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COUNTING PATTERN AVOIDING PERMUTATIONS

BY NUMBER OF MOVABLE LETTERS

Toufik Mansour and Mark Shattuck ∗

By a movable letter within a pattern avoiding permutation, we mean one

that may be transposed with its predecessor while still avoiding the pattern.

In this paper, we enumerate permutations avoiding a single pattern of length

three according to the number of movable letters, thereby obtaining new q-

analogues of the Catalan number sequence. Indeed, we consider the joint

distribution with the statistics recording the number of descents and occur-

rences of certain vincular patterns. To establish several of our results, we

make use of the kernel method to solve the functional equations that arise.

1. INTRODUCTION

A permutation π = π1 · · ·πn ∈ Sn contains the pattern τ = τ1 · · · τm ∈ Sm
where m ≤ n in the classical sense if π contains a subsequence that is isomorphic
to τ . Otherwise, π is said to avoid τ . A vincular pattern [1] is one containing
dashes separating some of the elements and is of the form τ = α1-α2-· · · -αr, where
the αi represent disjoint non-empty subsets of distinct letters whose union is [m] =
{1, 2, . . . ,m}. Then π is said to contain the vincular pattern τ if it contains some
subsequence that is isomorphic to τ in which the entries of π corresponding to each
αi are required to be consecutive, and avoids τ otherwise. See [12, Chapter 7] for
a complete list of results concerning avoidance of vincular patterns.

Note that a classical pattern then corresponds to a vincular pattern in which
each αi is of length one, while a consecutive pattern (i.e., subword) corresponds to
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a vincular where r = 1. Here, we will denote classical patterns without dashes as
we will not be discussing avoidance of subwords. Given any set T of patterns, let
Sn(T ) denote the subset of Sn whose members avoid each pattern in T . In the case
where T is a singleton, one often indicates the set by just writing the pattern in
question. Recall from [16] that |Sn(τ)| = Cn for all τ ∈ S3, where Cn = 1

n+1

(
2n
n

)
denotes the n-th Catalan number (see [17, A000108]). Let Sn,i(τ) for 1 ≤ i ≤ n
denote the subset of Sn(τ) whose members have final letter i.

The problem of enumerating the members of Sn(τ) for some pattern τ ac-
cording to a combinatorial statistic has been a frequent object of research. See,
e.g., [2,3,8,11–15] and references contained therein. Note that such an enumeration
leads to a polynomial generalization of the underlying counting sequence |Sn(τ)|.
Here, we undertake an enumeration of Sn(τ), where τ ∈ S3, according to a new
parameter which tracks certain kinds of adjacencies. In fact, we consider a joint
distribution of this parameter with statistics recording the number of descents and
occurrences of certain vincular patterns. This leads to new (multivariate) polyno-
mial generalizations of the Catalan number sequence.

Our work also extends prior results of Burstein and Elizalde [6] concerning the
total number of occurrences of a vincular pattern of length three over all members of
Sn(τ), where τ ∈ S3. Indeed, we find recurrences and generating function formulas
for the entire distribution of the statistic on Sn(τ) that records the number of
occurrences of a vincular pattern in several instances from which the totals of
these statistics over Sn(τ) may be deduced as a corollary. For other results in
this direction, we refer the reader to the paper of Vajnovszki [18], where some
bijective results involving the equidistribution of vincular patterns are given, and
of Homberger [9], where totals over Sn(τ) for the number of occurrences of classical
patterns of length three are found. See also [4, 5] for further related results.

We now define the new statistic on Sn(τ). By a movable letter within π ∈
Sn(τ), we mean one that may be transposed with its predecessor while still avoiding
τ . Letters that cannot be moved in this way will be referred to as immovable. The
first letter of any permutation will always be taken to be immovable. Let µ(π)
denote the number of movable letters in π. For example, if π = 912786453 ∈
S9(213), then we have µ(π) = 4 since each of 1, 8, 4 and 5 may be transposed
with its predecessor without introducing an occurrence of 213. Note that 2 and 7,
which are immovable, both correspond to the second entry within an occurrence
of 12-3, whereas the immovable letters 6 and 3 both correspond to the third entry
within a 2-31. More generally, immovable letters in π ∈ Sn(213) that do not start
a permutation correspond to the second entry of a 12-3 or the third entry of a 2-
31, with these options seen to be mutually exclusive. Similar remarks apply when
avoiding other patterns τ .

This paper is divided as follows. In the next section, we consider the movable
letter statistic on Sn(213) and compute a recurrence for its joint distribution with
the statistics recording the number of descents, occurrences of 2-31 and adjacencies
xy such that x and y are the last two letters in an occurrence of 2-31. An explicit
formula is computed for the generating function of the joint distribution on Sn(213)
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as well as for the one corresponding to each statistic taken separately. From these,
simple closed form expressions for the totals of the various statistics may be derived.
In the third section, a similar treatment is provided for the µ statistic on Sn(123)
and the parameters recording the number of descents and occurrences of 1-32. In
the fourth section, a comparable distribution is considered on Sn(132) involving µ
and the pattern 1-23. Combinatorial proofs are provided in the final section for the
totals of some of the statistics, including µ, on the avoidance classes in question
and for a related equidistribution result.

Note that µ, when taken alone, is equally distributed on Sn(τ) for τ =132,
213, 231 or 312 (as seen upon applying the reversal and/or the complementation op-
erations). However, its joint distribution with the statistics on Sn(213) considered
in the second section will be seen to differ from the one obtained from the statistics
on Sn(132) considered in the fourth. Moreover, µ itself has a different distribution
on Sn(123) than it does on Sn(132). To establish several of our results, we will
make use of various refinements and restrictions of the avoidance class in question.
This leads to functional equations that are satisfied by the related generating func-
tions, which can often be solved explicitly using the kernel method [10]. In our
combinatorial proofs, we will make use of the Simion-Schmidt bijection from [16]
as well as a well-known bijection (see [7]) between Sn(132) and Dyck paths.

2. JOINT DISTRIBUTION OVER SN (213)

In this section, we consider the joint distribution of µ on Sn(213) with some
closely related statistics. Let an = an(p, q, s, t) denote the joint distribution on
Sn(213) for the following four statistics marked by p, q, s and t, respectively:
(i) number of adjacencies xy such that the x and y serve as the 3 and 1 in an
occurrence of 2-31, (ii) movable letters, (iii) descents, and (iv) occurrences of 2-31.
Let an,i = an,i(p, q, s, t) denote the restriction of an to Sn,i(213) for 1 ≤ i ≤ n, with
an,0 = 0. Note that an =

∑n
i=1 an,i, by the definitions.

The an,i are determined recursively as follows.

Lemma 1. If n ≥ 2 and 1 ≤ i ≤ n− 1, then

an,i = qsan−1,i + ps

n−1∑
`=i+1

an−1,`t
`−i

+ q2s

i−1∑
j=1

an−j−1,i−j + pqs

i−1∑
j=1

n−1∑
`=i+1

an−j−1,`−jt
`−i,(2.1)

with an,n = q for n ≥ 2 and a1,1 = 1.

