d_x \leq \frac{3(1 - a)np}{2}\right) \geq 1 - e^{-2\ln n}$$

(1)

Dividing by d_x, we have for some absolute constant $C_1 > 20/[(1 - a)p]$

$$P\left(\frac{S_x}{d_x} - anp \leq C_1\sqrt{\ln n} \mid \frac{(1 - a)np}{2} \leq d_x \leq \frac{3(1 - a)np}{2}\right) = 1 - o(n^{-1}).$$

Note that $d_x \sim Bin((1 - a)n, p)$ and a concentration inequality (see [4] pp.27, Corollary 2.3) yields

$$P\left(|d_x - (1 - a)np| \leq \frac{(1 - a)np}{2}\right) = 1 - o(n^{-1}).$$

Hence, involving the total probability formula we obtain

$$P\left(\frac{S_x}{d_x} - anp \leq C_1\sqrt{\ln n}, \text{ for every } x \in B_1\right) = 1 - o(1).$$

Likewise,

$$P\left(\frac{S_x}{d_x} - (1 - a)np \leq C_1\sqrt{\ln n}, \text{ for every } x \in B_2\right) = 1 - o(1).$$

In the sequel, we treat two scenarios separately.
Case 1 : $a = 1/2$. For $i = 1, 2$, let $N^+(B_i)$ (resp. $N^-(B_i)$) denote the number of vertices in B_i, whose degrees are at least $np/2 + C_1 \sqrt{\ln n}$ (resp. at most $np/2 - C_1 \sqrt{\ln n}$). From (2), (3) and the definition of a groupie, it follows that

$$P\left(N^+(B_i) \leq N(B_i) \leq \frac{n}{2} - N^-(B_i), \text{ for } i = 1, 2\right) = 1 - o(1).$$

Therefore, it suffices to prove

$$P\left(N^+(B_i) \geq \frac{n}{4} - \omega(n) \sqrt{\ln n}\right) = 1 - o(1)$$

and the analogous statements for $N^-(B_1), N^+(B_2)$ and $N^-(B_2)$.

Note that $N^+(B_1) = \sum_{x \in B_1} 1_{\{d_x \geq np/2 + C_1 \sqrt{\ln n}\}}$. Since $\text{Bin}(n/2, p)$ is flat about its maximum, the expectation of $N^+(B_1)$ is seen to be given by

$$EN^+(B_1) = \frac{n}{2} P\left(d_x \geq \frac{np}{2} + C_1 \sqrt{\ln n}\right) = \frac{n}{4} - \Theta(\sqrt{\ln n}).$$

Arguing as in [3], we derive $\text{Var}(N^+(B_1)) \leq C_2 n$ for some absolute constant C_2 and (4) follows by applying the Chebyshev inequality. Alternatively, we may deduce (4) by the bounded difference inequality (see [2] pp. 24, Theorem 1.20) without estimating the variance.

Case 2 : $a < 1/2$. Let $\tilde{N}^+(B_1)$ denote the number of vertices in B_1 with degrees at least $(1 - a)np + C_1 \sqrt{\ln n}$. Hence $\tilde{N}^+(B_1) = \sum_{x \in B_1} 1_{\{d_x \geq (1 - a)np + C_1 \sqrt{\ln n}\}}$; and reasoning similarly as in Case 1, we get

$$P\left(N(B_1) \geq \frac{an}{2} - \omega(n) \sqrt{\ln n}\right) \geq P\left(\tilde{N}^+(B_1) \geq \frac{an}{2} - \omega(n) \sqrt{\ln n}\right) = 1 - o(1).$$

Next, let $\tilde{N}^-(B_2)$ denote the number of vertices in B_2 with degrees at most $anp - C_1 \sqrt{\ln n}$. Similarly, we have

$$P\left(N(B_2) \leq \frac{an}{2} + \omega(n) \sqrt{\ln n}\right) \geq P\left(\tilde{N}^-(B_2) \leq \frac{an}{2} + \omega(n) \sqrt{\ln n}\right) = 1 - o(1).$$

We then conclude the proof in this case by combining (5) and (6). It is worth noting that the upper bound on $N(B_1)$ and the lower bound on $N(B_2)$ can not be obtained by using the above techniques.

