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DETERMINANT EVALUATION OF BANDED TOEPLITZ

MATRICES VIA BIVARIATE POLYNOMIAL FAMILIES

Abdullah Alazemi∗ and Emrah Kılıç

We define three kinds banded Toeplitz matrices via with the upper and lower
bandwidths “∓x” and “∓y”. The determinant evaluation is explicitly given
for three kinds banded Toeplitz matrices via bivariate Tribonacci and De-
lannoy polynomials by using generating function approach and recurrence
relations. Moreover perturbed versions of each kinds of the banded Toeplitz
matrices by a 2 × 2 general square matrix at the upper right corner will be
explicitly computed.

1. INTRODUCTION AND PRELIMINARY RESULTS

In general, a banded Toeplitz matrix Tn of order n has the form for k, r < n

Tn =



t0 · · · t−r

...
. . . · · ·

. . .

tk
. . . t−r

. . .
. . .

...
tk · · · t0


,

where the coefficients ti, i = −r, . . . , k, being complex numbers.

Many special cases of the banded matrices such as Toeplitz matrices, sym-
metric Toeplitz matrices, especially tri-diagonal matrices, etc., have been studied
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by many authors. Since their inverses are frequently used, explicitly and effectively
finding inverses of them are important. Tridiagonal matrices and Toeplitz matri-
ces are of great importance in both mathematics (cf. [5, 6, 13, 24]) and physics
(cf. [1, 17]). Especially these kind of matrices have been frequently used in various
application areas ranging from engineering to economics (see [3, 4, 7, 9, 20])
as well as in the computation of special functions, PDEs and number theory
(see [2, 8, 11, 12, 19, 23]). Various features of tridiagonal matrices are used to
solve the systems of linear equations that arise from these applications and many
authors (for example, [9, 10, 15, 24]) have studied various tridiagonal matrices
and their properties such as LU decompositions, determinants and inverses.

There are well-known examples of banded Toeplitz matrices whose entries
consist of indetermines. Determinants of such Toeplitz matrices generate well
known polynomial families. By these kinds of relations, one can derive interest-
ing properties of polynomial families or well known number sequences via linear
algebra and vice versa. We may give an example for such a relation between tridi-
agonal Toeplitz matrices and Chebyshev polynomials as shown

det


2x −1

1 2x
. . .

. . .
. . . −1
1 2x

 = Un (x) ,

where Un (x)’s are the Chebyshev polynomials of the second kind. For more re-
lations between well-known second order polynomial sequences and certain deter-
minants of Toeplitz or perturbed Toeplitz matrices and useful applications of such
relations, we refer to [14, 16, 21, 22] and the references therein.

Recently Kurmanbek, Amanbek and Erlangga (for more details we refer to
[18] and the references therein) considered a recent open problem and evaluated
the determinant of the two pentadiagonal matrices

An :=
[
ai−j

]
1≤i,j≤n

: ak =

{
1, k = 0,±1, 2, 1− n;

0, otherwise;

Bn :=
[
bi−j

]
1≤i,j≤n

: bk =

{
1, k = 0,±1, 2, 2− n;

0, otherwise;

and then they proved that

detAn =


1, n ≡4 0;

2, n ≡4 1;

−1, n ≡4 2;

0, n ≡4 3;

and detBn =


0, n ≡4 0;

2, n ≡4 1;

3, n ≡4 2;

1, n ≡4 3.

It would be valuable to note that both An and Bn are banded Toeplitz matrices.
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Here and for later use, i ≡m j stands for “i is congruent to j modulo m”. For
a real number α, we shall also make use of ⌊α⌋ for the maximum integer ≤ α.

Motivated by the determinant evaluations of certain Toeplitz and perturbed
Toeplitz matrices, we define new three Toeplitz matrices dependent on indeter-
mines. In the next section, we will present two of them and the explicit formulae
for their determinants combinatorially as sums of the product of two binomial co-
efficients weighted with the indetermines which we call bivariate Tribonacci polyno-
mials. Moreover we shall investigate generalizations of these two Toeplitz matrices
which are perturbed by the 2× 2 square matrix [a b

c d ] to each matrix at the upper
right corner. By obtaining their LU -decompositions explicitly, we shall formulate
their determinants.

