Applicable Analysis and Discrete Mathematics available online at http://pefmath.etf.rs

Appl. Anal. Discrete Math. x (xxxx), xxx-xxx.
https://doi.org/10.2298/AADM210917004T

APPLICATIONS OF THE GENERALIZED FUNCTION-TO-SEQUENCE TRANSFORM

Slobodan B. Tričkovič* and Miomir S. Stanković

We deal with applications of the transform \mathcal{T}_{α} we introduced in our paper On a generalized function-to-sequence transform, Appl. Anal. Disc. Math. Vol. 14 No 2 (2020) 300-316. Taking different sequences $\left\{\alpha_{n}\right\}_{n \in \mathbb{N}_{0}}$ linked to a generalized linear difference operator \mathcal{D}_{α} gives rise to a family of transforms \mathcal{T}_{α} that enables the mapping of a differential equation and its solutions to a difference equation and its solutions. It can map a differential operator to a difference one as well.

1. INTRODUCTION AND PRELIMINARIES

For for an arbitrary sequence $\left\{t_{n}\right\}_{n \in \mathbb{N}_{0}}$, we refer to the Newton binomial formula

$$
\begin{equation*}
t_{n}=\sum_{k=0}^{n}\binom{n}{k} \Delta^{k} t_{0} \quad\left(\Delta t_{n}=t_{n+1}-t_{n}\right) \tag{1}
\end{equation*}
$$

whence, on account of the linearity of the difference operator Δ, there follows

$$
\begin{equation*}
\Delta t_{n}=\sum_{k=0}^{n}\binom{n}{k} \Delta^{k+1} t_{0} \tag{2}
\end{equation*}
$$

[^0]By virtue of (1), for $p \in \mathbb{N}_{0}$, there holds as well

$$
\begin{equation*}
t_{n+p}=\sum_{k=0}^{p}\binom{p}{k} \Delta^{k} t_{n}=t_{n}+\binom{p}{1} \Delta t_{n}+\binom{p}{2} \Delta^{2} t_{n}+\cdots+\Delta^{p} t_{n} \tag{3}
\end{equation*}
$$

Let $\left\{\alpha_{n}\right\}_{n \in \mathbb{N}_{0}}$ be a sequence of real numbers satisfying $\alpha_{0}=1, \alpha_{n} \neq 0$, used in the definition of a family of linear operators on linear spaces of sequences in [1], we multiply by c_{k} the terms $\binom{n}{k} \Delta^{k+1} t_{0}$ in the linear difference operator (2), where $c_{k}=-\frac{\alpha_{k+1}}{\alpha_{k}}$, to obtain a more general linear difference operator \mathcal{D}_{α}, defined as follows

$$
\begin{equation*}
\mathcal{D}_{\alpha} t_{n}=\sum_{k=0}^{n} c_{k}\binom{n}{k} \Delta^{k+1} t_{0} \tag{4}
\end{equation*}
$$

Thus, for $c_{k}=1$, i.e. $\alpha_{k}=(-1)^{k},(4)$ becomes the forward difference operator Δ.
In [16] we derived the inverse transform of $\mathcal{D}_{\alpha} t_{n}$, i.e.

$$
\begin{equation*}
\mathcal{D}_{\alpha}^{-1} t_{n}=\sum_{k=1}^{n} \frac{1}{c_{k-1}}\binom{n}{k} \Delta^{k-1} t_{0}=\sum_{k=1}^{n} \frac{\alpha_{k-1}}{\alpha_{k}}\binom{n}{k} \Delta^{k-1} t_{0} \tag{5}
\end{equation*}
$$

and the formula

$$
\mathcal{D}_{\alpha}^{m} t_{n}=(-1)^{m} \sum_{k=0}^{n} \frac{\alpha_{k+m}}{\alpha_{k}}\binom{n}{k} \Delta^{k+m} t_{0}, \quad m \in \mathbb{N}
$$

The binomial transform takes the sequence $\left\{s_{n}\right\}$ to the sequence $\left\{t_{n}\right\}$ via the transformation [13]

$$
t_{n}=\sum_{k=0}^{n}\binom{n}{k} s_{k}
$$

and presents an infinite-dimensional linear operator.
Since \mathcal{D}_{α} reduces to Δ for $\alpha_{k}=(-1)^{k}$, motivated by that important case we introduced in $[\mathbf{1 6}]$ the generalized binomial transform

$$
t_{n}=\sum_{k=0}^{n} \frac{(-1)^{k}}{\alpha_{k}}\binom{n}{k} s_{k}, \quad T=\left(\begin{array}{ccccc}
\frac{1}{\alpha_{0}} & 0 & 0 & \ldots & 0 \tag{6}\\
\frac{1}{\alpha_{0}} & -\frac{1}{\alpha_{1}} & 0 & \ldots & 0 \\
\frac{1}{\alpha_{0}} & -\frac{2}{\alpha_{1}} & \frac{1}{\alpha_{2}} & \ldots & 0 \\
\ldots \ldots & \ldots & \ldots & \ldots \ldots \ldots \ldots \ldots \\
\frac{1}{\alpha_{0}} & -\frac{\binom{n}{1}}{\alpha_{1}} & \frac{\binom{n}{2}}{\alpha_{2}} & \ldots & \frac{(-1)^{n}\binom{n}{n}}{\alpha_{n}}
\end{array}\right)
$$

The transform (6) comprises variations of the binomial transform. They are considered in $[\mathbf{1 3}]$ and called the k-binomial transform for $\alpha_{j}=\frac{(-1)^{j}}{k^{n}}$, the rising k-binomial transform for $\alpha_{j}=\frac{(-1)^{j}}{k^{j}}$, and the falling k-binomial transform for $\alpha_{j}=\frac{(-1)^{j}}{k^{n-j}}$.

The k-binomial transforms relate many sequences listed in the On-Line Encyclopedia of Integer Sequences [12]. Several of these relationships are given in Layman [11] and listed in numerous tables of integer sequences related by repeated applications of the binomial transform and thus (via [13, Theorem 3.2]) by the falling k-binomial transform.

