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APPLICATIONS OF THE GENERALIZED

FUNCTION-TO-SEQUENCE TRANSFORM

Slobodan B. Tričković∗ and Miomir S. Stanković

We deal with applications of the transform Tα we introduced in our paper

On a generalized function-to-sequence transform, Appl. Anal. Disc. Math.

Vol. 14 No 2 (2020) 300-316. Taking different sequences {αn}n∈N0 linked to

a generalized linear difference operator Dα gives rise to a family of transforms

Tα that enables the mapping of a differential equation and its solutions to a

difference equation and its solutions. It can map a differential operator to a

difference one as well.

1. INTRODUCTION AND PRELIMINARIES

For for an arbitrary sequence {tn}n∈N0
, we refer to the Newton binomial

formula

(1) tn =

n∑
k=0

(
n

k

)
∆kt0 (∆tn = tn+1 − tn),

whence, on account of the linearity of the difference operator ∆, there follows

(2) ∆tn =

n∑
k=0

(
n

k

)
∆k+1t0.
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By virtue of (1), for p ∈ N0, there holds as well

(3) tn+p =

p∑
k=0

(
p

k

)
∆ktn = tn +

(
p

1

)
∆tn +

(
p

2

)
∆2tn + · · ·+∆ptn.

Let {αn}n∈N0 be a sequence of real numbers satisfying α0 = 1, αn ̸= 0, used
in the definition of a family of linear operators on linear spaces of sequences in [1],
we multiply by ck the terms

(
n
k

)
∆k+1t0 in the linear difference operator (2), where

ck = −αk+1

αk
, to obtain a more general linear difference operator Dα, defined as

follows

(4) Dαtn =

n∑
k=0

ck

(
n

k

)
∆k+1t0.

Thus, for ck = 1, i.e. αk = (−1)k, (4) becomes the forward difference operator ∆.

In [16] we derived the inverse transform of Dαtn, i.e.

(5) D−1
α tn =

n∑
k=1

1

ck−1

(
n

k

)
∆k−1t0 =

n∑
k=1

αk−1

αk

(
n

k

)
∆k−1t0,

and the formula

Dm
α tn = (−1)m

n∑
k=0

αk+m

αk

(
n

k

)
∆k+mt0, m ∈ N.

The binomial transform takes the sequence {sn} to the sequence {tn} via the
transformation [13]

tn =

n∑
k=0

(
n

k

)
sk,

and presents an infinite-dimensional linear operator.

Since Dα reduces to ∆ for αk = (−1)k, motivated by that important case we
introduced in [16] the generalized binomial transform

(6) tn =

n∑
k=0

(−1)k

αk

(
n

k

)
sk, T =


1
α0

0 0 . . . 0
1
α0

− 1
α1

0 . . . 0
1
α0

− 2
α1

1
α2

. . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1
α0

− (n1)
α1

(n2)
α2

. . .
(−1)n(nn)

αn

 .

The transform (6) comprises variations of the binomial transform. They are

considered in [13] and called the k-binomial transform for αj =
(−1)j

kn
, the rising

k-binomial transform for αj =
(−1)j

kj
, and the falling k-binomial transform for

αj =
(−1)j

kn−j
.
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The k-binomial transforms relate many sequences listed in the On-Line En-
cyclopedia of Integer Sequences [12]. Several of these relationships are given in
Layman [11] and listed in numerous tables of integer sequences related by repeated
applications of the binomial transform and thus (via [13, Theorem 3.2]) by the
falling k-binomial transform.

Let Sc be a set of real functions f having continuous derivatives of all orders
at x = 0 for which there exists a constant M > 0, such that |f (k)(0)| ⩽ M for

every k ∈ N0, and Sq be a set of one-parametric sequences {t(m)
n }, with m ∈ N0 as

a parameter, so that there holds |Dk
αt0| ⩽ M for every k ∈ N0.

On the basis of the generalized binomial transform (6), in [16] the generalized
function-to-sequence transform was introduced.

Definition 1. The transform Tα mapping a function f ∈ Sc to a sequence {t(m)
n } ∈

Sq, determined by the equalities

(7) Tαxmf(x) = {t(m)
n }, t(m)

n =

n∑
k=m

(−1)k−m

αk−m

(
n

k

)
dk

dxk

(
xmf(x)

)
x=0

is called Tα-transform of the function f .