In Section 3, we will present a third kind of Toeplitz matrix and the explicit
formulae for its determinant combinatorially via bivariate Delannoy polynomials
whose coefficients are the Delannoy numbers. Also we shall investigate general-
ization of the third kind of Toeplitz matrices which are perturbed by the 2 × 2
square matrix [a b

c d ] to each matrix at the upper right corner. By obtaining their
LU -decompositions explicitly, we shall formulate their determinants. In the last
section, we present an another generalization of the third Toeplitz matrix with an
additional parameter. Comparing results derived from the last two sections, we will
derive new combinatorial formulas as double binomial sums for general second order
linear recurrences. As applications, we derive new combinatorial representations
for Tribonacci numbers and a general second order recurrence relation, especially
for Fibonacci, Pell numbers and Chebyshev polynomials.

2. TWO TOEPLITZ MATRICES AND THEIR DETERMINANTS

As mentioned in the previous section, we present two Toeplitz matrices and
then evaluate their determinants combinatorially via sums of products of binomial
coefficients. We will use the generating function method and the Laplace expansion
of determinant to prove our claims in this section.

Two Toeplitz matrices are defined as

Cn(x, y) =
[
ci−j

]
1≤i,j≤n

: c0 = x, c−1 = y, c1 = −y, c2 = x,

Fn(x, y) =
[
fi−j

]
1≤i,j≤n

: f0 = x, f−1 = y, f1 = y, f2 = −x.

Clearly the matrix Cn(x, y) has the form

Cn(x, y) =



x y
−y x y

x −y x
. . .

x
. . .

. . . y
. . . −y x y

x −y x


.
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Then we shall state our first main claims that the determinants of the matrices
Cn(x, y) and Fn(x, y) are evaluated by

Cn(x, y) = detCn(x, y) = Qn(x, y),

Fn(x, y) = det Fn(x, y) = Qn(x, y
√
−1),

where the bivariate polynomial Qn(x, y) is defined as

Qn(x, y) =
∑

i+2j+3k=n

(
i+ j + k

i, j, k

)
xi+ky2j+2k,

which could be also rewritten as

Qn (x, y) =

⌊n
2 ⌋∑

k=0

⌊n
2 ⌋∑

j=0

(
n− 2k

j

)(
k

j

)
2jxn−2ky2k.

Throughout the paper, for the sake of brevity, we will frequently use the short-
ened notations Qn, Hn, Tn and Vn instead of Qn (x, y) , Qn (y, x) , Qn

(
y, x

√
−1
)

and Qn

(
x, y

√
−1
)
, respectively.

Define the generating function of the polynomials Qn as

Q (z) =
∑
n≥0

Qnz
n.

Then we have the following result.

Lemma 1.

Q (z) =
1

1− xz − y2z2 − xy2z3
.
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Proof. Consider

Q (z) =
∑
n≥0

⌊n
2 ⌋∑

k=0

⌊n
2 ⌋∑

j=0

(
n− 2k

j

)(
k

j

)
2jxn−2ky2kzn

=
∑

0≤j≤k

(
k

j

)
2j (yt)

2k
∑
n≥0

(
n− 2k

j

)
(xz)

n−2k

=
∑

0≤j≤k

(
k

j

)
2j (yt)

2k
(xz)

j

(1− xz)
j+1

=
∑
0≤j

(
2xy2z3

)j
(1− xz)

j+1
(1− y2z2)

j+1

=
1

(1− xz) (1− y2z2)

∑
0≤j

(
2xy2z3

)j
(1− xz)

j
(1− y2z2)

j

=
1

(1− xz) (1− y2z2)− 2xy2z3

=
1

1− xz − y2z2 − xy2z3
,

which completes the proof.

Therefore by Lemma 1 and the definitions of Hn, Tn and Vn, we present the
collected list of generating functions as shown

Q (z) =
∑
n≥0

Qnz
n =

1

1− xz − y2z2 − xy2z3
,

H (z) =
∑
n≥0

Hnz
n =

1

1− yz − x2z2 − yx2z3
,

T (z) =
∑
n≥0

Tnz
n =

1

1− yz + x2z2 + yx2z3
,

V (z) =
∑
n≥0

Vnz
n =

1

1− xz + y2z2 + xy2z3
.