Let S_{c} be a set of real functions f having continuous derivatives of all orders at $x=0$ for which there exists a constant $M>0$, such that $\left|f^{(k)}(0)\right| \leqslant M$ for every $k \in \mathbb{N}_{0}$, and S_{q} be a set of one-parametric sequences $\left\{t_{n}^{(m)}\right\}$, with $m \in \mathbb{N}_{0}$ as a parameter, so that there holds $\left|\mathcal{D}_{\alpha}^{k} t_{0}\right| \leqslant M$ for every $k \in \mathbb{N}_{0}$.

On the basis of the generalized binomial transform (6), in [16] the generalized function-to-sequence transform was introduced.
Definition 1. The transform \mathcal{T}_{α} mapping a function $f \in S_{c}$ to a sequence $\left\{t_{n}^{(m)}\right\} \in$ S_{q}, determined by the equalities

$$
\begin{equation*}
\mathcal{T}_{\alpha} x^{m} f(x)=\left\{t_{n}^{(m)}\right\}, \quad t_{n}^{(m)}=\sum_{k=m}^{n} \frac{(-1)^{k-m}}{\alpha_{k-m}}\binom{n}{k} \frac{d^{k}}{d x^{k}}\left(x^{m} f(x)\right)_{x=0} \tag{7}
\end{equation*}
$$

is called \mathcal{T}_{α}-transform of the function f.
The binomial transform is a sequence transformation, however, after replacing the sequence $\left\{s_{n}\right\}$ with the sequence $\left\{f^{(n)}(0)\right\}$ of an infinitely differentiable function $f(x)$ in (6), we obtain a more general form of a sequence transformation, a specific linear transform mapping a set of functions into a set of sequences. We denote it by \mathcal{T}_{α}.

In the case $m=0$, the sequence $\left\{t_{n}^{(0)}\right\}$ is denoted by $\left\{t_{n}\right\}$, and (7) takes the form

$$
\mathcal{T}_{\alpha} f(x)=\left\{t_{n}\right\}, \quad t_{n}=\sum_{k=0}^{n} \frac{(-1)^{k}}{\alpha_{k}}\binom{n}{k} f^{(k)}(0)
$$

and its matrix is (6). So \mathcal{T}_{α} is regarded as a differential operator.
In order to study properties of \mathcal{T}_{α}, we made use of \mathcal{D}_{α}, and proved in [16] these basic properties of the differential operator \mathcal{T}_{α}, so that for $p \in \mathbb{N}$, there holds

$$
\begin{equation*}
1^{\circ} \mathcal{T}_{\alpha} f^{(p)}(x)=\left\{\mathcal{D}_{\alpha}^{p} t_{n}\right\}, \quad 2^{\circ} \mathcal{T}_{\alpha} \int_{0}^{x} f(t) d t=\left\{\mathcal{D}_{\alpha}^{-1} t_{n}\right\} \tag{8}
\end{equation*}
$$

where $\mathcal{D}_{\alpha}^{-1} t_{n}$ is given by (5) and for $m, p \in \mathbb{N}_{0}$, we have

$$
\begin{equation*}
\mathcal{T}_{\alpha} x^{m} f^{(p)}(x)=\left\{s_{n}^{(m)}\right\}, \quad s_{n}^{(m)}=n^{(m)} \mathcal{D}_{\alpha}^{p} t_{n-m} \tag{9}
\end{equation*}
$$

For $f(x)=C$, then $\mathcal{T}_{\alpha} C=\left\{t_{n}\right\}, t_{n}=C, n \in \mathbb{N}_{0}$. Also, if $\mathcal{T}_{\alpha} f(x)=\left\{t_{n}\right\}$, then $\mathcal{T}_{\alpha} C f(x)=\left\{C t_{n}\right\}$. Knowing that $n^{(m)}=n(n-1) \cdots(n-m+1)$, from (9) for $p=0$, there holds

$$
t_{n}^{(m)}=n^{(m)} \sum_{k=0}^{n-m} \frac{(-1)^{k}}{\alpha_{k}}\binom{n-m}{k} f^{(k)}(0)=n^{(m)} t_{n-m}
$$

We provide the \mathcal{T}_{α}-transforms of some basic functions in Appendix.
Definition 2. For any sequence $\left\{t_{n}\right\} \in S_{q}$ and the linear operator \mathcal{D}_{α} introduced by (4), the function $f(x)$ defined by

$$
\begin{equation*}
\mathcal{B}_{\alpha}\left\{t_{n}\right\}=f(x), \quad f(x)=\sum_{k=0}^{\infty} \mathcal{D}_{\alpha}^{k} t_{0} \frac{x^{k}}{k!}=\sum_{k=0}^{\infty} \alpha_{k}(-1)^{k} \Delta^{k} t_{0} \frac{x^{k}}{k!} \tag{10}
\end{equation*}
$$

is called the \mathcal{B}_{α}-transform.
In [16] we proved that \mathcal{B}_{α} is the inverse linear transform of \mathcal{T}_{α}, having an infinite dimensional matrix (11) the inverse of T, which is (6). So expressing $\Delta^{k} t_{0}$, $k \in \mathbb{N}_{0}$, in terms of $t_{0}, t_{1}, t_{2}, \ldots$, the equality (10) can be obtained in the following matrix form

Definition 3. The convolution of the sequences $\left\{t_{n}\right\},\left\{s_{n}\right\} \in S_{q}$, is defined by

$$
\begin{equation*}
r_{n}=t_{n} * s_{n}=\sum_{k=0}^{n}\binom{n}{k} \sum_{j=0}^{k}\binom{k}{j} \frac{\alpha_{j} \alpha_{k-j}}{\alpha_{k}} \Delta^{j} t_{0} \Delta^{k-j} s_{0} \tag{12}
\end{equation*}
$$