The binomial transform is a sequence transformation, however, after replacing
the sequence {sn} with the sequence {f (n)(0)} of an infinitely differentiable function
f(x) in (6), we obtain a more general form of a sequence transformation, a specific
linear transform mapping a set of functions into a set of sequences. We denote it
by Tα.

In the case m = 0, the sequence {t(0)n } is denoted by {tn}, and (7) takes the
form

Tαf(x) = {tn}, tn =

n∑
k=0

(−1)k

αk

(
n

k

)
f (k)(0),

and its matrix is (6). So Tα is regarded as a differential operator.

In order to study properties of Tα, we made use of Dα, and proved in [16]
these basic properties of the differential operator Tα, so that for p ∈ N, there holds

(8) 1◦ Tαf (p)(x) = {Dp
αtn}, 2◦ Tα

∫ x

0

f(t)dt = {D−1
α tn},

where D−1
α tn is given by (5) and for m, p ∈ N0, we have

(9) Tαxmf (p)(x) = {s(m)
n }, s(m)

n = n(m)Dp
αtn−m.

For f(x) = C, then TαC = {tn}, tn = C, n ∈ N0. Also, if Tαf(x) = {tn}, then
TαCf(x) = {Ctn}. Knowing that n(m) = n(n − 1) · · · (n − m + 1), from (9) for
p = 0, there holds

t(m)
n = n(m)

n−m∑
k=0

(−1)k

αk

(
n−m

k

)
f (k)(0) = n(m)tn−m.
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We provide the Tα-transforms of some basic functions in Appendix.

Definition 2. For any sequence {tn} ∈ Sq and the linear operator Dα introduced
by (4), the function f(x) defined by

(10) Bα{tn} = f(x), f(x) =

∞∑
k=0

Dk
αt0

xk

k!
=

∞∑
k=0

αk(−1)k∆kt0
xk

k!
.

is called the Bα-transform.

In [16] we proved that Bα is the inverse linear transform of Tα, having an
infinite dimensional matrix (11) the inverse of T , which is (6). So expressing ∆kt0,
k ∈ N0, in terms of t0, t1, t2, . . . , the equality (10) can be obtained in the following
matrix form
(11)

(
1

x

1!

x2

2!
. . .

xn

n!
. . .

)

α0 0 0 . . . 0
α1 −α1 0 . . . 0
α2 −2α2 α2 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
αn −

(
n
1

)
αn

(
n
2

)
αn . . . (−1)n

(
n
n

)
αn

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .




t0
t1
t2
. . .
tn
. . .

 .

Definition 3. The convolution of the sequences {tn}, {sn} ∈ Sq, is defined by

(12) rn = tn ∗ sn =

n∑
k=0

(
n

k

) k∑
j=0

(
k

j

)
αjαk−j

αk
∆jt0∆

k−js0.

Here we give some properties of convolutions. For the sequences {rn}, {sn},
{tn} ∈ Sq and c ∈ R, the following relations are valid

1◦ c ∗ tn = ctn,

2◦ tn ∗ sn = sn ∗ tn,
3◦ rn ∗ (sn + tn) = rn ∗ sn + rn ∗ tn.
In [16] we proved for the sequences {tn}, {sn} ∈ Sq and Bα-transform, that

the equality
Bα{tn ∗ sn} = Bα{tn}Bα{sn}

holds true if and only if the convolution tn ∗ sn is defined by (12). Making use of
this result, for Tαeax = {sn}, Tαf(x) = {tn} and αk = (−a)k, we obtain

eaxf(x) = Bα{sn}Bα{tn} = Bα{sn ∗ tn}

=

∞∑
k=0

k∑
j=0

(eax)(k−j)
∣∣
x=0

f (j)(0)

j!(k − j)!
xk =

∞∑
k=0

xk

k!

k∑
j=0

(
k

j

)
ak−jf (j)(0)

=

∞∑
k=0

xk

k!
ak

k∑
j=0

1

aj

(
k

j

)
f (j)(0) =

∞∑
k=0

tk
(ax)k

k!
,
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which is the Borel transform of eaxf(x) (see [6]), whence we get

f(x) = e−ax
∞∑
k=0

tk
(ax)k

k!
.

2. APPLICATIONS

The transform Tα has numerous applications. In the next subsection we
deal with Genocchi polynomials. Afterwards we consider applications of Tα to
differential equations for solving difference equations.

2.1 TWO-DIMENSIONAL GENOCCHI SEQUENCES

The Genocchi polynomials are defined through the generating function [10]

(13)
2text

et + 1
=

∞∑
m=0

Gm(x)
tm

m!
.