By the generating functions of the polynomials Qn, Hn, Tn and Vn, we derive
their recurrence relation for further use.

Lemma 2. For n > 2,

(i)

Qn = xQn−1 + y2Qn−2 + xy2Qn−3,

with the initials Q0 = 1, Q1 = x, Q2 = x2 + y2 and Q3 = x3 + 3xy2.
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(ii)

Hn = yHn−1 + x2Hn−2 + yx2Hn−3,

with the initials H0 = 1, H1 = y, H2 = x2 + y2 and H3 = y3 + 3yx2.

(iii)

Tn = yTn−1 − x2Tn−2 − yx2Tn−3,

with the initials T0 = 1, T1 = y, T2 = y2 − x2 and T3 = y3 − 3x2y.

(iv)

Vn = xVn−1 − y2Vn−2 − xy2Vn−3,

with the initials V0 = 1, V1 = x, V2 = x2 − y2 and V3 = x3 − 3xy2.

Lemma 3. (n ∈ N)
Cn(x, y) = Qn(x, y).

Proof. To prove the claim, we show that Cn(x, y) and Qn(x, y) satisfy the same
recurrence relation with the same initials. For computing Cn(x, y), we will use the
Laplace expansion of the determinant. First expanding Cn(x, y) according to the
first row entries x and y, respectively, and then expanding the second consequent
determinant corresponding to the second entry y according to the first column gives
us

Cn(x, y) = xCn−1(x, y) + y2Cn−2(x, y) + xy2Cn−3(x, y).

On the other hand, by Lemma 2, the recurrence relation of Qn(x, y) is

Qn (x, y) = xQn−1 (x, y) + y2Qn−2 (x, y) + xy2Qn−3 (x, y) .

Since both the recurrece relations and the initials terms of Cn(x, y) and Qn(x, y)
are equal, we derive that

Cn(x, y) = Qn (x, y) ,

as claimed.

Now we give two auxiliary results for later use. As a consequence of Lemma
3 and by the definitions of {Qn, Tn}, we have the following result without proof.

Corollary 4. The polynomials Qn and Tn satisfy the recurrences

Qn = xQn−1 + y2Qn−2 + xy2Qn−3,

and

Tn = yTn−1 − x2Tn−2 − yx2Tn−3.

By the definitions of {Qn, Tn} and properties of the binomial coefficients, we
have the following result without proof.
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Lemma 5. For n > 2

QnTn+1 + xQn+1Tn−1 = y [xQn−1Tn +QnTn]

and for n > 1

QnTn+2 + xQn+1Tn = y [xQn−1Tn+1 +QnTn+1] .

As consequences of this section, we will derive interesting results. The well
known Tribonacci numbers tn are defined as

tn = tn−1 + tn−2 + tn−2,

where t0 = t1 = 1 and t2 = 2.

The generating function of Tribonacci numbers is given as∑
n≥0

tnz
n =

1

1− z − z2 − z3
.

Therefore, we can derive the following interesting combinatorial representa-
tion for the Tribonacci numbers.

Corollary 6. For n > 0,

tn =

⌊n
2 ⌋∑

k=0

⌊n
2 ⌋∑

j=0

(
n− 2k

j

)(
k

j

)
2j .

From Lemma 1, we have that the generating function of the polynomials
Qn (x, y) is

Q (z) =
1

1− xz − y2z2 − xy2z3
.

If we take x = y = 1 in the generating function of Qn (x, y) , it is reduced to the
generating function of Tribonacci numbers. Thus we write

Qn (1, 1) =

⌊n
2 ⌋∑

k=0

⌊n
2 ⌋∑

j=0

(
n− 2k

j

)(
k

j

)
2j = tn,

as claimed.

One can derive similar combinatorial representations for Tribonacci-like se-
quences for the other polynomials Hn, Tn and Vn.