Proof. If i = n, then there is a single member of Sn,i(213), namely 12 · · ·n, which
contains no occurrences of 2-31 with only the last letter movable for n > 1. So
assume 1 ≤ i ≤ n − 1 and let π = π1 · · ·πn ∈ Sn,i(213). Note that if the last
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two letters of π form a descent, then the penultimate letter of π must be i− 1, for
otherwise π would contain 213. Let ` + 1 denote the rightmost letter of π that is
greater than i where i ≤ ` ≤ n− 1. Then we may write π = π′(`+ 1)(i− j)(i− j +
1) · · · (i − 1)i for some 0 ≤ j ≤ i − 1. We consider now cases based on j and `. If
j = 0 and ` = i, then π = π′(i+1)i and the i which is movable and responsible for a
descent may be deleted, yielding qsan−1,i possibilities. If j = 0 and ` ≥ i+ 1, then
each element of [i+ 1, `] is the first letter in an occurrence of 2-31 in which i is the
last. Since i is extraneous concerning avoidance of 213 due to a larger predecessor,
it may once again be deleted, which yields ps

∑n−1
`=i+1 an−1,`t

`−i possibilities.

If j ≥ 1 and ` = i, then both i − j and i are seen to be movable (note that
i−j is movable since no element strictly between i−j and i+1 occurs to the left of
i+1). Furthermore, no element of [i− j+1, i−1] is movable, for otherwise a 213 is
introduced with i corresponding to the 3. As there is a single descent between i+ 1
and i − j, deleting all elements of [i − j, i] in this case gives q2s

∑i−1
j=1 an−j−1,i−j

additional possibilities. If j ≥ 1 and ` ≥ i + 1, then i is movable but i − j is not,
with the adjacency (` + 1)(i − j) corresponding to the last two letters in exactly
`− i occurrences of 2-31. Deleting the final j + 1 letters of π and considering all j
and ` in this case gives the last sum on the right side of (2.1) and completes the
proof.

Let an(w) = an(w; p, q, s, t) be given by an(w) =
∑n
i=1 an,iw

i for n ≥ 1. We
have the following recurrence formula for an(w).

Lemma 2. If n ≥ 3, then

an(w) = (qs+ w)an−1(w) + q(q − 1)swan−2(w) +
ps

t− w
(wan−1(t)− tan−1(w))

+
p(q − 1)sw

t− w
(wan−2(t)− tan−2(w)),(2.2)

with a1(w) = w and a2(w) = qsw + qw2.

Proof. The initial conditions may be verified using the definitions, so assume n ≥ 3.
Replacing n by n− 1 and i by i− 1 in (2.1), and subtracting, yields

an,i − an−1,i−1 = qs(an−1,i − an−2,i−1) + ps

n−1∑
`=i+1

an−1,`t
`−i − ps

n−2∑
`=i

an−2,`t
`−i+1

+ q2s

i−1∑
j=1

an−j−1,i−j − q2s

i−2∑
j=1

an−j−2,i−j−1

+ pqs

i−1∑
j=1

n−1∑
`=i+1

an−j−1,`−jt
`−i − pqs

i−2∑
j=1

n−2∑
`=i

an−j−2,`−jt
`−i+1.

Replacing j by j − 1 in the second subtracted sum and replacing both ` by ` − 1
and j by j − 1 in the final subtracted sum, and observing the cancellations that
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result, one gets

an,i = qsan−1,i + an−1,i−1 + q(q − 1)san−2,i−1

+ ps

n−1∑
`=i+1

an−1,`t
`−i − ps

n−2∑
`=i

an−2,`t
`−i+1 + pqs

n−1∑
`=i+1

an−2,`−1t
`−i,(2.3)

for 2 ≤ i ≤ n− 1, with

(2.4) an,1 = qsan−1,1 + ps

n−1∑
`=2

an−1,`t
`−1, n ≥ 2.

Multiplying both sides of (2.3) by wi, summing over 2 ≤ i ≤ n−1 and adding
w times equation (2.4) implies

an(w) = qwn + qsan−1(w) +
n−1∑
i=2

an−1,i−1w
i + q(q − 1)swan−2(w)

+ ps

n−1∑
`=2

an−1,`t
`
`−1∑
i=1

(w
t

)i
− ps

n−2∑
`=2

an−2,`t
`+1
∑̀
i=2

(w
t

)i
+ pqs

n−1∑
`=3

an−2,`−1t
`
`−1∑
i=2

(w
t

)i
= qwn + qsan−1(w) + w(an−1(w)− qwn−1) + q(q − 1)swan−2(w)

+
ps

t− w

n−1∑
`=1

an−1,`t
`+1

(
w

t
−
(w
t

)`)

− ps

t− w

n−2∑
`=1

an−2,`t
`+2

((w
t

)2

−
(w
t

)`+1
)

+
pqs

t− w

n−1∑
`=2

an−2,`−1t
`+1

((w
t

)2

−
(w
t

)`)
= (qs+ w)an−1(w) + q(q − 1)swan−2(w) +

ps

t− w
(wan−1(t)− tan−1(w))

+
p(q − 1)s

t− w

n−2∑
`=1

an−2,`t
`+2

((w
t

)2

−
(w
t

)`+1
)

= (qs+ w)an−1(w) + q(q − 1)swan−2(w) +
ps

t− w
(wan−1(t)− tan−1(w))

+
p(q − 1)sw

t− w
(wan−2(t)− tan−2(w)),

as desired.
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Let f(x;w) = f(x;w; p, q, s, t) be given by

f(x;w) =
∑
n≥1

an(w)xn.

Then multiplying both sides of (2.2) by xn, and summing over n ≥ 3, gives

f(x;w)− wx− (qsw + qw2)x2 = (qs+ w)x(f(x;w)− wx) + q(q − 1)swx2f(x;w)

+
psx+ p(q − 1)swx2

t− w
(wf(x; t)− tf(x;w)),

which may be rewritten as(
1− x(w + qs+ q(q − 1)swx) +

pstx(1 + (q − 1)wx)

t− w

)
f(x;w)

= wx+ (q − 1)w2x2 +
pswx(1 + (q − 1)wx)

t− w
f(x; t).(2.5)

Let C(x) =
∑
n≥0 Cnx

n = 1−
√

1−4x
2x denote the generating function for the

Catalan numbers. To solve the functional equation (2.5), we apply the kernel
method and let w = w0 be given by

t(1 + (p− q)sx)

1 + (t− qs)x+ (1− q)(p− q)stx2
C

(
tx(1 + (p− q)sx)(1− q(1− q)sx)

(1 + (t− qs)x+ (1− q)(p− q)stx2)2

)
,

which is seen to cancel out the left-hand side. Solving for f(x; t) then yields

f(x; t) =
w0 − t
ps

.

Hence, by (2.5), we obtain the following result.