By differentiating both sides of (13) with respect to x, we come to the following
differential equation of the Genocchi polynomials [4]

(14)
d

dx
Gm(x) = mGm−1(x).

The Fourier series representations of the Genocchi polynomials [8] are

G2m−1(x) =
4(−1)m−1(2m− 1)!

π2m−1

∞∑
n=1

sin(2n− 1)πx

(2n− 1)2m−1
,

G2m(x) =
4(−1)m(2m)!

π2m

∞∑
n=1

cos(2n− 1)πx

(2n− 1)2m
, m ∈ N.

In the paper [17] we derived the closed form expression for trigonometric
series in terms of the Dirichlet lambda function defined by

λ(s) =

∞∑
n=1

1

(2n− 1)s
.

By substituting πx for x in these series, one obtains

∞∑
n=1

sin(2n− 1)πx

(2n− 1)2m−1
=

(−1)m−1π(πx)2m−2

4(2m− 2)!
+

m−1∑
k=0

(−1)kλ(2m− 2k − 2)

(2k + 1)!
(πx)2k+1,

∞∑
n=1

cos(2n− 1)πx

(2n− 1)2m
=

(−1)mπ(πx)2m−1

4(2m− 1)!
+

m∑
k=0

(−1)kλ(2m− 2k)

(2k)!
(πx)2k.

(15)
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Thus, taking account of (15) we can express the Genocchi polynomials in terms of
the Dirichlet lambda function

G2m−1(x) = (2m− 1)x2m−2 − 4(2m− 1)!

m−1∑
k=0

(−1)m+kλ(2m− 2k − 2)

(2k + 1)!π2m−2k−2
x2k+1,

G2m(x) = 2mx2m−1 + 4(2m)!

m∑
k=0

(−1)m+kλ(2m− 2k)

(2k)!π2m−2k
x2k.

(16)

Making use of the relation [3]

λ(2m) =
(−1)mπ2mG2m

4(2m)!
, m ∈ N,

where G2m denotes Genocchi numbers, then applying Tα to (16), we come to the
generalized two-dimensional Genocchi sequences

Gα
2m−1,n =

(2m− 1)!

α2m−2

(
n

2m− 2

)
−

m−1∑
k=0

(
2m− 1

2k + 1

)
G2m−2k−2

(2k + 1)!

α2k+1

(
n

2k + 1

)
,

Gα
2m,n = − (2m)!

α2m−1

(
n

2m− 1

)
+

m∑
k=0

(
2m

2k

)
G2m−2k

(2k)!

α2k

(
n

2k

)
.

Let TαGm(x) = Gα
m,n. Applying the Tα-transform to the equation (14), then

referring to the property 1◦ in (8), we obtain the partial difference equation

(17) DαG
α
m,n = mGα

m−1,n.

Knowing that for αk = (−1)k, the operator Dα reduces to ∆, the equation (17)
becomes

(18) Gm,n+1 −Gm,n = mGm−1,n,

and the generalized two-dimensional Genocchi sequences for αk = (−1)k are solu-
tions of (18).

2.2 DIFFERENTIAL OPERATORS AND SOLVING
LINEAR DIFFERENCE EQUATIONS

The transforms Tα and Bα provide a useful method for solving a difference
equation by mapping it first by Bα to the corresponding linear differential equation
that is often easier to solve, then its solution is mapped by Tα to a sequence, giving
a solution of the difference equation.
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Lemma 4. In the special case of αk = (−1)k, the operator Dα becomes ∆, and

applying Tα to the Bessel operator
d

dx
x
d

dx
yields

Tα
d

dx
x
d

dx
f(x) = {∆n∆tn−1} = {∆n(tn − tn−1)} = {∆n∇tn},

i.e. the Tα-transform maps Bessel’s operator
d

dx
x
d

dx
to the operator ∆n∇. Also,

the eigenvector of the Bessel operator is mapped to the eigenvector of the operator
∆n∇.

Proof. Since (4) reduces to (2), in view of 1◦ in (8), there holds Tαf ′(x) =
d

dx
f(x) = {∆tn} and relying on (9) we have Tαx

d

dx
f(x) = {n∆tn−1}, implying

(19) Tα
d

dx
x
d

dx
f(x) = {∆n∆tn−1} = {∆n∆(tn − tn−1)} = {∆n∇tn}.