Here we give some properties of convolutions. For the sequences $\left\{r_{n}\right\},\left\{s_{n}\right\}$, $\left\{t_{n}\right\} \in S_{q}$ and $c \in \mathbb{R}$, the following relations are valid

$$
\begin{array}{ll}
1^{\circ} & c * t_{n}=c t_{n}, \\
2^{\circ} & t_{n} * s_{n}=s_{n} * t_{n}, \\
3^{\circ} & r_{n} *\left(s_{n}+t_{n}\right)=r_{n} * s_{n}+r_{n} * t_{n} .
\end{array}
$$

In [16] we proved for the sequences $\left\{t_{n}\right\},\left\{s_{n}\right\} \in S_{q}$ and \mathcal{B}_{α}-transform, that the equality

$$
\mathcal{B}_{\alpha}\left\{t_{n} * s_{n}\right\}=\mathcal{B}_{\alpha}\left\{t_{n}\right\} \mathcal{B}_{\alpha}\left\{s_{n}\right\}
$$

holds true if and only if the convolution $t_{n} * s_{n}$ is defined by (12). Making use of this result, for $\mathcal{T}_{\alpha} e^{a x}=\left\{s_{n}\right\}, \mathcal{T}_{\alpha} f(x)=\left\{t_{n}\right\}$ and $\alpha_{k}=(-a)^{k}$, we obtain

$$
\begin{aligned}
e^{a x} f(x) & =\mathcal{B}_{\alpha}\left\{s_{n}\right\} \mathcal{B}_{\alpha}\left\{t_{n}\right\}=\mathcal{B}_{\alpha}\left\{s_{n} * t_{n}\right\} \\
& =\sum_{k=0}^{\infty} \sum_{j=0}^{k} \frac{\left.\left(e^{a x}\right)^{(k-j)}\right|_{x=0} f^{(j)}(0)}{j!(k-j)!} x^{k}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!} \sum_{j=0}^{k}\binom{k}{j} a^{k-j} f^{(j)}(0) \\
& =\sum_{k=0}^{\infty} \frac{x^{k}}{k!} a^{k} \sum_{j=0}^{k} \frac{1}{a^{j}}\binom{k}{j} f^{(j)}(0)=\sum_{k=0}^{\infty} t_{k} \frac{(a x)^{k}}{k!},
\end{aligned}
$$

which is the Borel transform of $e^{a x} f(x)$ (see [6]), whence we get

$$
f(x)=e^{-a x} \sum_{k=0}^{\infty} t_{k} \frac{(a x)^{k}}{k!}
$$

2. APPLICATIONS

The transform \mathcal{T}_{α} has numerous applications. In the next subsection we deal with Genocchi polynomials. Afterwards we consider applications of \mathcal{T}_{α} to differential equations for solving difference equations.

2.1 TWO-DIMENSIONAL GENOCCHI SEQUENCES

The Genocchi polynomials are defined through the generating function [10]

$$
\begin{equation*}
\frac{2 t e^{x t}}{e^{t}+1}=\sum_{m=0}^{\infty} G_{m}(x) \frac{t^{m}}{m!} \tag{13}
\end{equation*}
$$

By differentiating both sides of (13) with respect to x, we come to the following differential equation of the Genocchi polynomials [4]

$$
\begin{equation*}
\frac{d}{d x} G_{m}(x)=m G_{m-1}(x) \tag{14}
\end{equation*}
$$

The Fourier series representations of the Genocchi polynomials [8] are

$$
\begin{aligned}
& G_{2 m-1}(x)=\frac{4(-1)^{m-1}(2 m-1)!}{\pi^{2 m-1}} \sum_{n=1}^{\infty} \frac{\sin (2 n-1) \pi x}{(2 n-1)^{2 m-1}} \\
& G_{2 m}(x)=\frac{4(-1)^{m}(2 m)!}{\pi^{2 m}} \sum_{n=1}^{\infty} \frac{\cos (2 n-1) \pi x}{(2 n-1)^{2 m}}, \quad m \in \mathbb{N} .
\end{aligned}
$$

In the paper $[\mathbf{1 7}]$ we derived the closed form expression for trigonometric series in terms of the Dirichlet lambda function defined by

$$
\lambda(s)=\sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{s}}
$$

By substituting πx for x in these series, one obtains

$$
\begin{align*}
& \sum_{n=1}^{\infty} \frac{\sin (2 n-1) \pi x}{(2 n-1)^{2 m-1}}=\frac{(-1)^{m-1} \pi(\pi x)^{2 m-2}}{4(2 m-2)!}+\sum_{k=0}^{m-1} \frac{(-1)^{k} \lambda(2 m-2 k-2)}{(2 k+1)!}(\pi x)^{2 k+1} \tag{15}\\
& \sum_{n=1}^{\infty} \frac{\cos (2 n-1) \pi x}{(2 n-1)^{2 m}}=\frac{(-1)^{m} \pi(\pi x)^{2 m-1}}{4(2 m-1)!}+\sum_{k=0}^{m} \frac{(-1)^{k} \lambda(2 m-2 k)}{(2 k)!}(\pi x)^{2 k}
\end{align*}
$$

Thus, taking account of (15) we can express the Genocchi polynomials in terms of the Dirichlet lambda function

$$
G_{2 m-1}(x)=(2 m-1) x^{2 m-2}-4(2 m-1)!\sum_{k=0}^{m-1} \frac{(-1)^{m+k} \lambda(2 m-2 k-2)}{(2 k+1)!\pi^{2 m-2 k-2}} x^{2 k+1}
$$

$$
\begin{equation*}
G_{2 m}(x)=2 m x^{2 m-1}+4(2 m)!\sum_{k=0}^{m} \frac{(-1)^{m+k} \lambda(2 m-2 k)}{(2 k)!\pi^{2 m-2 k}} x^{2 k} . \tag{16}
\end{equation*}
$$