Theorem 1. The generating function f(x;w) = f(x;w; p, q, s, t) is given by

f(x;w) =
wx(1 + (q − 1)wx)(w − w0)

(1− x(w + qs+ q(q − 1)swx))(w − t)− pstx(1 + (q − 1)wx)
,

where w0 = t(1+(p−q)sx)
1+(t−qs)x+(1−q)(p−q)stx2C

(
tx(1+(p−q)sx)(1−q(1−q)sx)

(1+(t−qs)x+(1−q)(p−q)stx2)2

)
.

Considering p, q and t separately in Theorem 1, setting all other parameters
equal to one and simplifying, gives the following generating function formulas for
the distributions of the statistics marked by the respective variables.
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Corollary 1. We have

f(x; 1; p, 1, 1, 1) =
1− (1− p)x

p
C (x(1− (1− p)x))− 1

p

= x+ 2x2 + (p+ 4)x3 + (6p+ 8)x4 + (2p2 + 24p+ 16)x5 + · · · ,
f(x; 1; 1, q, 1, 1)

=
1 + (1− q)x

1 + (1− q)x+ (1− q)2x2
C

(
x(1 + (1− q)x)(1− q(1− q)x)

(1 + (1− q)x+ (1− q)2x2)2

)
− 1

= x+ 2qx2 + q(3q + 2)x3 + q(5q2 + 6q + 3)x4 + q(8q3 + 17q2 + 12q

+ 5)x5 + · · · ,

f(x; 1; 1, 1, 1, t) =
x− tx

1−(1−t)xC
(

tx
(1−(1−t)x)2

)
1− t− (2− t)x

= x+ 2x2 + (t+ 4)x3 + (t2 + 5t+ 8)x4 + (t3 + 8t2 + 17t+ 16)x5 + · · · .

Remarks: Taking the limit as p→ 0 in the first formula in Corollary 1 and noting
the Catalan transform C(x(1 − x)) = 1

1−x , or taking t = 0 in the third, gives in

either case x
1−2x . This is in accord with the fact that there are 2n−1 members

of Sn(213, 2-31) for n ≥ 1, which can be shown directly. Taking q = 0 in the

second formula of the prior corollary, and noting C
(

x(1+x)
(1+x+x2)2

)
= 1 + x + x2,

yields f(x; 1; 1, 0, 1, 1) = x, which implies that every member of Sn(213) contains a
movable letter for n ≥ 2. This may be realized directly by noting that the second
letter is always movable if n starts a permutation, with n itself movable if it does
not start a permutation. Finally, note that the generating function f(x; 1; p, 1, 1, 1)

may also be written as x
1−2xC

(
px2

(1−2x)2

)
. Extracting the coefficient of xnpm in the

last formula, and equating with the equivalent expression obtained from Corollary
1, yields the following identity for m ≥ 0 and n ≥ 2m+ 1:

(−1)n−m−12n−2m−1

(
n− 1

2m

)
Cm =

n−m−1∑
i=0

(−1)i
(
i+ 1

n− i

)(
n− i
m+ 1

)
Ci,

where the absolute value of both sides gives the number of members of Sn(213)
that have exactly m adjacencies serving as the last two letters in an occurrence of
2-31.

From the prior formulas, we obtain the following further result.

Corollary 2. The total number of (a) adjacencies xy such that the x and y serve as
the last two letters in an occurrence of 2-31, (b) movable letters, and (c) occurrences
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of 2-31 over all members of Sn(213) for n ≥ 1 is given respectively by

(a)

(
2n− 2

n− 1

)
− 1

n+ 1

(
2n

n

)
,

(b)

(
2n

n

)
− 2

(
2n− 2

n− 1

)
,

(c)
5

2

(
2n

n

)
− 5

2

(
2n+ 2

n+ 1

)
+

1

2

(
2n+ 4

n+ 2

)
.

Proof. Partially differentiating the formulas in Corollary 1 with respect to the vari-
able marking the statistic in question in each case gives

∂

∂p
f(x; 1; p, 1, 1, 1) |p=1 = 1 +

x√
1− 4x

− C(x),

∂

∂q
f(x; 1; 1, q, 1, 1) |q=1 = −1 +

1− 2x√
1− 4x

,

∂

∂t
f(x; 1; 1, 1, 1, t) |t=1 = −1

2
+

3

2x
− 1

2x2
+

1− 5x+ 5x2

2x2
√

1− 4x
.

Extracting the coefficient of xn in each case, using the fact
∑
n≥0

(
2n
n

)
xn = 1√

1−4x
,

yields the stated formulas.

Remark: An equivalent expression to the third of the prior corollary in terms of the
number of occurrences of 2-13 over Sn(231) was found in [6, Corollary 3.10], using a
different method, though no recurrence or generating function is given there for the
distribution of the statistic on Sn(231) recording the number of such occurrences.

We conclude this section with some further observations concerning the dis-
tribution an(w). Given π ∈ Sn(213), let µ1(π) and µ2(π) denote the number of
adjacencies xy such that x and y are the last two letters in an occurrence of 2-31
within π or the first two letters in an occurrence of 12-3, respectively. Then we
have µ(π) + µ1(π) + µ2(π) = n− 1. To see this, note that within every adjacency
xy, either y is movable or is immovable because x > y and transposing them would
create a 213 of the form ayx or is immovable because x < y and an occurrence
of 213 of the form yxb would be created. Note that in the first case of y being
immovable, the adjacency in question is of the form enumerated by µ1, whereas in
the latter, it is enumerated by µ2. Since the three options above are seen to be mu-
tually exclusive and exhaustive, the stated formula follows. Thus, the u-variable in
the joint distribution polynomial un−1an

(
w; pu ,

q
u , s, t

)
for n ≥ 1 marks the number

of adjacencies serving as the first two letters in an occurrence of the pattern 12-3.

Upon applying the reversal and complementation operations, one sees that
the movable letter statistic is equally distributed on Sn(τ) for τ = 132, 213, 231, 312.
In particular, taking reverse complements, one has that an(w) is the joint distribu-
tion on Sn(132) for the same statistics as before except that the p and t variables
now pertain to occurrences of the pattern 31-2. A similar remark concerning an(w)
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applies to the patterns 231 and 312, where now p and t pertain to 2-13 and 13-2,
respectively, and s tracks ascents instead of descents.

3. DISTRIBUTION ON SN (123)

Here, we consider a comparable multivariate distribution on Sn(123). Let
bn = bn(p, q, s, t) denote the joint distribution on Sn(123) for the following four
statistics marked by p, q, s and t, respectively: (i) number of adjacencies xy such
that the x and y serve as the 3 and 2 in an occurrence of 1-32, (ii) movable letters,
(iii) descents, and (iv) occurrences of 1-32. Let bn,i = bn,i(p, q, s, t) denote the
restriction to Sn,i(123) for 1 ≤ i ≤ n.

The bn,i are determined by the following recursion.

Lemma 3. If n ≥ 3, then

(3.6) bn,i = psti−1
n∑

`=i+1

bn−1,`−1 + q2
i−1∑
j=1

n∑
`=i+1

bn−j−1`−j−1s
j , 2 ≤ i ≤ n− 1,

with bn,1 = qsbn−1 and bn,n = qsn−2 for n ≥ 2 and b1,1 = 1.