2.1 The matrix Cn(x, y; a, b, c, d)

In this section we shall investigate the perturbed generalizations of the Toeplitz

matrix Cn(x, y) which are defined by adding the 2× 2 square matrix

[
a b
c d

]
to

each matrix at the upper right corner.
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We define the matrix Rn (x, y) as shown

Rn (x, y) :=



x y 0 · · · · · · 0

x −y x y
...

0 x −y
. . .

. . .
... x

. . . x y
...

. . . −y x 0
... x −y y
0 · · · · · · 0 x x


or, via the matrix Cn(x, y),

Rn (x, y) =



x y 0 · · · 0

x
...

0 Cn−1(x, y) 0
... y
0 · · · 0 x x

 .

Denote detRn (x, y) by Rn (x, y). Then we have the following result to give
the relationship between Rn (x, y) and the polynomial Tn without proof. Its proof
follows by expanding Rn (x, y) with respect to the first row and then expanding
the consequent determinant with respect to its last row.

Lemma 7. For n > 0

Rn+3 (x, y) = (−1)
n+1 [

Tn+1 + 2yTn + y2Tn−1

]
.

We are going to define a unit lower triangular matrix L = [Li,j ]1≤i,j≤n,
that has the only nonzero elements on the main diagonal, the first and the second
subdiagonals. Its entries are explicitly given by

Li,i = 1, 1 ≤ i ≤ n;

Li,i−1 = −y (xQi−3 +Qi−2)

Qi−1
, 1 ≤ i ≤ n− 1;

Li,i−2 =
xQi−3

Qi−2
, 1 ≤ i ≤ n;

together with the following exceptional element

Ln,n−1 = −y (xQn−3 +Qn−2) + cx2 (yTn−5 + Tn−4) + axTn−3

Qn−1 + cx (yTn−4 + Tn−3) + aTn−2
.
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For n = 6, we have

L =



1 0 0 0 0 0

−yQ0

Q1
1 0 0 0 0

xQ0

Q1
−y(xQ0+Q1)

Q2
1 0 0 0

0 xQ1

Q2
−y(xQ1+Q2)

Q3
1 0 0

0 0 xQ2

Q3
−y(xQ2+Q3)

Q4
1 0

0 0 0 xQ3

Q4
L6,5 1


,

where L6,5 = −y(xQ3+Q4)+cx2(yT1+T2)+axT3

Q5+cx(yT2+T3)+aT4
.

We define also an upper triangular matrix Un = [Ui,j ]1≤i,j≤n, that has the
only nonzero elements on the diagonal, the first superdiagonal, and the last two
columns, which are given by

Ui,i = Qi

Qi−1
, 1 ≤ i ≤ n− 2;

Ui,i+1 = y, 1 ≤ i ≤ n− 3;
Ui,n−1 = 1

Qi−1
[cx (yTi−3 + Ti−2) + aTi−1] , 1 ≤ i ≤ n− 3;

Ui,n = 1
Qi−1

[dx (yTi−3 + Ti−2) + bTi−1] , 1 ≤ i ≤ n− 2;

and the following amended exceptional entries

Un−2,n−1 = y + 1
Qn−3

[cx (yTn−5 + Tn−4) + aTn−3] ;

Un−1,n−1 = 1
Qn−2

[Qn−1 + cx (yTn−4 + Tn−3) + aTn−2] ;

Un−1,n = y + 1
Qn−2

[dx (yTn−4 + Tn−3) + bTn−2] ;

and

Un,n =
1

Qn−1 + cx (yTn−4 + Tn−3) + aTn−2

× [Qn + bTn−1 + xn−2 (ad− bc)

+ x (a+ d) (yTn−3 + Tn−2)− (−1)
n
cx2Rn−1],

where Rn is defined as before. Recall that as usual we assume that the empty sum
is 0.

For instance, if n = 6, we have

U =



Q1

Q0
y 0 0 a

Q0

b
Q0

0 Q2

Q1
y 0 cx+aT1

Q1

dx+bT1

Q1

0 0 Q3

Q2
y cx(y+T1)+aT2

Q2

dx(y+T1)+bT2

Q2

0 0 0 Q4

Q3
y + cx(yT1+T2)+aT3

Q3

dx(yT1+T2)+bT3

Q3

0 0 0 0 Q5

Q4
+ cx(yT2+T3)+aT4

Q4
y + dx(yT2+T3)+bT4

Q4

0 0 0 0 0 U6,6


,
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where

U6,6 =
Q6 + bT5 + x4 (ad− bc) + x (a+ d) (yT3 + T4)−cx2R5

Q5 + cx (yT2 + T3) + aT4

and R5 = y
(
5x2 − 4y2

)
.