Making use of the relation [3]

$$
\lambda(2 m)=\frac{(-1)^{m} \pi^{2 m} G_{2 m}}{4(2 m)!}, \quad m \in \mathbb{N},
$$

where $G_{2 m}$ denotes Genocchi numbers, then applying \mathcal{T}_{α} to (16), we come to the generalized two-dimensional Genocchi sequences

$$
\begin{aligned}
& G_{2 m-1, n}^{\alpha}=\frac{(2 m-1)!}{\alpha_{2 m-2}}\binom{n}{2 m-2}-\sum_{k=0}^{m-1}\binom{2 m-1}{2 k+1} G_{2 m-2 k-2} \frac{(2 k+1)!}{\alpha_{2 k+1}}\binom{n}{2 k+1}, \\
& G_{2 m, n}^{\alpha}=-\frac{(2 m)!}{\alpha_{2 m-1}}\binom{n}{2 m-1}+\sum_{k=0}^{m}\binom{2 m}{2 k} G_{2 m-2 k} \frac{(2 k)!}{\alpha_{2 k}}\binom{n}{2 k}
\end{aligned}
$$

Let $\mathcal{T}_{\alpha} G_{m}(x)=G_{m, n}^{\alpha}$. Applying the \mathcal{T}_{α}-transform to the equation (14), then referring to the property 1° in (8), we obtain the partial difference equation

$$
\begin{equation*}
\mathcal{D}_{\alpha} G_{m, n}^{\alpha}=m G_{m-1, n}^{\alpha} \tag{17}
\end{equation*}
$$

Knowing that for $\alpha_{k}=(-1)^{k}$, the operator \mathcal{D}_{α} reduces to Δ, the equation (17) becomes

$$
\begin{equation*}
G_{m, n+1}-G_{m, n}=m G_{m-1, n} \tag{18}
\end{equation*}
$$

and the generalized two-dimensional Genocchi sequences for $\alpha_{k}=(-1)^{k}$ are solutions of (18).

2.2 DIFFERENTIAL OPERATORS AND SOLVING LINEAR DIFFERENCE EQUATIONS

The transforms \mathcal{T}_{α} and \mathcal{B}_{α} provide a useful method for solving a difference equation by mapping it first by \mathcal{B}_{α} to the corresponding linear differential equation that is often easier to solve, then its solution is mapped by \mathcal{T}_{α} to a sequence, giving a solution of the difference equation.

Lemma 4. In the special case of $\alpha_{k}=(-1)^{k}$, the operator \mathcal{D}_{α} becomes Δ, and applying \mathcal{T}_{α} to the Bessel operator $\frac{d}{d x} x \frac{d}{d x}$ yields

$$
\mathcal{T}_{\alpha} \frac{d}{d x} x \frac{d}{d x} f(x)=\left\{\Delta n \Delta t_{n-1}\right\}=\left\{\Delta n\left(t_{n}-t_{n-1}\right)\right\}=\left\{\Delta n \nabla t_{n}\right\}
$$

i.e. the \mathcal{T}_{α}-transform maps Bessel's operator $\frac{d}{d x} x \frac{d}{d x}$ to the operator $\Delta n \nabla$. Also, the eigenvector of the Bessel operator is mapped to the eigenvector of the operator $\Delta n \nabla$.

Proof. Since (4) reduces to (2), in view of 1° in (8), there holds $\mathcal{T}_{\alpha} f^{\prime}(x)=$ $\frac{d}{d x} f(x)=\left\{\Delta t_{n}\right\}$ and relying on (9) we have $\mathcal{T}_{\alpha} x \frac{d}{d x} f(x)=\left\{n \Delta t_{n-1}\right\}$, implying

$$
\begin{equation*}
\mathcal{T}_{\alpha} \frac{d}{d x} x \frac{d}{d x} f(x)=\left\{\Delta n \Delta t_{n-1}\right\}=\left\{\Delta n \Delta\left(t_{n}-t_{n-1}\right)\right\}=\left\{\Delta n \nabla t_{n}\right\} \tag{19}
\end{equation*}
$$

Applying the linear Bessel differential operator $\frac{d}{d x} x \frac{d}{d x}$ to the Laguerre-type exponential function [16]

$$
e_{1}(x)=\sum_{k=0}^{\infty} \frac{x^{k}}{(k!)^{2}},
$$

by the uniform convergence everywhere of the series on right-hand side, we are allowed to exchange summation and differentiation, and find

$$
\begin{equation*}
\frac{d}{d x} x \frac{d}{d x} e_{1}(x)=e_{1}(x) \tag{20}
\end{equation*}
$$

which means that the L-exponential function is its eigenvector. Let $\mathcal{T}_{\alpha} e_{1}(x)=\left\{s_{n}\right\}$. Then, we have

$$
\begin{equation*}
s_{n}=\sum_{k=0}^{n}\binom{n}{k} e_{1}^{(k)}(0)=\sum_{k=0}^{n}\binom{n}{k} \frac{k^{(k)}}{(k!)^{2}}=\sum_{k=0}^{n} \frac{1}{k!}\binom{n}{k}=\sum_{k=0}^{n} \frac{n^{(k)}}{(k!)^{2}} . \tag{21}
\end{equation*}
$$

Now applying the \mathcal{T}_{α}-transform to (20), because of (19), we have for $\alpha_{k}=(-1)^{k}$

$$
\mathcal{T}_{\alpha} \frac{d}{d x} x \frac{d}{d x} e_{1}(x)=\left\{\Delta n \Delta s_{n-1}\right\}=\left\{\Delta n \nabla s_{n}\right\}=\mathcal{T} e_{1}(x)=\left\{s_{n}\right\}
$$

that is,

$$
\begin{equation*}
\Delta n \nabla s_{n}=s_{n} \tag{22}
\end{equation*}
$$

So, s_{n} is the eigenvector of the discrete Bessel operator $\Delta n \nabla$.