Proof. Deletion of the 1 within a member of Sn,1(123), which is seen to be mov-
able, implies bn,1 = qsbn−1 for n > 1. Note that Sn,n(123) consists of only the
permutation (n − 1)(n − 2) · · · 1n, which has no occurrences of 1-32 with only the
n being movable, whence bn,n = qsn−2 for n > 1. So assume 2 ≤ i ≤ n− 1 and let
` be the rightmost letter of π = π1 · · ·πn ∈ Sn,i(123) that is greater than i. If ` is
the penultimate letter of π, then each element of [i− 1] corresponds to a 1 within
an occurrence of 1-32 in which i plays the role of the 2. Deleting the i then results
in an arbitrary member of Sn−1,`−1(123) on the set [n] − {i}. Considering all `
thus gives psti−1

∑n
`=i+1 bn−1,`−1 possibilities in this case. On the other hand, if `

is not the penultimate letter and if j ∈ [i − 1] is the largest letter between ` and
i, then all elements of [j − 1] must occur between ` and j in decreasing order, for
otherwise π would contain a 123 with i corresponding to the 3. Thus, π is of the
form π = π′`j(j − 1) · · · 1i, where j < i < `. No element of [j] ∪ {i} within π can
be the second letter of an adjacency enumerated by the p variable, with only the j
and i being movable out of this set (note that transposing two adjacent elements of
[j] results in an occurrence of 123 since i > j). Deleting the final j + 1 letters of π,
which are seen to account for j descents, then yields bn−j−1,`−j−1 ·q2sj possibilities.
Considering all possible j and ` accounts for the remaining possibilities and implies
(3.6).

Let bn(w) = bn(w; p, q, s, t) be given by bn(w) =
∑n
i=1 bn,iw

i for n ≥ 1.
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Lemma 4. If n ≥ 2, then

bn(w) = qsn−2wn +

(
qsw +

pstw2

1− tw

)
bn−1(1)− psw

1− tw
bn−1(tw)

+
q2w

1− w

n−2∑
j=1

(sw)n−j−1(bj(1)− bj(w)),(3.7)

with b1(w) = w.

Proof. Note first that (3.7) is seen to hold when n = 2 since b2(w) = qsw + qw2

and b1(w) = w, so assume n ≥ 3. Multiplying both sides of (3.6) by wi, summing
over 2 ≤ i ≤ n− 1 and noting bn,1 = qsbn−1 = qsbn−1(1) yields

bn(w)− qsn−2wn − qswbn−1(1)

= ps

n−1∑
i=2

ti−1wi
n∑

`=i+1

bn−1,`−1 + q2
n−1∑
i=2

wi
i−1∑
j=1

n∑
`=i+1

bn−j−1,`−j−1s
j

= ps

n∑
`=3

bn−1,`−1

`−1∑
i=2

ti−1wi + q2
n−2∑
j=1

n∑
`=j+2

bn−j−1,`−j−1s
j
`−1∑
i=j+1

wi

=
psw

1− tw

n∑
`=3

bn−1,`−1(tw − (tw)`−1)

+
q2

1− w

n−2∑
j=1

n∑
`=j+2

bn−j−1,`−j−1s
j(wj+1 − w`)

=
psw

1− tw
(twbn−1(1)− bn−1(tw))

+
q2

1− w

n−2∑
j=1

n−j−1∑
`=1

bn−j−1,`s
j(wj+1 − w`+j+1)

=
psw

1− tw
(twbn−1(1)− bn−1(tw))

+
q2

1− w

n−2∑
j=1

sjwj+1(bn−j−1(1)− bn−j−1(w)).

Replacing j by n− 1− j in the last sum gives (3.7).

Let g(x;w) = g(x;w; p, q, s, t) be given by g(x;w) =
∑
n≥1 bn(w)xn. Multi-

plying both sides of (3.7) by xn, and summing over n ≥ 2, then gives

g(x;w)− wx =
qw2x2

1− swx
+ swx

(
q +

ptw

1− tw

)
g(x; 1)− pswx

1− tw
g(x; tw)

+
q2w

1− w
∑
j≥1

(bj(1)− bj(w))
∑

n≥j+2

(sw)n−j−1xn
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=
qw2x2

1− swx
+ swx

(
q +

ptw

1− tw

)
g(x; 1)− pswx

1− tw
g(x; tw)

+
s(qwx)2

(1− w)(1− swx)
(g(x; 1)− g(x;w)),

which may be rewritten as(
1 +

s(qwx)2

(1− w)(1− swx)

)
g(x;w) = wx+

qw2x2

1− swx
− pswx

1− tw
g(x; tw) + swx

(
q

+
ptw

1− tw
+

q2wx

(1− w)(1− swx)

)
g(x; 1).(3.8)

We may solve (3.8) explicitly when t = 1 using the kernel method. Let
w = w0 be defined by

w0 =
1 + (1− p)sx−

√
(1 + (1− p)sx)2 − 4sx(1 + (q2 − ps)x)

2sx(1 + (q2 − ps)x)
.

Taking w = w0 in (3.8) gives

g(x; 1; p, q, s, 1) = −
1 + qw0x

1−sw0x

s(q + pw0

1−w0
+ q2w0x

(1−w0)(1−sw0x) )
.

Then (3.8) with t = 1 leads to the following result.

Theorem 2. The generating function g(x;w; p, q, s, 1) is given by

g(x;w; p, q, s, 1) =
wx
(

1 + qwx
1−swx

)
1 + s(qwx)2

(1−w)(1−swx) + pswx
1−w

−
wx
(
q + pw

1−w + q2wx
(1−w)(1−swx)

)
1 + s(qwx)2

(1−w)(1−swx) + pswx
1−w

1 + qw0x
1−sw0x

q + pw0

1−w0
+ q2w0x

(1−w0)(1−sw0x)

,(3.9)

where w0 =
1+(1−p)sx−

√
(1+(1−p)sx)2−4sx(1+(q2−ps)x)

2sx(1+(q2−ps)x) .

We are able to obtain the following formulas for the totals over Sn(123).

Corollary 3. The total number of (a) adjacencies xy such that the x and y are the
last two letters in an occurrence of 1-32 and (b) movable letters over all members
of Sn(123) for n ≥ 1 is given respectively by

(a)
1

2

(
2n+ 2

n+ 1

)
− 2

(
2n

n

)
+

(
2n− 2

n− 1

)
, (b)

(
2n

n

)
− 2

(
2n− 2

n− 1

)
.
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Proof. Taking w = q = s = 1, differentiating with respect to p and setting p = 1 in
(3.9) yields

∂

∂p
g(x; 1; p, 1, 1, 1) |p=1= 1− 1

2x
+

1− 4x+ 2x2

2x
√

1− 4x
,

and extracting the coefficient of xn leads to the first formula. Similarly, differenti-
ating with respect to q implies

∂

∂q
g(x; 1; 1, q, 1, 1) |q=1= −1 +

1− 2x√
1− 4x

,

which gives the second.