Then we have the following result.

Theorem 8. With the above defined triangular matrices L and U , the matrix
Cn(x, y; a, b, c, d) admits the following LU-decomposition

Cn(x, y; a, b, c, d) = LU.

Proof. Let W := LU . We show in details that W = Cn(x, y; a; b; c; d).

First, we start to verify the entries along the four diagonals.

i) Case i = j for 1 ≤ i ≤ n

� i = j < n− 1:

Wi,i =

n∑
k=1

LikUki = Li,iUi,i + Li,i−1Ui−1,i + Li,i−2Ui−2,i

=
Qi

Qi−1
− y (xQi−3 +Qi−2)

Qi−1
y

=
1

Qi−1

[
Qi − y2 (xQi−3 +Qi−2)

]
,

which, by using the recurrence relation of {Qn} , that is,

Qn = xQn−1 + y2Qn−2 + xy2Qn−3,

gives us

Wi,i =
xQi−1

Qi−1
= x.
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� i = j = n− 1: We shall prove that Wn−1,n−1 = x. Consider

Wn−1,n−1 = Ln−1,n−3Un−3,n−1 + Ln−1,n−2Un−2,n−1 + Ln−1,n−1Un−1,n−1

=
xQn−4

Qn−3

[
1

Qn−4
(cx (yTn−6 + Tn−5) + aTn−4)

]
− y (xQn−4 +Qn−3)

Qn−2

[
y +

1

Qn−3
(cx (yTn−5 + Tn−4) + aTn−3)

]
+

1

Qn−2
[Qn−1 + cx (yTn−4 + Tn−3) + aTn−2]

=
x

Qn−3
[cx (yTn−6 + Tn−5) + aTn−4]

− y (xQn−4 +Qn−3)

Qn−2Qn−3
[cx (yTn−5 + Tn−4) + aTn−3]

+
1

Qn−2
[cx (yTn−4 + Tn−3) + aTn−2]

− y2 (xQn−4 +Qn−3)

Qn−2
+

Qn−1

Qn−2
.

By the recursion of Qn, since

Qn−1

Qn−2
− y2 (xQn−4 +Qn−3)

Qn−2
= x,

we write

Wn−1,n−1 = x+
x

Qn−3
[cx (yTn−6 + Tn−5) + aTn−4]

− y (xQn−4 +Qn−3)

Qn−2Qn−3
[cx (yTn−5 + Tn−4) + aTn−3]

+
1

Qn−2
[cx (yTn−4 + Tn−3) + aTn−2] .

In that case, to prove our main claim Wn−1,n−1 = x , we have to prove the
equality

x

Qn−3
[cx (yTn−6 + Tn−5) + aTn−4]

− y (xQn−4 +Qn−3)

Qn−2Qn−3
[cx (yTn−5 + Tn−4) + aTn−3]

+
1

Qn−2
[cx (yTn−4 + Tn−3) + aTn−2]

= 0(1)

After clearing denominators and some rearrangements and by the results of
Lemma 5, the claimed sum above is computed as 0. Thus we have the claim
Wn−1,n−1 = x.
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� i = j = n:

Wn,n = Ln,n−2Un−2,n + Ln,n−1Un−1,n + Ln,nUn,n,

which could be similarly proven by using Lemmas 3 and 5.

ii) Case j = i+ 1 for 1 ≤ i < n

� 1 ≤ i ≤ n− 3:

Wi,i+1 =

n∑
k=1

Li,kUk,i+1 = Li,iUi,i+1 = y.