Example 5. We make use of Lemma 4 to give a discrete model of the Laguerre-Malthus population growth. The continuous model is defined in [2] by the equation

$$
\begin{equation*}
t \frac{d^{2} N(t)}{d t^{2}}+\frac{d N(t)}{d t}=r N(t) \quad \Leftrightarrow \quad \frac{d}{d t} t \frac{d}{d t} N(t)=r N(t) \tag{23}
\end{equation*}
$$

where a positive constant r presents the growth rate. Assuming the initial conditions

$$
N(0)=N_{0}, \quad N^{\prime}(0)=r N_{0},
$$

we find its solution

$$
N(t)=N_{0} e_{1}(r t)=N_{0} \sum_{k=0}^{\infty} r^{k} \frac{t^{k}}{(k!)^{2}} .
$$

Denote $\mathcal{T}_{\alpha} N(t)=\left\{t_{n}\right\}$. Applying the \mathcal{T}_{α}-transform to the right-hand side of the equivalence (23), on account of (22) and (21), we obtain a discrete Laguerre-Malthus model and its solution

$$
\Delta n \nabla t_{n}=r t_{n}, \quad t_{n}=N_{0} \sum_{k=0}^{n} r^{k} \frac{n^{(k)}}{(k!)^{2}} .
$$

Example 6. The solution of Bessel's differential equation $x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-m^{2}\right) y=0$ $(m \in \mathbb{N})$ is the well-known Bessel function (see [5]) of the first kind and order m

$$
\begin{equation*}
J_{m}(x)=\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(\frac{x}{2}\right)^{m+2 k}}{k!\Gamma(m+k+1)} . \tag{24}
\end{equation*}
$$

Applying Table in Appendix, we map (24) to the Bessel- α sequence

$$
J_{m, n}=\frac{(-1)^{m}}{2^{m}} \sum_{k=0}^{\left[\frac{n-m}{2}\right]} \frac{(-1)^{k} n^{(m+2 k)}}{2^{2 k} k!(m+k)!\alpha_{m+2 k}}, \quad n \geqslant m+2 k, 2\left[\frac{n-m}{2}\right] \leqslant n-m
$$

which is a solution of the Bessel- α difference equation

$$
n^{(2)} \mathcal{D}_{\alpha}^{2} t_{n-2}+n \mathcal{D}_{\alpha} t_{n-1}+n^{(2)} t_{n-2}-m^{2} t_{n}=0,
$$

obtained by applying (9) to the Bessel differential equation.
Replacing x by $p x$ in (24), we have
$\mathcal{T}_{\alpha} J_{m}(p x)=J_{m, n}(p)=\sum_{k=0}^{\left[\frac{n-m}{2}\right]} \frac{(-1)^{m+k}\left(\frac{p}{2}\right)^{m+2 k} n^{(m+2 k)}}{k!(m+k)!\alpha_{m+2 k}}, \quad n \geqslant m+2 k, 2\left[\frac{n-m}{2}\right] \leqslant n-m$.
In [14] we derived a closed form formula for the series in terms of Bessel functions. Setting there $\nu=m$, that formula becomes

$$
\sum_{p=1}^{\infty} \frac{1}{p^{2 n+m}} J_{m}(p x)=\frac{(-1)^{n+1} x^{m}}{(2 n)!2^{m+1} \sqrt{\pi}} \sum_{k=0}^{2 n} \frac{(2 \pi)^{k} \Gamma\left(n-\frac{k-1}{2}\right)}{\Gamma\left(n+m+1-\frac{k}{2}\right)}\binom{2 n}{k} x^{2 n-k} B_{k}
$$

where B_{k} are the Bernoulli numbers. Because of the uniform convergence of the left-hand side series, we can take the term-by-term derivative. We apply \mathcal{T}_{α} looking up in the appendix, p. 12, and obtain the series in terms of Bessel sequences $J_{m, n}(p)$ in the closed form

$$
\sum_{p=1}^{\infty} \frac{1}{p^{2 n+m}} J_{m, n}(p)=\frac{(-1)^{n+m+1} n^{(m)}}{(2 n)!2^{m+1} \alpha_{m+2 k} \sqrt{\pi}} \sum_{k=0}^{2 n} \frac{(2 \pi)^{k} \Gamma\left(n-\frac{k-1}{2}\right)}{\Gamma\left(n+m+1-\frac{k}{2}\right)}\binom{2 n}{k} \frac{(-1)^{2 n-k} n^{(2 n-k)} B_{k}}{\alpha_{n-2 k}} .
$$

2.3 APPLICATION OF THE CAUCHY METHOD TO SOLVING LINEAR DIFFERENCE EQUATIONS

By using the theory of residues, in the paper [7] (see also [9]) Cauchy obtained a general solution of the linear differential equation that does not require to search for a particular solution. For instance, consider the equation

$$
\begin{equation*}
b_{0} y^{(m)}(x)+b_{1} y^{(m-1)}(x)+\cdots+b_{m-1} y^{\prime}(x)+b_{m} y(x)=F(x) \tag{25}
\end{equation*}
$$

By virtue of the Cauchy method, its solution is

$$
\begin{equation*}
y(x)=\sum_{p=1}^{s} \operatorname{Res}_{z=z_{p}}\left(\frac{f(z)}{g(z)} e^{z x}\right)+\sum_{p=1}^{s} \operatorname{Res}_{z=z_{p}}\left(\frac{e^{z x}}{g(z)} \int_{x_{0}}^{x} e^{-z t} F(t) d t\right), \tag{26}
\end{equation*}
$$

where $f(z)$ is an arbitrary regular function, the zeros of which do not coincide with those of the polynomial

$$
\begin{equation*}
g(z)=b_{0} z^{n}+b_{1} z^{n-1}(x)+\cdots+b_{n}=b_{0}\left(z-z_{1}\right)^{d_{1}} \cdots\left(z-z_{s}\right)^{d_{s}} \tag{27}
\end{equation*}
$$

where $s<n$, and $d_{1}+\cdots+d_{s}=n$.
Notice that B. Tortolini (see [15]) obtained this result but in another way. If we apply the \mathcal{T}_{α}-transform to (26), and take account of linearity of \mathcal{T}_{α}, setting $x_{0}=0$, from (26), there follows

$$
\mathcal{T}_{\alpha} y(x)=\sum_{p=1}^{s} \mathcal{T}_{\alpha} \operatorname{Res}_{z=z_{p}}\left(\frac{f(z)}{g(z)} e^{z x}\right)+\sum_{p=1}^{s} \mathcal{T}_{\alpha} \operatorname{Res}_{z=z_{p}}\left(\frac{e^{z x}}{g(z)} \int_{0}^{x} e^{-z t} F(t) d t\right)
$$