Applying the linear Bessel differential operator
d

dx
x
d

dx
to the Laguerre-type

exponential function [16]

e1(x) =

∞∑
k=0

xk

(k!)2
,

by the uniform convergence everywhere of the series on right-hand side, we are
allowed to exchange summation and differentiation, and find

(20)
d

dx
x
d

dx
e1(x) = e1(x),

which means that the L-exponential function is its eigenvector. Let Tαe1(x) = {sn}.
Then, we have

(21) sn =

n∑
k=0

(
n

k

)
e
(k)
1 (0) =

n∑
k=0

(
n

k

)
k(k)

(k!)2
=

n∑
k=0

1

k!

(
n

k

)
=

n∑
k=0

n(k)

(k!)2
.

Now applying the Tα-transform to (20), because of (19), we have for αk = (−1)k

Tα
d

dx
x
d

dx
e1(x) = {∆n∆sn−1} = {∆n∇sn} = T e1(x) = {sn},

that is,

(22) ∆n∇sn = sn.

So, sn is the eigenvector of the discrete Bessel operator ∆n∇. □
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Example 5. We make use of Lemma 4 to give a discrete model of the Laguerre-Malthus
population growth. The continuous model is defined in [2] by the equation

(23) t
d2N(t)

dt2
+

dN(t)

dt
= rN(t) ⇔ d

dt
t
d

dt
N(t) = rN(t),

where a positive constant r presents the growth rate. Assuming the initial conditions

N(0) = N0, N ′(0) = rN0,

we find its solution

N(t) = N0e1(rt) = N0

∞∑
k=0

rk
tk

(k!)2
.

Denote TαN(t) = {tn}. Applying the Tα-transform to the right-hand side of the equiv-
alence (23), on account of (22) and (21), we obtain a discrete Laguerre-Malthus model
and its solution

∆n∇tn = rtn, tn = N0

n∑
k=0

rk
n(k)

(k!)2
.

Example 6. The solution of Bessel’s differential equation x2y′′ + xy′ + (x2 −m2)y = 0
(m ∈ N) is the well-known Bessel function (see [5]) of the first kind and order m

(24) Jm(x) =

∞∑
k=0

(−1)k(x
2
)m+2k

k!Γ(m+ k + 1)
.

Applying Table in Appendix, we map (24) to the Bessel-α sequence

Jm,n =
(−1)m

2m

[n−m
2

]∑
k=0

(−1)kn(m+2k)

22kk!(m+ k)!αm+2k
, n ⩾ m+ 2k, 2

[n−m

2

]
⩽ n−m,

which is a solution of the Bessel-α difference equation

n(2)D2
αtn−2 + nDαtn−1 + n(2)tn−2 −m2tn = 0,

obtained by applying (9) to the Bessel differential equation.

Replacing x by px in (24), we have

TαJm(px) = Jm,n(p) =

[n−m
2

]∑
k=0

(−1)m+k( p
2
)m+2kn(m+2k)

k!(m+ k)!αm+2k
, n ⩾ m+2k, 2

[n−m

2

]
⩽ n−m.

In [14] we derived a closed form formula for the series in terms of Bessel functions. Setting
there ν = m, that formula becomes

∞∑
p=1

1

p2n+m
Jm(px) =

(−1)n+1xm

(2n)!2m+1
√
π

2n∑
k=0

(2π)kΓ(n− k−1
2

)

Γ(n+m+ 1− k
2
)

(
2n

k

)
x2n−kBk,

where Bk are the Bernoulli numbers. Because of the uniform convergence of the left-hand
side series, we can take the term-by-term derivative. We apply Tα looking up in the
appendix, p. 12, and obtain the series in terms of Bessel sequences Jm,n(p) in the closed
form

∞∑
p=1

1

p2n+m
Jm,n(p)=

(−1)n+m+1n(m)

(2n)!2m+1αm+2k

√
π

2n∑
k=0

(2π)kΓ(n− k−1
2

)

Γ(n+m+ 1− k
2
)

(
2n

k

)
(−1)2n−kn(2n−k)Bk

αn−2k
.
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2.3 APPLICATION OF THE CAUCHY METHOD TO SOLVING
LINEAR DIFFERENCE EQUATIONS

By using the theory of residues, in the paper [7] (see also [9]) Cauchy obtained
a general solution of the linear differential equation that does not require to search
for a particular solution. For instance, consider the equation

(25) b0y
(m)(x) + b1y

(m−1)(x) + · · ·+ bm−1y
′(x) + bmy(x) = F (x).