� i = n− 2:

Wn−2,n−1 =
n∑

k=1

Ln−2,kUk,n−1

= Ln−2,n−4Un−4,n−1 + Ln−2,n−3Un−3,n−1 + Ln−2,n−2Un−2,n−1

=
x

Qn−4
[cx (yTn−7 + Tn−6) + aTn−5]

− y (xQn−5 +Qn−4)

Qn−3Qn−4
[cx (yTn−6 + Tn−5) + aTn−4]

+ y +
1

Qn−3
[cx (yTn−5 + Tn−4) + aTn−3] ,

which, by (1), gives us the claimed result.

i = n− 1:

Wn−1,n = Ln−1,n−1Un−1,n + Ln−1,n−2Un−2,n + Ln−1,n−3Un−3,n

= y +
1

Qn−2
[dx (yTn−4 + Tn−3) + bTn−2]

− y (xQn−4 +Qn−3)

Qn−2Qn−3
[dx (yTn−5 + Tn−4) + bTn−3]

+
x

Qn−3
[dx (yTn−6 + Tn−5) + bTn−4] ,

which, by (1), gives us
Wn−1,n = y.

iii) Case i = j + 1 for 1 < i ≤ n

� 1 < i ≤ n− 1:

Wi,i−1 =

n∑
k=1

Li,kUk,i−1 = Li,i−1Ui−1,i−1 + Li,iUi,i−1

=
xQi−3

Qi−2
× y−y (xQi−3 +Qi−2)

Qi−1
× Qi−1

Qi−2

= −y.
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i = n:

Wn,n−1 = Ln,n−2Un−2,n−1 + Ln,n−1Un−1,n−1

=
xQn−3

Qn−2

[
y +

1

Qn−3
(cx (yTn−5 + Tn−4) + aTn−3)

]
− y (xQn−3 +Qn−2) + cx2 (yTn−5 + Tn−4) + axTn−3

Qn−1 + cx (yTn−4 + Tn−3) + aTn−2

×
[
Qn−1 + cx (yTn−4 + Tn−3) + aTn−2

Qn−2

]
=

xQn−3

Qn−2
y − y (xQn−3 +Qn−2)

Qn−2

= −y.

iv) Case i = j + 2 for 2 < i ≤ n

� 2 < i < n:

Wi,i−2 =

n∑
k=1

Li,kUk,i−2 = Li,i−2Ui−2,i−2 = y.

� i = n:

Wn,n−2 =

n∑
k=1

Ln,kUk,n−2 = Ln,n−2Un−2,n−2 = y.

Then it is much easier to check the four perturbing entries at the upper right
corner:

W1,n−1 =

n∑
k=1

L1,kUk,n−1 = L1,1U1,n−1 = a,

W1,n =

n∑
k=1

L1,kUk,n = L1,1U1,n = b,

W2,n−1 =

n∑
k=1

L2,kUk,n−1 = L2,1U1,n−1 + L2,2U2,n−1 = −yz0
z1

a+
1

z1
(ay + cx) = c,

W2,n =

n∑
k=1

L2,kUk,n = L2,1U1,n + L2,2U2,n = −yz0
z1

b+
1

x
(by + dx) = d.

Finally, the proof of Theorem 8 will be completed by observing that

Wi,j =

n∑
k=1

Li,kUk,j = Li,iUi,j + Li,i−1Ui−1,j + Li,i−2Ui−2,j = 0

when i > j + 2 and j > i + 1, except for the four entries at the upper right
corner.
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Consequently, we can evaluate the determinant detCn(x, y; a, b, c, d) in the
following corollary.

Corollary 9.

detCn(x, y; a, b, c, d) = detU

=

n∏
k=1

Uk,k = Un,nUn−1,n−1

n−2∏
k=1

Qk

Qk−1

= Qn + bTn−1 + xn−2 (ad− bc)

+ x (a+ d) (yTn−3 + Tn−2)− (−1)
n
cx2Rn−1.

2.2 The matrix Fn(x, y; a, b, c, d)

In this section we shall investigate the perturbed generalizations of the Toeplitz

matrix Fn(x, y) which are defined by adding the 2× 2 square matrix

[
a b
c d

]
to

each matrix at the upper right corner.

Define the matrix Gn (x, y) of order n as shown

Gn (x, y) :=



x y 0 · · · · · · 0

x y x y
...

0 −x y
. . .

. . .
... −x

. . . x y
...