For (ii) we need to prove the following two statements:

(a) Almost surely none of the vertices in B_1 is a groupie; and

(b) Almost surely every vertex in B_2 is a groupie.

We prove (a) in the sequel and leave (b), which may be proved similarly, as an exercise.

Fix a vertex $x \in B_1$ and assume that x has degree d_x, then we have $S_x \sim d_x + \text{Bin}(b_n nd_x, p)$. For any d_x, the expectation $ES_x = d_x(b_n np + 1)$. Since $S_x - d_x \sim \text{Bin}(b_n nd_x, p)$ and $b_n nd_x \geq b_n(1 - b_n)n^2p/2$ when $(1 - b_n)np/2 \leq d_x \leq 3(1 - b_n)np/2$, as in situation (i) we obtain

$$P\left(|S_x - b_n nd_x p| \leq 10n \sqrt{\ln n} \right| \frac{(1 - b_n)np}{2} \leq d_x \leq \frac{3(1 - b_n)np}{2}) = 1 - o(n^{-1}).$$
Dividing by \(d_x \) we have
\[
P\left(\left| \frac{S_x}{d_x} - b_n np \right| \leq \frac{20\sqrt{\ln n}}{1 - b_n)p} \mid \frac{(1 - b_n)np}{2} \leq d_x \leq \frac{3(1 - b_n)np}{2} \right) = 1 - o(n^{-1}).
\]
Since \(d_x \sim \text{Bin}((1 - b_n)n, p) \) and \(\ln n/n = 1 - b_n \), we get
\[
P\left(||d_x - (1 - b_n)np|| \leq \frac{(1 - b_n)np}{2} \right) = 1 - o(n^{-1})
\]
by exploiting a concentration inequality (see [4] pp.27, Corollary 2.3). From (7) and (8), it follows
\[
P\left(||S_x - b_n np|| \leq \frac{20\sqrt{\ln n}}{(1 - b_n)p} \right) = 1 - o(n^{-1}).
\]
We have
\[
P\left(d_x \geq b_n np - \frac{20\sqrt{\ln n}}{(1 - b_n)p} \right) \leq P\left(d_x - (1 - b_n)np \geq \frac{3}{2}\sqrt{(1 - b_n)n\ln n} \right) \leq e^{-\frac{n}{4}} = o(n^{-1})
\]
where the second inequality follows by involving Theorem 2.1 of [4] (pp.26). Consequently, (9) and (10) yield
\[
P(\exists x \text{ is a groupie}) = o(n^{-1}),
\]
which clearly concludes the proof of statement (a). \(\square \)

We remark that the assumption \(\ln n/n \ll 1 - b_n \) given in Theorem 1 Case (ii) is not very stringent, since we must have \(1 - b_n = \Omega(n^{-1}) \) in our situation. The following theorem can be proved similarly.

Theorem 2. Suppose that \(np^2 \gg \ln n \), as \(n \to \infty \). Let \(N \) denote the number of groupies in the random bipartite graph \(G(B_1, B_2, p) \). For \(i = 1, 2 \), let \(N(B_i) \) denote the number of groupies in \(B_i \). Then the following is true

(i) Assume \(|B_1| = an \) and \(|B_2| = (1 - a)n \) for some \(a \in (0, 1) \). If \(a = 1/2 \), then
\[
P\left(\frac{n(1 - \varepsilon(n))}{4} \leq N(B_i) \leq \frac{n(1 + \varepsilon(n))}{4}, \text{ for } i = 1, 2 \right) \to 1
\]
as \(n \to \infty \), where \(\varepsilon(n) \) is any function tending to zero sufficient slowly. If \(a < 1/2 \), then
\[
P\left(\frac{an(1 - \varepsilon(n))}{2} \leq N(B_1) \text{ and } N(B_2) \leq \frac{an(1 + \varepsilon(n))}{2} \right) \to 1
\]
as \(n \to \infty \), where \(\varepsilon(n) \) is defined as above.