By virtue of the Cauchy method, its solution is

(26) y(x) =

s∑
p=1

Res
z=zp

(f(z)
g(z)

ezx
)
+

s∑
p=1

Res
z=zp

( ezx

g(z)

∫ x

x0

e−ztF (t)dt
)
,

where f(z) is an arbitrary regular function, the zeros of which do not coincide with
those of the polynomial

(27) g(z) = b0z
n + b1z

n−1(x) + · · ·+ bn = b0(z − z1)
d1 · · · (z − zs)

ds

where s < n, and d1 + · · ·+ ds = n.

Notice that B. Tortolini (see [15]) obtained this result but in another way.
If we apply the Tα-transform to (26), and take account of linearity of Tα, setting
x0 = 0, from (26), there follows

Tαy(x) =
s∑

p=1

Tα Res
z=zp

(f(z)
g(z)

ezx
)
+

s∑
p=1

Tα Res
z=zp

( ezx

g(z)

∫ x

0

e−ztF (t)dt
)
.

Lemma 7. If f(z) is an arbitrary regular function, the zeros of which do not
coincide with the ones of the polynomial (27), then for αk = (−1)k, there holds

(28)

s∑
p=1

Tα Res
z=zp

(f(z)
g(z)

ezx
)
=

s∑
p=1

Res
z=zp

(f(z)
g(z)

(1 + z)n
)
.

Proof. According to the definition of the Ta-transform, we have

s∑
p=1

Tα Res
z=zp

(f(z)
g(z)

ezx
)
=

s∑
p=1

Tα
1

(dp − 1)!

∂dp−1

∂zdp−1

( f(z)

gp(z)
ezx
)
z=zp

=

s∑
p=1

1

(dp − 1)!

n∑
k=0

(
n

k

)
∂dp−1

∂zdp−1

( ∂k

∂xk

( f(z)

gp(z)
ezx
)
x=0

)
z=zp

=

s∑
p=1

1

(dp − 1)!

∂dp−1

∂zdp−1

(
Tα

f(z)

gp(z)
ezx
)
z=zp

=

s∑
p=1

Res
z=zp

(
Tα

f(z)

g(z)
ezx
)
.
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Further, it follows

s∑
p=1

Res
z=zp

(
Tα

f(z)

g(z)
ezx
)
=

s∑
p=1

Res
z=zp

( n∑
k=0

(
n

k

)
∂k

∂xk

(f(z)
g(z)

ezx
)
x=0

)
=

s∑
p=1

Res
z=zp

(f(z)
g(z)

n∑
k=0

(
n

k

)
zk
)
=

s∑
p=1

Res
z=zp

(f(z)
g(z)

(1 + z)n
)
.

Thereby we have proved (28). □

Lemma 8. There holds

(29)

s∑
p=1

Tα Res
z=zp

( ezx

g(z)
h(x)

)
=

s∑
p=1

Res
z=zp

(
(1 + z)n

g(z)

n∑
k=0

h(k)(0)

(1 + z)k

)
,

where h(x) =

∫ x

0

e−ztF (t)dt with h(k)(0) =

k−1∑
j=0

(
k

j

)
(−z)k−j−1F (j)(0).

Proof. First, let gp(z) mean that we omit the factor (z − zs)
dp in the polynomial

(27). Then, we have

s∑
p=1

Tα Res
z=zp

( ezx
g(z)

∫ x

0

e−ztF (t)dt
)
=

s∑
p=1

Tα
1

(dp − 1)!

∂dp−1

∂zdp−1

( ezx

gp(z)

∫ x

0

e−ztF (t)dt
)
z=zp

=

s∑
p=1

1

(dp − 1)!

n∑
k=0

(
n

k

)
∂k

∂xk

( ∂dp−1

∂zdp−1

( ezx

gp(z)

∫ x

0

e−ztF (t)dt
)
z=zp

)
x=0

=

s∑
p=1

1

(dp − 1)!

∂dp−1

∂zdp−1

( n∑
k=0

(
n

k

)
∂k

∂xk

( ezx

gp(z)

∫ x

0

e−ztF (t)dt
)
x=0

)
z=zp

=

s∑
p=1

Res
z=zp

(
Tα

ezx

g(z)

∫ x

0

e−ztF (t)dt
)
=

s∑
p=1

Res
z=zp

( 1

g(z)
Tαezx

∫ x

0

e−ztF (t)dt
)
.