Lemma 7. If $f(z)$ is an arbitrary regular function, the zeros of which do not coincide with the ones of the polynomial (27), then for $\alpha_{k}=(-1)^{k}$, there holds

$$
\begin{equation*}
\sum_{p=1}^{s} \mathcal{T}_{\alpha} \operatorname{Res}_{z=z_{p}}\left(\frac{f(z)}{g(z)} e^{z x}\right)=\sum_{p=1}^{s} \operatorname{Res}_{z=z_{p}}\left(\frac{f(z)}{g(z)}(1+z)^{n}\right) \tag{28}
\end{equation*}
$$

Proof. According to the definition of the \mathcal{T}_{a}-transform, we have

$$
\begin{aligned}
\sum_{p=1}^{s} \mathcal{T}_{\alpha} \operatorname{ReS}_{z=z_{p}}\left(\frac{f(z)}{g(z)} e^{z x}\right) & =\sum_{p=1}^{s} \mathcal{T}_{\alpha} \frac{1}{\left(d_{p}-1\right)!} \frac{\partial^{d_{p}-1}}{\partial z^{d_{p}-1}}\left(\frac{f(z)}{g_{p}(z)} e^{z x}\right)_{z=z_{p}} \\
& =\sum_{p=1}^{s} \frac{1}{\left(d_{p}-1\right)!} \sum_{k=0}^{n}\binom{n}{k} \frac{\partial^{d_{p}-1}}{\partial z^{d_{p}-1}}\left(\frac{\partial^{k}}{\partial x^{k}}\left(\frac{f(z)}{g_{p}(z)} e^{z x}\right)_{x=0}\right)_{z=z_{p}} \\
& =\sum_{p=1}^{s} \frac{1}{\left(d_{p}-1\right)!} \frac{\partial^{d_{p}-1}}{\partial z^{d_{p}-1}}\left(\mathcal{T}_{\alpha} \frac{f(z)}{g_{p}(z)} e^{z x}\right)_{z=z_{p}} \\
& =\sum_{p=1}^{s} \operatorname{Res}_{z=z_{p}}\left(\mathcal{T}_{\alpha} \frac{f(z)}{g(z)} e^{z x}\right) .
\end{aligned}
$$

Further, it follows

$$
\begin{aligned}
\sum_{p=1}^{s} \operatorname{ReS}_{z=z_{p}}\left(\mathcal{T}_{\alpha} \frac{f(z)}{g(z)} e^{z x}\right) & =\sum_{p=1}^{s} \operatorname{ReS}_{z=z_{p}}\left(\sum_{k=0}^{n}\binom{n}{k} \frac{\partial^{k}}{\partial x^{k}}\left(\frac{f(z)}{g(z)} e^{z x}\right)_{x=0}\right) \\
& =\sum_{p=1}^{s} \operatorname{ReS}_{z=z_{p}}\left(\frac{f(z)}{g(z)} \sum_{k=0}^{n}\binom{n}{k} z^{k}\right)=\sum_{p=1}^{s} \operatorname{Res}_{z=z_{p}}\left(\frac{f(z)}{g(z)}(1+z)^{n}\right) .
\end{aligned}
$$

Thereby we have proved (28).
Lemma 8. There holds

$$
\begin{equation*}
\sum_{p=1}^{s} \mathcal{T}_{\alpha} \operatorname{Res}_{z=z_{p}}\left(\frac{e^{z x}}{g(z)} h(x)\right)=\sum_{p=1}^{s} \operatorname{Res}_{z=z_{p}}\left(\frac{(1+z)^{n}}{g(z)} \sum_{k=0}^{n} \frac{h^{(k)}(0)}{(1+z)^{k}}\right) \tag{29}
\end{equation*}
$$

where $h(x)=\int_{0}^{x} e^{-z t} F(t) d t$ with $h^{(k)}(0)=\sum_{j=0}^{k-1}\binom{k}{j}(-z)^{k-j-1} F^{(j)}(0)$.
Proof. First, let $g_{p}(z)$ mean that we omit the factor $\left(z-z_{s}\right)^{d_{p}}$ in the polynomial (27). Then, we have

$$
\begin{aligned}
\sum_{p=1}^{s} \mathcal{T}_{\alpha} \operatorname{Res}_{z=z_{p}}\left(\frac{e^{z x}}{g(z)} \int_{0}^{x} e^{-z t} F(t) d t\right)=\sum_{p=1}^{s} \mathcal{T}_{\alpha} \frac{1}{\left(d_{p}-1\right)!} \frac{\partial^{d_{p}-1}}{\partial z^{d_{p}-1}}\left(\frac{e^{z x}}{g_{p}(z)} \int_{0}^{x} e^{-z t} F(t) d t\right)_{z=z_{p}} \\
\quad=\sum_{p=1}^{s} \frac{1}{\left(d_{p}-1\right)!} \sum_{k=0}^{n}\binom{n}{k} \frac{\partial^{k}}{\partial x^{k}}\left(\frac{\partial^{d_{p}-1}}{\partial z^{d_{p}-1}}\left(\frac{e^{z x}}{g_{p}(z)} \int_{0}^{x} e^{-z t} F(t) d t\right)_{z=z_{p}}\right)_{x=0} \\
\quad=\sum_{p=1}^{s} \frac{1}{\left(d_{p}-1\right)!} \frac{\partial^{d_{p}-1}}{\partial z^{d_{p}-1}}\left(\sum_{k=0}^{n}\binom{n}{k} \frac{\partial^{k}}{\partial x^{k}}\left(\frac{e^{z x}}{g_{p}(z)} \int_{0}^{x} e^{-z t} F(t) d t\right)_{x=0}\right)_{z=z_{p}} \\
\quad=\sum_{p=1}^{s} \operatorname{Res}_{z=z_{p}}\left(\mathcal{T}_{\alpha} \frac{e^{z x}}{g(z)} \int_{0}^{x} e^{-z t} F(t) d t\right)=\sum_{p=1}^{s} \operatorname{Res}_{z=z_{p}}\left(\frac{1}{g(z)} \mathcal{T}_{\alpha} e^{z x} \int_{0}^{x} e^{-z t} F(t) d t\right)
\end{aligned}
$$