A comparable formula may be obtained for the total in the t-variable as
follows. By Theorem 2, we have

g(x;w; 1, 1, 1, 1) =
wx(C(x)− w)

1− w + w2x
.(3.10)

Define g′(x;w) = ∂
∂tg(x;w; 1, 1, 1, t) |t=1. Differentiating (3.8) with respect to t,

and setting t = 1 (where here we assume s = p = q = 1), yields

1− w + w2x

1− wx
g′(x;w) = − w2x

1− w
g(x;w)− w2x

∂

∂w
g(x;w)

+
w2x

1− w
g(x; 1) +

wx

1− wx
g′(x; 1),

which, by (3.10), implies

(1− w + w2x)3g′(x;w) =
1

2
w2(1− w)(1− wx)(w2x2 + 4wx2 − 2wx− 3x+ 1)

− 1

2
w2(1− w)(1− wx)(w2x2 − 2wx− x+ 1)

√
1− 4x

+ wx(1− w + w2x)2g′(x; 1).

By differentiating this last equation twice with respect to w and then taking w =
C(x), we obtain

g′(x; 1) =
x3C3(x)

1− 4x
=

x− 1

2
√

1− 4x
+

1− 3x

2(1− 4x)
.

Extracting the coefficient of xn leads to the following result.

Corollary 4. If n ≥ 1, then the total number of occurrences of 1-32 taken over all
members of Sn(123) is given by

1

2

(
4n−1 −

(
2n

n

)
+

(
2n− 2

n− 1

))
.
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Remark: An equivalent form of the prior result in terms of the generating function
for the total number of 23-1 over Sn(321) is given in [6, Corollary 2.3] and was
found using different methods.

Applying reverse complements, one may replace 1-32 with 21-3 in the defini-
tion of bn(w). By symmetry, bn(w) is also seen to be the distribution on Sn(321)
obtained by replacing ascents by descents and the pattern 1-32 by either 23-1 or
3-12 with regard to the p and t variables. Reasoning as in the prior section, the u
variable in un−1bn

(
w; pu ,

q
u , s, t

)
marks the number of adjacencies xy within a mem-

ber of Sn(123) that serve as the first two letters in an occurrence of 21-3. Similar
remarks apply to the equivalent distribution on Sn(321).

4. A RELATED DISTRIBUTION ON SN (132)

Let cn = cn(p, q, s, t) denote the joint distribution on Sn(132) for the following
four statistics marked by p, q, s and t, respectively: (i) number of adjacencies xy
such that the x and y serve as the 2 and 3 in an occurrence of 1-23, (ii) movable
letters, (iii) ascents, and (iv) occurrences of 1-23. Let c∗n = c∗n(p, q, s, t) denote the
restriction of cn to those members of Sn(132) starting with n. Given 1 ≤ i ≤ n,
let cn,i = cn,i(p, q, s, t) and c∗n,i = c∗n,i(p, q, s, t) denote the distribution polynomials
obtained from cn and c∗n respectively by restricting the sum in each case to those
permutations belonging to Sn,i(132).

The cn,i and c∗n,i are determined by the following intertwined recurrences.

Lemma 5. If n ≥ 2, then

(4.11) c∗n,i = (q − 1)c∗n−1,i + cn−1,i, 1 ≤ i ≤ n− 1,

and

(4.12) cn,i = c∗n,i+

n−2∑
j=i

c∗j+1,i

(
qscn−j−1,1 + ps

n−j−1∑
`=2

cn−j−1,`t
`−1

)
, 1 ≤ i ≤ n−1,

where c∗n,n = δn,1 for n ≥ 1 and

(4.13) cn,n = qscn−1,1 + ps

n−1∑
`=2

cn−1,`t
`−1, n ≥ 2,

with c1,1 = 1.

Proof. Note that c∗n,n = 0 if n ≥ 2 with c∗1,1 = 1, by the definitions, and that (4.11)
clearly holds if n = 2. Let S∗n,i = S∗n,i(132) denote the subset of Sn,i = Sn,i(132)
whose members start with n. Note that the second letter within π ∈ S∗n,i where
n ≥ 3 and 1 ≤ i ≤ n− 1 is movable if and only if it equals n− 1, for otherwise an
occurrence of 132 would arise when it is transposed with n. Since the n obviously



14 Toufik Mansour and Mark Shattuck

cannot contribute to an occurrence of 1-23 within π, it follows that there are qc∗n−1,i

possibilities if the second letter of π is movable and cn−1,i − c∗n−1,i possibilities
otherwise, which gives (4.11). Note that (4.12) holds if i = n − 1, the sum on the
right side being empty in this case, since the n would have to occur at the beginning
in order to avoid 132 so that Sn,n−1 = S∗n,n−1. Suppose now π ∈ Sn,i−S∗n,i, where
1 ≤ i ≤ n − 2. Then π = αnβ, where α, β are non-empty and β contains all
letters in [j] for some j ∈ [i, n − 2]. (Note that j = n − 1 is not permitted, and
hence α is non-empty, since π does not belong to S∗n,i.) Then the section nβ of
π corresponds to a member of S∗j+1,i on the elements of the set [j] ∪ {n}, which
implies a contribution of c∗j+1,i. The letters of α then correspond to a member of
Sn−j−1,` for some `. If ` = 1, then n is movable (and accounts for an extra ascent),
whence there are qscn−j−1,1 possibilities. On the other hand, if 2 ≤ ` ≤ n− j − 1,
then there are ` − 1 occurrences of 1-23 in which the role of the 3 is played by
n. Considering all ` > 1 yields

∑n−j−1
`=2 cn−j−1,` · pst`−1 additional possibilities for

each j. Considering all possible j and ` then gives the summation formula on the
right side of (4.12), as desired. Finally, if π ∈ Sn,n where n > 1, then making use
of the same cases as before regarding the parameter ` leads to (4.13) and completes
the proof.

Let cn(w) = cn(w; p, q, s, t) be given by cn(w) =
∑n
i=1 cn,iw

i for n ≥ 1 and
c∗n(w) =

∑n
i=1 c

∗
n,iw

i.

Lemma 6. If n ≥ 3, then

cn(w) = c∗n(w) + q2s(wn − w)cn−2(1) +
ps(wn − w)

t
(cn−1(t)− qtcn−2(1))

+ (q − p)sc∗n−1(w) + q(q − p)s
n−2∑
j=1

c∗j (w)cn−j−1(1) +
ps

t

n−1∑
j=1

c∗j (w)cn−j(t),

(4.14)

where c∗n(w) = (q − 1)c∗n−1(w) + cn−1(w) for n ≥ 2 and c1(w) = c∗1(w) = w,
c2(w) = qw + qsw2.