. . . y x 0
... −x y y
0 · · · · · · 0 −x x


.

For the sake of brevity, we shall denote detGn (x, y) by Gn (x, y) . Then
we have the following result to give the relationship between Gn (x, y) and the
polynomials Hn. We will omit proof of the claims of this section that could be
followed similar to Section 2.1.

Lemma 10. For n > 1,

Gn+3 (x, y) = x2
[
Hn+1 + 2yHn + y2Hn−1

]
.

We are going to define a unit lower triangular matrix Ln = [Li,j ]1≤i,j≤n,
that has the only nonzero elements on the main diagonal, the first and the second
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subdiagonals. Its entries are explicitly given by

Li,i = 1;

Li,i−1 =
y (xVi−3 + Vi−2)

Vi−1
;

Li,i−2 = −xVi−3

Vi−2

together with the following exceptional element

Ln,n−1 =
y (xVn−3 + Vn−2) + (−1)

n
cx2 (yHn−5 +Hn−4)− (−1) naxHn−3

Vn−1 − (−1) ncx (yHn−4 +Hn−3) + (−1)
n
aHn−2

.

We define also an upper triangular matrix Un = [Ui,j ]1≤i,j≤n, that has the
only nonzero elements on the diagonal, the first superdiagonal, and the last two
columns, which are given by

Ui,i =
Vi

Vi−1
, 1 ≤ i ≤ n− 2;

Ui,i+1 = y, 1 ≤ i ≤ n− 3;

Ui,n−1 =
(−1)

i

Vi−1
[cx (yHi−3 +Hi−2)− aHi−1] , 1 ≤ i ≤ n− 3;

Ui,n =
(−1)

i

Vi−1
[dx (yHi−3 +Hi−2)− bHi−1] , 1 ≤ i ≤ n− 2;

and

Un,n =
1

Vn−1 + (−1)
n
[aHn−2 − cx (yHn−4 +Hn−3)]

× {Vn − (−1)
n
[bHn−1 − xn−2 (ad− bc)

− x (a+ d) (yHn−3 +Hn−2)+cGn−1 (x, y)]},

where as usual the empty sum is 0 and Gn (x, y) is defined as before.

For example, if n = 6, then we have

U =



V1

V0
y 0 0 − cx−a

V0
−dx−b

V0

0 V2

V1
y 0 cx−aH1

V1

dx−bH1

V1

0 0 V3

V2
y − cx(y+H1)−aH2

V2
−dx(y+H1)−bH2

V2

0 0 0 V4

V3
y + cx(yH1+H2)−aH3

V3

dx(yH1+H2)−bH3

V3

0 0 0 0 V5−(cx(yH2+H3)−aH4)
V4

y − dx(yH2+H3)−bH4

V4

0 0 0 0 0 U6,6


,

where the last diagonal element U6,6 is

U6,6 =
V6 − bH5 + x4 (ad− bc) + x (a+ d) (yH3 +H4)− cG5 (x, y)

V5 + aH4 − cx (yH2 +H3)
.

Consequently we have the following result.
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Theorem 11. With the above defined triangular matrices L and U , the matrix
Fn(x, y; a, b, c, d) admits the following LU-decomposition

Fn(x, y; a, b, c, d) = LU.

Consequently, we can evaluate the determinant det Fn(x, y; a, b, c, d) in the
following corollary.

Corollary 12.

det Fn(x, y; a, b, c, d) = detU

=

n∏
k=1

Uk,k = Un,nUn−1,n−1

n−2∏
k=1

Vk

Vk−1

= Vn − (−1)
n
[bHn−1 − xn−2 (ad− bc)

− x (a+ d) (yHn−3 +Hn−2)+cGn−1 (x, y)].

3. THE THIRD TOEPLITZ MATRIX

In this section we shall investigate a new kind of Toeplitz matrix and evaluate
its determinant. For this purpose, it is interesting that we will need to define a
kind of polynomials, namely bivariate Delannoy polynomials, whose coefficients will
consist of Delannoy numbers. The results will be given could be proven similar to
the previous results but we will omit them here. However we shall give generating
functions of the bivariate Delannoy polynomials as auxiliary results for the reader’s
convenience. We also present interesting applications of our results. We will give
new combinatorial representations for general second order linear recurrences. Es-
pecially we give combinatorial formulas for the Fibonacci and Pell numbers as well
as the Chebyshev polynomials.