Here we regard $\int_{0}^{x} e^{-z t} F(t) d t$ as a function $h(x)$, and treat z as a parameter. By differentiating the function $e^{z x} h(x) k$ times at $x=0$, one gets

$$
\left.\frac{d^{k}}{d x^{k}} e^{z x} h(x)\right|_{x=0}=\left.\sum_{j=0}^{k}\binom{k}{j}\left(e^{z x}\right)^{(k-j)} h^{(j)}(x)\right|_{x=0}=\sum_{j=0}^{k}\binom{k}{j} z^{k-j} h^{(j)}(0),
$$

so that we find

$$
\mathcal{T}_{\alpha} e^{z x} h(x)=\sum_{k=0}^{n}\binom{n}{k} \sum_{j=0}^{k}\binom{k}{j} z^{k-j} h^{(j)}(0)=\sum_{k=0}^{n} z^{k}\binom{n}{k} \sum_{j=0}^{k}\binom{k}{j} \frac{h^{(j)}(0)}{z^{j}} .
$$

Changing the order of summation yields

$$
\begin{aligned}
\mathcal{T}_{\alpha} e^{z x} h(x) & =\sum_{j=0}^{n}\binom{n}{j} \frac{h^{(j)}(0)}{z^{j}} \sum_{k=0}^{n-j}\binom{n-j}{k} z^{n-k} \\
& =\sum_{j=0}^{n}\binom{n}{j} z^{n-j} h^{(j)}(0) \sum_{k=0}^{n-j}\binom{n-j}{k} \frac{1}{z^{k}} \\
& =\sum_{j=0}^{n}\binom{n}{j} z^{n-j} h^{(j)}(0)\left(1+\frac{1}{z}\right)^{n-j}=(1+z)^{n} \sum_{j=0}^{n}\binom{n}{j} \frac{h^{(j)}(0)}{(1+z)^{j}} .
\end{aligned}
$$

Finally, we obtain

$$
\sum_{p=1}^{s} \operatorname{Res}_{z=z_{p}}\left(\frac{1}{g(z)} \mathcal{T}_{\alpha} e^{z x} h(x)\right)=\sum_{p=1}^{s} \operatorname{Res}_{z=z_{p}}\left(\frac{(1+z)^{n}}{g(z)} \sum_{k=0}^{n}\binom{n}{k} \frac{h^{(k)}(0)}{(1+z)^{k}},\right.
$$

where $h^{(k)}(0)=\sum_{j=0}^{k-1}\binom{k-1}{j}(-z)^{k-j-1} F^{(j)}(0)$, so we arrive at (29).
We apply the Cauchy method (26), Lemma 7 and Lemma 8 to solve linear difference equations.

Theorem 9. Using $g(z)$ defined by (27) and $F(x)$ on the right-hand side of (25), the solution of the linear difference equation

$$
\begin{equation*}
t_{n+m}+a_{1} t_{n+m-1}+\cdots+a_{m} t_{n}=e_{n} \quad a_{i} \in \mathbb{R}, i=1, \ldots, m \tag{30}
\end{equation*}
$$

where $e_{n}=\mathcal{T}_{\alpha} F(x)$, is given by

$$
\begin{aligned}
t_{n}=\sum_{p=1}^{s} \operatorname{Res}_{z=z_{p}} & \left(\frac{f(z)}{g(z)}(1+z)^{n}\right) \\
& +\sum_{p=1}^{s}{\underset{z=z_{p}}{\operatorname{Res}}\left(\sum_{k=0}^{n} \frac{(1+z)^{n-k}}{g(z)}\binom{n}{k} \sum_{j=0}^{k-1}\binom{k-1}{j}(-z)^{k-j-1} F^{(j)}(0)\right) .}^{k} .
\end{aligned}
$$

Proof. We deal first with \mathcal{T}_{a} for $\alpha_{k}=(-1)^{k}$ and make use of (3), so the left-hand side of (30) becomes

$$
\sum_{k=0}^{m}\binom{m}{k} \Delta^{k} t_{n}+a_{1} \sum_{k=0}^{m-1}\binom{m-1}{k} \Delta^{k} t_{n}+\cdots+a_{m} t_{n}=\sum_{p=0}^{m} a_{p} \sum_{k=0}^{m-p}\binom{m-p}{k} \Delta^{k} t_{n}
$$

We recall that the operator \mathcal{D}_{α} reduces to the difference operator Δ for $\alpha_{k}=$ $(-1)^{k}$, and referring to the statement 1° of (8), for a function $y(x)$ we find its k th derivative $\mathcal{T}_{\alpha} y^{(k)}(x)=\left\{\Delta^{k} t_{n}\right\}$, but by applying the inverse transform \mathcal{B}_{α}, we have

$$
\mathcal{B}_{\alpha} \mathcal{T}_{\alpha} y^{(k)}(x)=y^{(k)}(x)=\mathcal{B}_{\alpha}\left\{\Delta^{k} t_{n}\right\}, \quad k=0,1, \ldots, m
$$