Proof. The initial conditions may be verified using the definitions and the formula
for c∗n(w) follows immediately from (4.11). Multiplying both sides of (4.12) by wi,
summing over 1 ≤ i ≤ n− 1 and adding wn times equation (4.13) yields for n ≥ 3
the relation

cn(w) = c∗n(w) + qswncn−1,1 +
pswn

t
(cn−1(t)− tcn−1,1)

+

n−2∑
i=1

wi
n−2∑
j=i

c∗j+1,i

(
qscn−j−1,1 + ps

n−j−1∑
`=2

cn−j−1,`t
`−1

)
.(4.15)

Note cn,1 = qcn−1 = qcn−1(1) for n ≥ 2, since a terminal 1 is movable and extra-
neous concerning either 132 or 1-23.
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Working separately on the two sums in (4.15) then gives

n−2∑
i=1

wi
n−2∑
j=i

c∗j+1,icn−j−1,1 =

n−2∑
j=1

cn−j−1,1

j∑
i=1

c∗j+1,iw
i =

n−2∑
j=1

cn−j−1,1c
∗
j+1(w)

= q

n−3∑
j=1

cn−j−2(1)c∗j+1(w) + c∗n−1(w) = q

n−2∑
j=1

cn−j−1(1)c∗j (w)

+ c∗n−1(w)− qwcn−2(1)

and
n−2∑
i=1

wi
n−2∑
j=i

c∗j+1,i

n−j−1∑
`=2

cn−j−1,`t
`−1 =

n−3∑
i=1

wi
n−3∑
j=i

c∗j+1,i

n−j−1∑
`=2

cn−j−1,`t
`−1

=

n−3∑
j=1

n−j−1∑
`=2

cn−j−1,`t
`−1

j∑
i=1

c∗j+1,iw
i =

1

t

n−3∑
j=1

c∗j+1(w)(cn−j−1(t)− tcn−j−1,1)

=
1

t

n−3∑
j=1

c∗j+1(w)cn−j−1(t)−
n−3∑
j=1

c∗j+1(w)cn−j−1,1

=
1

t

n−2∑
j=0

c∗j+1(w)cn−j−1(t)− c∗n−1(w)− w

t
cn−1(t)− q

n−3∑
j=1

c∗j+1(w)cn−j−2(1)

=
1

t

n−1∑
j=1

c∗j (w)cn−j(t)− q
n−2∑
j=1

c∗j (w)cn−j−1(1)

− w

t
(cn−1(t)− qtcn−2(1))− c∗n−1(w).

Inserting these last two expressions into (4.15), and simplifying, yields (4.14).

Let h(x;w) = h(x;w; p, q, s, t) be defined by h(x;w) =
∑
n≥1 cn(w)xn with

h∗(x;w) =
∑
n≥1 c

∗
n(w)xn. Rewriting (4.14) in terms of generating functions, we

have

h(x;w) = qsw2x2 + h∗(x;w) + q2sx2(w2h(wx; 1)− wh(x; 1))

+
pswx

t
(h(wx; t)− twx)− pswx

t
(h(x; t)− tx)

− pqswx2(wh(wx; 1)− h(x; 1)) + (q − p)sx(h∗(x;w)− xw)

+ q(q − p)sxh∗(x;w)h(x; 1) +
ps

t
(h∗(x;w)h(x; t)− twx2),

which reduces to

h(x;w) = (p− q)(1− w)swx2 + (1 + (q − p)sx)h∗(x;w)

+ q(q − p)swx2(wh(wx; 1)− h(x; 1)) +
pswx

t
(h(wx; t)− h(x; t))

+ q(q − p)sxh∗(x;w)h(x; 1) +
ps

t
h∗(x;w)h(x; t),(4.16)
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where h∗(x;w) = wx+xh(x;w)
1+(1−q)x .

Taking t = w = 1 in (4.16) yields

h(x; 1; p, q, s, 1) = (1 + (q − p)sx)h∗(x; 1; p, q, s, 1)

+ (ps+ q(q − p)sx)h∗(x; 1; p, q, s, 1)h(x; 1; p, q, s, 1),

where h∗(x; 1; p, q, s, 1) = x+h(x;1;p,q,s,1)
1+(1−q)x . Solving this last equation explicitly gives

the following result.

Theorem 3. We have

h(x; 1; p, q, s, 1)

=
x(1 − (p− q)sx)

1 − (ps + q)x + (q + 1)(p− q)sx2
C

(
sx2(p− q(p− q)x)(1 − (p− q)sx)

(1 − (ps + q)x + (q + 1)(p− q)sx2)2

)
.(4.17)

Remarks: Taking all parameters to be unity in (4.17), one has

h(x; 1; 1, 1, 1, 1) =
x

1− 2x
C

(
x2

(1− 2x)2

)
= C(x)− 1,

as expected. Note that when q = 0 and p = s = 1 in (4.17), the generating

function reduces to x via the Catalan transform C
(

x2(1−x)
(1−x+x2)2

)
= 1−x+x2

1−x . This

may be explained directly by observing that n is always movable within π ∈ Sn(132)
for n ≥ 2 if n is not the first letter, with n − 1 movable if it is. Taking p =

0 and q = s = 1 in (4.17) gives h(x; 1; 0, 1, 1, 1) = 1−x−2x2−
√

1−2x−3x2

2x2 , which
implies |Sn(132, 1-23)| = Mn, where Mn denotes the n-th Motzkin number (see [17,
A001006]). Finally, substituting (4.17) into (4.16), one can solve for h(x;w; p, q, s, 1)
and find it explicitly.

Since the distribution in the q variable is the same as on Sn(213) discussed
above, we consider here only the totals in the p and t variables.

Corollary 5. The total number of (a) adjacencies xy such that the x and y are
the last two letters in an occurrence of 1-23 and (b) occurrences of 1-23 over all
members of Sn(132) for n ≥ 1 is given respectively by

(a)
1

2

(
2n+ 2

n+ 1

)
− 2

(
2n

n

)
+

(
2n− 2

n− 1

)
, (b) 4n−1 +

(
2n

n

)
− 1

2

(
2n+ 2

n+ 1

)
.

Proof. Differentiating (4.17) with respect to p, and setting p = 1, gives

∂

∂p
h(x; 1; p, 1, 1, 1) |p=1

=
x3

(1− 2x)3
C ′(w) |w=x2/(1−2x)2

=
x3

(1− 2x)3

(
(1− 2x)3

x2
√

1− 4x
− (1− 2x)2

x2
C

(
x2

(1− 2x)2

))
=

x√
1− 4x

− C(x) + 1 =
1− 4x+ 2x2 − (1− 2x)

√
1− 4x

2x
√

1− 4x
.
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Extracting the coefficient of xn in the last expression yields the first formula.

Let h(x;w) denote here h(x;w; 1, 1, 1, 1). Differentiating both sides of (4.16)
with respect to w, where all other parameters are taken to be unity, gives

(1− x− xh(x; 1))
∂

∂w
h(x;w) = x+ xh(wx; 1) + wx2 ∂

∂z
h(z; 1) |z=wx,

which implies
∂

∂w
h(x;w) =

xC(x)√
1− 4wx

.