Here we regard

∫ x

0

e−ztF (t)dt as a function h(x), and treat z as a parameter. By

differentiating the function ezxh(x) k times at x = 0, one gets

dk

dxk
ezxh(x)

∣∣∣
x=0

=

k∑
j=0

(
k

j

)
(ezx)(k−j)h(j)(x)

∣∣∣
x=0

=

k∑
j=0

(
k

j

)
zk−jh(j)(0),

so that we find

Tαezxh(x) =
n∑

k=0

(
n

k

) k∑
j=0

(
k

j

)
zk−jh(j)(0) =

n∑
k=0

zk
(
n

k

) k∑
j=0

(
k

j

)
h(j)(0)

zj
.
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Changing the order of summation yields

Tαezxh(x) =
n∑

j=0

(
n

j

)
h(j)(0)

zj

n−j∑
k=0

(
n− j

k

)
zn−k

=

n∑
j=0

(
n

j

)
zn−jh(j)(0)

n−j∑
k=0

(
n− j

k

)
1

zk

=

n∑
j=0

(
n

j

)
zn−jh(j)(0)

(
1 +

1

z

)n−j

= (1 + z)n
n∑

j=0

(
n

j

)
h(j)(0)

(1 + z)j
.

Finally, we obtain

s∑
p=1

Res
z=zp

( 1

g(z)
Tαezxh(x)

)
=

s∑
p=1

Res
z=zp

( (1 + z)n

g(z)

n∑
k=0

(
n

k

)
h(k)(0)

(1 + z)k
,

where h(k)(0) =

k−1∑
j=0

(
k − 1

j

)
(−z)k−j−1F (j)(0), so we arrive at (29). □

We apply the Cauchy method (26), Lemma 7 and Lemma 8 to solve linear
difference equations.

Theorem 9. Using g(z) defined by (27) and F (x) on the right-hand side of (25),
the solution of the linear difference equation

(30) tn+m + a1tn+m−1 + · · ·+ amtn = en ai ∈ R, i = 1, . . . ,m,

where en = TαF (x), is given by

tn =

s∑
p=1

Res
z=zp

(f(z)
g(z)

(1 + z)n
)

+

s∑
p=1

Res
z=zp

( n∑
k=0

(1 + z)n−k

g(z)

(
n

k

) k−1∑
j=0

(
k − 1

j

)
(−z)k−j−1F (j)(0)

)
.

Proof. We deal first with Ta for αk = (−1)k and make use of (3), so the left-hand
side of (30) becomes

m∑
k=0

(
m

k

)
∆ktn + a1

m−1∑
k=0

(
m− 1

k

)
∆ktn + · · ·+ amtn =

m∑
p=0

ap

m−p∑
k=0

(
m− p

k

)
∆ktn.

We recall that the operator Dα reduces to the difference operator ∆ for αk =
(−1)k, and referring to the statement 1◦ of (8), for a function y(x) we find its kth
derivative Tαy(k)(x) = {∆ktn}, but by applying the inverse transform Bα, we have

BαTαy(k)(x) = y(k)(x) = Bα{∆ktn}, k = 0, 1, . . . ,m.
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In view of that, by applying the Bα-transform (30), the difference equation is
mapped to the linear differential equation

m∑
p=0

ap

m−p∑
k=0

(
m− p

k

)
y(k)(x) =

m∑
k=0

y(k)(x)

m−k∑
p=0

ap

(
m− p

k

)
= F (x),

which is a differential equation of the form (25), where

F (x) = Bα{en}, bm−k =

m−k∑
p=0

ap

(
m− p

k

)
.

So, in order to find its general solution, we apply the Cauchy method yielding as a
solution (26), and relying on the results of Lemma 7 and Lemma 8 the solution of
the difference equation (30) is obtained by summing (28) and (29). □

Appendix - Table of Ta-Transform pairs

f(x) Tαf(x)

xr
(−1)r

αr
n(r), n(r) = n(n− 1) · · · (n− r + 1), n, r ∈ N, r ⩽ n

(1 + x)a

n∑
k=0

(−1)k

αk

(
n

k

)
a(k), a(k) = a(a− 1) · · · (a− k + 1), a ∈ R

eax

n∑
k=0

(−1)k

αk

(
n

k

)
ak

ln(1 + x)

n∑
k=1

(−1)k−1n(k)

k αk

sin ax

[n−1
2 ]∑

k=0

(−1)k+1

α2k+1

(
n

2k + 1

)
a2k+1

cos ax

[n2 ]+1∑
k=0

(−1)k

α2k

(
n

2k

)
a2k
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