In view of that, by applying the \mathcal{B}_{α}-transform (30), the difference equation is mapped to the linear differential equation

$$
\sum_{p=0}^{m} a_{p} \sum_{k=0}^{m-p}\binom{m-p}{k} y^{(k)}(x)=\sum_{k=0}^{m} y^{(k)}(x) \sum_{p=0}^{m-k} a_{p}\binom{m-p}{k}=F(x)
$$

which is a differential equation of the form (25), where

$$
F(x)=\mathcal{B}_{\alpha}\left\{e_{n}\right\}, \quad b_{m-k}=\sum_{p=0}^{m-k} a_{p}\binom{m-p}{k} .
$$

So, in order to find its general solution, we apply the Cauchy method yielding as a solution (26), and relying on the results of Lemma 7 and Lemma 8 the solution of the difference equation (30) is obtained by summing (28) and (29).

Appendix - Table of \mathcal{T}_{a}-Transform pairs

$f(x)$	$\mathcal{T}_{\alpha} f(x)$
x^{r}	$\frac{(-1)^{r}}{\alpha_{r}} n^{(r)}, \quad n^{(r)}=n(n-1) \cdots(n-r+1), n, r \in \mathbb{N}, r \leqslant n$
$(1+x)^{a}$	$\sum_{k=0}^{n} \frac{(-1)^{k}}{\alpha_{k}}\binom{n}{k} a^{(k)}, \quad a^{(k)}=a(a-1) \cdots(a-k+1), a \in \mathbb{R}$
$e^{a x}$	$\sum_{k=0}^{n} \frac{(-1)^{k}}{\alpha_{k}}\binom{n}{k} a^{k}$
$\ln (1+x)$	$\sum_{k=1}^{n} \frac{(-1)^{k-1} n^{(k)}}{k \alpha_{k}}$
$\sin a x$	$\sum_{k=0}^{\left[\frac{n-1}{2}\right]} \frac{(-1)^{k+1}}{\alpha_{2 k+1}}\binom{n}{2 k+1} a^{2 k+1}$
$\cos a x$	$\sum_{k=0}^{\left[\frac{n}{2}\right]+1} \frac{(-1)^{k}}{\alpha_{2 k}}\binom{n}{2 k} a^{2 k}$

REFERENCES

1. W.A. Al-Salam, M.E. H. Ismail, A familiy of operational calculi, Mahtematica Japonica 22 (1978) 571-583.
2. S. De Andreis, P. E. Ricci, Modeling population growth via Laguerre-type exponentials, Math. Comp. Model. No 42 (2005) 1421-1428.
3. S. Araci, M. Acikgoz, Applications of Fourier Series and Zeta Functions to Genocchi Polynomials, Appl. Math. Inf. Sci. Vol. 12, No. 5 (2018) 951-955.
4. S. Araci, M. Acikgoz, E. Fen, Some New Formulae for Genocchi Numbers and Polynomials Involving Bernoulli and Euler Polynomials, Int. J. Math. Math. Sci. Vol. 2014, Article ID 760613.
5. H. Batamen, A. Erdélyi, Higher transcendental function, vol. 2, New York Toronto London, Mc Graw-Hill Company, 1953.
6. E. Borel, Mémoire sur les séries divergentes, Annales scientifiques de l'École Normale Supérieure, Série 3 : Volume 16 (1899), p. 9-131
7. A. L. CaUchy, Application du calcul de résidus a l'intégration des équations différentialles linéaires et a coefficients constants, Exercices de mathématiques, Paris, 1826. Oeuvres (2) 6 (1887), pp. 252-255.
8. Q-M. Luo, Fourier expansions and integral representations for Genocchi polynomials, J. Integer Seq., Vol. 12, Article 09.1.4. (2009)
9. D. Mitrinović, J. KečKić, The Cauchy Method of Residues - Theory and Applications, D. Reidel Publishing Company, Dordrecht, Holland, 1984.
10. T. Kim, Y. Jang, J, Seo, A Note on Poly-Genocchi Numbers and Polynomials, Appl. Math. Sci, Vol. 8, no. 96 (2014) 4775-4781.
11. J. W. Layman, The Hankel transform and some of its properties, J. Integer Seq., 4
12. N.J.A. Sloane, The On-Line Encyclopedia of Integer Sequences, http://oeis.org.
13. M.Z. Spivey, L.L. Steil, The k-Binomial transform and Hankel Transform, J. Int. Seq. 9 (2006) Article 06.1.1
14. M.S. Stanković, M.V. Vidanović, S.B. Tričković, On the Summation of Series Involving Bessel or Struve Functions, J. Math. Anal. Appl. No 247 (2000) 15-26.
15. B. Tortolini, Trattato del calcolo del residui, Giornale Arcad. 63 (1834-1835) 86-138.
16. S.B. Tričković, M.S. Stanković, On a generalized function-to-sequence transform, Appl. Anal. Disc. Math. Vol. 14 No 2 (2020) 300-316.
17. S.B. Tričković, M.V. Vidanović, M.S. Stanković, On the summation of trigonometric series, Int. Trans. Spec. Fun. Vol. 19, No. 6 (2008) 441-452.

Slobodan B. Tričković

(Received 17. 09. 2021.)
Department of Mathematics,
(Revised 04. 02. 2023.)
Faculty of Civil Engineering,
University of Niš,
Aleksandra Medvedeva 14, 18000 Niš, Serbia
E-mail: sbtrickovic@hotmail.com
Miomir S. Stanković
Mathematical Institute of the Serbian Academy of Sciences and Arts,
Kneza Mihaila 36, Belgrade, Serbia
E-mail: miomir.stankovic@gmail.com

[^0]: *Corresponding author. Slobodan B. Tričković
 2020 Mathematics Subject Classification: 39A70, 47B38.
 Keywords and Phrases. Binomial transform, Forward difference operator, Generalized
 function-to-sequence transform, Bessel's operator.