Now differentiating (4.16) with respect to t, setting t = 1 (where all other pa-
rameters are unity), and making use of the expressions for h(x; 1) and ∂

∂wh(x;w)
yields

∂

∂t
h(x; 1; 1, 1, 1, t) |t=1 =

xC(x)√
1− 4x

(
xC(x)√
1− 4x

− C(x) + 1

)
=
x(C(x)− 1)

1− 4x
+

1− (1− x)C(x)√
1− 4x

=
(1− 2x−

√
1− 4x)2

4x(1− 4x)
.

Extracting the coefficient of xn for n ≥ 1 in the last expression gives the second
formula above.

Remarks: Differentiating (4.17) with respect to s, and setting s = 1, yields

∂

∂s
h(x; 1; 1, 1, s, 1) |s=1=

1− 3x− (1− x)
√

1− 4x

2x
√

1− 4x
,

which implies that the total number of ascents over all members of Sn(132) is given
by 1

2

(
2n+2
n+1

)
− 3

2

(
2n
n

)
=
(

2n−1
n+1

)
for n ≥ 1. By subtraction from (n− 1)Cn, this gives

the same number of descents over Sn(132), which is seen to apply also to the total
in the s variable in Section 2. Equivalent formulas on Sn(231) were found earlier
in [6, Corollary 3.2].

5. COMBINATORIAL PROOFS

Before providing combinatorial proofs of some of the prior results, we make
some further remarks concerning the various distributions. Note that the distri-
bution of µ on Sn(123) is distinct from that of µ on Sn(132), which follows from
comparing the formulas above for g(x;w) and h(x;w) when all parameters are unity
except q. Indeed, comparing the n = 4 cases, one has b4(1, q, 1, 1) = 6q3 + 4q2 + 4q,
whereas c4(1, q, 1, 1) = 5q3 +6q2 +3q. On the other hand, from Corollaries 2 and 3,
it is seen that the sum of the µ values over all members of Sn(123) equals the sum
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over Sn(132) despite the distributions being different, and a combinatorial proof as
to why is demonstrated below.

Comparing the formulas for f(x;w) and h(x;w) in Theorems 1 and 3, one
has that the statistics marked by q and s are identically distributed on Sn(213) and
Sn(132). However, the joint distribution of (q, s) is seen to be different. Taking
reverse complements accounts for the behavior in the q variable, as already seen.
Note that the s distribution being the same follows from the fact that the descent
and ascent statistics on Sn(132) are identically distributed. To see this, let π ∈
Sn(132) be represented by π = αnβ, where α and β are permutations of [i+1, n−1]
and [i], respectively, for some 0 ≤ i ≤ n− 1. Define fn inductively on Sn(132) for
n ≥ 0 by setting f0(∅) = ∅ and fn(π) = fi(γ)nfn−i−1(δ) for n ≥ 1, where γ and
δ are permutations of [n− i, n− 1] and [n− i− 1] that are isomorphic to β and α,
respectively. One may verify that fn is a bijection from Sn(132) to itself such that
for all π the number of descents in π equals the number of ascents in fn(π) and
vice versa.

Let ν1(π) denote the number of adjacencies xy where x and y are the last two
letters in an occurrence of 1-32 for π ∈ Sn(123) and let ν2(π) denote the comparable
number of adjacencies involving the pattern 1-23 for π ∈ Sn(132). Comparing the
formulas for g(x;w) and h(x;w) from Theorems 2 and 3 in p yields the following
result.

Corollary 6. If n ≥ 1, then

(5.18)
∑

π∈Sn(123)

pν1(π) =
∑

π∈Sn(132)

pν2(π).

This result may also be explained using the Simion-Schmidt (S.S.) bijection
from [16], which we will denote by Ψ. Recall that given π ∈ Sn(123), its image
Ψ(π) in Sn(132) has the same left-right minima (lr min) as π and occur in the same
positions. The remaining entries are then inserted in increasing order so that each
entry is placed in the leftmost unfilled position where it does not become an lr min.
For example, if π = 894763152 ∈ S9(123), then Ψ(π) = 894563127 ∈ S9(132)
where lr min are in bold. To show (5.18), first observe that the 1 in an occurrence
of 1-32 within π ∈ Sn(123) or the 1 in an occurrence of 1-23 within τ ∈ Sn(132)
may be taken to be an lr min (indeed, in the former case, it is a requirement).
Thus ν1(π) and ν2(τ) give the number of adjacencies xy in π and τ respectively
such that neither x nor y is an lr min. Since the S.S. bijection preserves positions
of lr min, we then have ν1(π) = ν2(Ψ(π)) for all π, which implies (5.18).

One may verify that none of the individual parameters in Theorems 1 and
2 have identical distributions when taken separately. However, it should be noted
that the sum of the ν1 values taken over all members of Sn(123) is the same as the
sum of ν3 values over Sn(213), where ν3 is defined similarly as before but with the
pattern 2-31. This is a somewhat interesting result in view of the fact the underlying
distributions are different. (Note that when n = 4, we have a4(p, 1, 1, 1) = 6p + 8
and b4(p, 1, 1, 1) = p2 + 4p+ 9.)
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We now provide a bijective proof of the formula for the sum of the µ values
taken over all members of Sn(132) implicit in Corollary 2.

Combinatorial proof for sum of µ values over Sn(132).

We argue combinatorially that the total number of movable letters within all
the members of Sn(132) is given by

(
2n
n

)
− 2
(

2n−2
n−1

)
= (2n− 2)Cn−1 for n ≥ 1. We

count separately the movable letters that correspond to lr min and those that do
not and refer to such movable letters as being of type 1 and of type 2, respectively.
Suppose that a non-initial entry x within π = π1 · · ·πn ∈ Sn(132) is an lr min. If the
closest lr min to the left of x is greater than x + 1, and z denotes the predecessor
of x, then transposing z and x results in an occurrence of 132 in π of the form
xz(x+ 1) since x+ 1 must occur somewhere to the right of x. Thus, if x is a type
1 movable letter, then x + 1 is an lr min and this requirement is seen also to be
sufficient.

We now show that there are (n− 1)Cn−1 movable letters of type 1 within all
of the members of Sn(132). To do so, we start with τ = τ1 · · · τn−1 ∈ Sn−1(132) and
choose some position directly following any one of the entries of τ . Let i denote the
closest lr min that occurs to the left of the chosen position. We then insert a copy
of i into the chosen position and increase all elements of [i+1, n−1], along with the
original i, by one. Note that both i and i+1 are lr min in the resulting permutation
of length n, which is seen to avoid 132. Since this operation is reversible, it follows
that there are (n− 1)Cn−1 movable letters of type 1.

We now count the type 2 letters. Note that a movable letter of type 2 cannot
have a predecessor that is a non lr min, for otherwise an occurrence of 132 is
introduced when the two letters are transposed where the role of 1 can be played
by any lr min to the left. Furthermore, one may verify that transposing an entry
that is not an lr min with a predecessor that is never introduces a 132. Thus, we
seek to enumerate the total number of times that an lr min is directly followed by
a non lr min. To do so, we first consider the following classes of lr min. Let us
refer to an lr min a within π ∈ Sn(132) as being of type A if a+ 1 is also an lr min.
A type B lr min will refer to one that is directly preceded by another lr min. For
example, if π = 768459312 ∈ S9(132), then the letters 6 and 3 are lr min of type A,
6 and 1 are of type B and 7 and 4 are lr min of neither type. We have the following
result concerning the totals of the two types.