(ii) Assume \(|B_1| = b_n n \) and \(|B_2| = (1 - b_n)n \) with \(1 - b_n = \Omega(1/\sqrt{\ln n}) \) and \(b_n \to 1 \), as \(n \to \infty \). Then
\[
P(\exists N = N(B_2) = |B_2|) \to 1
\]
as \(n \to \infty \).
Proof. We sketch the proof as follows. For (i) the inequality (1) holds following the same reasoning in the proof of Theorem 1. Therefore, we get
\[P\left(\frac{S_x}{d_x} - anp \leq \frac{20\sqrt{\ln n}}{(1-a)p} \right \mid \frac{(1-a)np}{2} \leq d_x \leq \frac{3(1-a)np}{2}) = 1 - o(n^{-1}). \]
The following two large deviation statements hold similarly:
\[P\left(\frac{S_x}{d_x} - 20\sqrt{\ln n} \leq (1-a)np, \text{ for every } x \in B_1 \right) = 1 - o(1), \]
and
\[P\left(\frac{S_x}{d_x} - (1-a)np \leq 20\sqrt{\ln n} \leq (1-a)np, \text{ for every } x \in B_2 \right) = 1 - o(1). \]

Case 1: \(a = 1/2 \). For \(i = 1, 2 \), let \(N^+(B_i) \) (resp. \(N^-(B_i) \)) denote the number of vertices in \(B_i \), whose degrees are at least \(np/2 + 20\sqrt{\ln n}/(1-a)p \) (resp. at most \(np/2 - 20\sqrt{\ln n}/(1-a)p \)). As in the proof of Theorem 1, in the sequel we shall prove that
\[P\left(N^+(B_1) \geq \frac{n(1 - \varepsilon(n))}{4} \right) = 1 - o(1). \]
Note that \(N^+(B_1) = \sum_{x \in B_1} 1_{\{d_x \geq np/2 + 20\sqrt{\ln n}/(1-a)p\}} \). Since \(Bin(n/2, p) \) is flat about its maximum, the expectation of \(N^+(B_1) \) is given by
\[EN^+(B_1) = \frac{n}{2} P\left(d_x \geq \frac{np}{2} + \frac{20\sqrt{\ln n}}{(1-a)p} \right) = \frac{n}{4} - \Theta\left(\frac{\sqrt{n \ln n}}{p} \right). \]
By using the assumption \(np^2 \gg \ln n \), we may also obtain \(Var(N^+(B_1)) \leq C_3n \) for some absolute constant \(C_3 \). Since \(\varepsilon(n) \) is a function tending to zero sufficiently slowly, we have \(\sqrt{n \ln n}/p \ll \varepsilon n \) and \(1/\varepsilon^2 n \to 0 \), as \(n \to \infty \). Combining these estimations, we get (11) by employing the Chebyshev inequality as in [3].

Case 2: \(a < 1/2 \). Let \(\hat{N}^+(B_1) \) denote the number of vertices in \(B_1 \) with degrees at least \((1-a)np + 20\sqrt{\ln n}/(1-a)p \) and the proof follows similarly as before.
For (ii), note that our assumptions imply \(\ln n/n \ll 1 - b_n \to 0 \) as \(n \to \infty \), and the corresponding proof in Theorem 1 holds verbatim. \(\Box \)

REFERENCES

Department of Mathematics,
Shanghai Jiao Tong University,
800 DongChuan Road,
Shanghai, China
E-mail: shyl@sjtu.edu.cn