Lemma 7. The total number of lr min of type A within all members of Sn(132)
equals the total number of type B for all n ≥ 1.

Proof. Let An and Bn denote the set of “marked” members of Sn(132) wherein
an lr min of type A or of type B is marked, respectively. We define inductively a
bijection fn between the sets An and Bn for all n ≥ 1, which will imply the asserted
equality. Since the n = 1 and n = 2 cases are trivial, we may assume n ≥ 3. Let
π ∈ An. To define fn, we consider several cases based on the position of n within
π. If π = π′n, then let fn(π) be obtained by appending n to the permutation
fn−1(π′). If π = nπ′ and n−1 is not the marked lr min, then let fn(π) be obtained
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by prepending n to fn−1(π′). If n− 1 is the marked lr min, then n− 1 must be the
second letter of π and is also of type B, in which case we simply let fn(π) = π.

So assume π = αnβ, where both α and β are non-empty, and let x denote
the marked lr min of π. If both x and x+ 1 belong to either α or β, then either let
fn(π) = f`(α)nβ or fn(π) = αnfn−`−1(β), where ` = |α| and, in the first case, it is
understood that both the input and output of the mapping f` is a permutation of
the elements of [n− `, n− 1]. Note that both the marked letter and its predecessor
within a member ρ of Bn decomposed as above must belong to either α or β when
both are non-empty and hence all such ρ lie within the range of fn in this case.

Otherwise, we must have x + 1 ∈ α and x ∈ β, which implies x is the first
letter of β since it is an lr min of π and also the largest element of β as β < α.
That is, π = αnxβ′, where β′ is a permutation of [x − 1]. In this case, to obtain
fn(π), we remove x, reduce all elements of π in [x+ 1, n] by one, put n back at the
beginning of the resulting permutation of [n− 1] and finally mark the second letter
in the permutation of [n] that is produced. For example, we have

π = 65784231 ∈ A8 → 6578231→ 5467231→ f8(π) = 85467231 ∈ B8,

where the marked lr min are indicated in bold. Note that this case accounts for all
members of Bn starting with n, but not n(n− 1), in which the second letter is the
marked lr min. Considering the various cases, one may verify that fn yields the
desired bijection between An and Bn.

Note further that there are (2n − 1)Cn−1 lr min in Sn(132) altogether. To
realize this, first observe that the standard bijection (see, e.g., [7]) between Sn(132)
and Dn shows that the lr min statistic on the former has the same distribution as
the peaks statistic on the latter, where Dn denotes the set of Dyck paths having
semi-length n. That there are (2n − 1)Cn−1 peaks taken over all members of Dn,
and hence the same number of lr min over Sn(132), can be seen upon inserting an
upstep directly followed by a downstep at any one of the 2n− 1 possible positions
along a path in Dn−1, with the peak so obtained understood to be distinguished
from all others in the resulting member of Dn.

Hence, there are (2n − 2)Cn−1 lr min altogether in Sn(132) that do not
correspond to a terminal entry within a permutation (upon subtracting the Cn−1

lr min that do, such entries corresponding to members of Sn(132) that end in 1).
Since there are (n− 1)Cn−1 lr min of type A in Sn(132) in all (being synonymous
with movable letters of type 1 as seen), we have that there are the same number of
type B, by Lemma 7. Thus, there are (2n− 2)Cn−1 − (n− 1)Cn−1 = (n− 1)Cn−1

lr min that are directly followed by a non lr min, and hence the same number of
movable letters of type 2. Combining the totals over Sn(132) for the two types of
movable letters gives (2n− 2)Cn−1, as desired.

The arguments above may be extended to account for the formula for the
sum of µ values in the 123-avoiding case.
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Proof for sum of µ values over Sn(123).

We make use of the same terminology as in the preceding proof but applied to
members of Sn(123). First note that the total number of type 2 movable letters is
the same as in the 132 case, since the S.S. bijection is seen to preserve the number of
times that a non lr min directly follows an lr min. Thus, to complete the proof, we
must show that there are (n−1)Cn−1 type 1 movable letters altogether in Sn(123).
Note that if the predecessor of an lr min x is not an lr min, then x is movable since
the subsequence of non lr min is decreasing. On the other hand, if the predecessor
y of x within π ∈ Sn(123) is an lr min, then x is movable if and only if no element
greater than y occurs to the right of x. That is, π may be decomposed as π = αyβ,
where α and β are permutations of [y+ 1, n] and [y− 1], respectively, and x < y is

the first letter of β. Thus, there are
∑n−1
i=1 CiCn−1−i = Cn −Cn−1 type 1 movable

letters where the predecessor is an lr min.

We now can obtain the number of movable type 1 letters from the total
number of non-initial lr min within Sn(123), the latter being given by (2n−1)Cn−1−
Cn. We first subtract from the total the number of lr min whose predecessor is
also an lr min. By the S.S. bijection and Lemma 7, this number is (n − 1)Cn−1.
By subtraction, there are then nCn−1 −Cn type 1 movable letters in all where the
predecessor is not an lr min. We then add back to this the quantity Cn − Cn−1,
which accounts for the remaining type 1 movable letters and gives (n− 1)Cn−1, as
desired.

Proof for sum of νi values, 1 ≤ i ≤ 3.

The arguments above also apply to the totals of the νi values given in Corol-
laries 2, 3 and 5 above. We first explain ν1 and show that the total in this case
is given by nCn−1 − Cn. Note that the sum of the ν1 values over all members of
Sn(123) equals the number of times both an entry and its predecessor within a
permutation are non lr min. To find this, we subtract the number of times a non lr
min follows an lr min from the total number of non lr min within Sn(123), the latter
quantity being nCn−(2n−1)Cn−1. The number of times that an lr min is followed
by a non lr min is given by (2n− 1)Cn−1− (n− 1)Cn−1−Cn−1 = (n− 1)Cn−1, by
the preceding proof and the fact that there are Cn−1 lr min that have no successor.
Thus, the number of times both an entry and its predecessor are non lr min equals
nCn − (2n − 1)Cn−1 − (n − 1)Cn−1 = nCn − (3n − 2)Cn−1 = nCn−1 − Cn, as
required. By Corollary 6, this is also the sum of ν2 values over Sn(132). Finally,
by prior observations and subtraction, we have that the sum of ν3 over Sn(213) is
given by (n− 1)Cn − (2n− 2)Cn−1 − (nCn − (3n− 2)Cn−1) = nCn−1 − Cn.

It would be interesting also to have bijective proofs of the formulas given
above for the total number of occurrences of the various vincular patterns.
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4. M. Bóna: The absence of a pattern and the occurrences of another. Discrete Math.
Theor. Comput. Sci. 12(2) (2010), 89–102.
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