A Toeplitz matrix is defined as

En(x, y) =
[
ei−j

]
1≤i,j≤n

: e0 = x, e−1 = y, e1 = y, e2 = (−1)
j
x.

Clearly the matrix En(x, y) has the form

En(x, y) =



x y
y x y

x y x
. . .

−x y
. . . y

x
. . . x y
. . . y x y

(−1)
n
x y x


.
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The Delannoy numbers D (n, k) are defined as shown

D (n, k) =

n∑
j=0

(
n+ k − j

k

)(
k

j

)
.

The Delannoy numbers satisfy the recurrence relation

D (n, k) = D (n− 1, k) +D (n, k − 1) +D (n− 1, k − 1)

with D (0, 0) = 1.

The generating function of the Delannoy numbers is∑
n,k≥0

D (n, k)xnyk =
1

1− x− y − xy
.

The square array D(n, k) for n, k ≥ 0 reads as in the following Table.

1 1 1 1 1 1 · · ·
1 3 5 7 9 11 · · ·
1 5 13 25 41 61 · · ·
1 7 25 63 129 231 · · ·
1 9 41 129 321 681 · · ·
1 11 61 231 681 1683 · · ·
...

...
...

...
...

...
. . .

Table 1

Througout this section, we will focus on the antidiagonal entries, D (n− k, k) ,
of Table 1 given by. We define a kind of bivariate Delannoy polynomials whose co-
efficients are the Delannoy numbers D (n− k, k) as shown

Γn (x, y) =

n∑
k=0

D (n− k, k)x2ky2n−2k (−1)
n+k

or clearly

Γn (x, y) =

n∑
k=0

n−k∑
j=0

(
n− j

k

)(
k

j

)
x2ky2n−2k (−1)

n+k
.

We will frequently use the shortened notation Γn instead of Γn (x, y). Also we
denote the polynomial Γn (y, x) by Φn for the sake of brevity.

For further use, define the generating functions of the Delannoy polynomials
Γn and Φn as

D (z) =
∑
n≥0

Γnz
n and F (z) =

∑
n≥0

Φnz
n.

Then we have the following result.
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Lemma 13.

D (z) =
1

1− (x2 − y2) z + x2y2z2

and
F (z) = D (−z) .

Proof. Consider

∑
n≥0

n∑
k=0

n−k∑
j=0

(
n− j

k

)(
k

j

)
x2ky2n−2k (−1)

n+k
zn

=
∑
k,j≥0

(
k

j

)
x2ky−2k (−1)

k (−zy2
)j ∑

n≥0

(
n− j

k

)(
−zy2

)n−j

=
∑
k,j≥0

(
k

j

)
x2ky−2k (−1)

k (−zy2
)k

(1 + zy2)
k+1

(
−zy2

)j
=

1

(1 + zy2)

∑
j≥0

(
−zy2

)j∑
k≥0

(
k

j

)
zkx2k

(1 + zy2)
k

=
1

1− (x2 − y2) z

∑
j≥0

(−1)
k
(xyz)

2k

(1− (x2 − y2) z)
k

=
1

1− (x2 − y2) z + x2y2z2
,

as claimed.

By the definition of the polynomial Φn, we have that Φn = Γn (y, x) and by
the generating function of Γn (x, y), we write

F (z) =
1

1− (y2 − x2) z + x2y2z2
=

1

1 + (x2 − y2) z + x2y2z2

= D (−z) ,

as claimed.

Throughout this section, when we write k ≡2 0, 1 for k ≥ 0, we will frequently
assume that k = 2m and k = 2m+ 1 for m ≥ 0, respectively.

Then we shall state our one of the main claims on the determinant of the
matrix En(x, y) as follows.

Theorem 14. For n > 0,

En(x, y) = detEn(x, y) =

{
Γm (x, y) , n ≡2 0;
xΓm (x, y) n ≡2 1.

Its proof could be derived by using the Laplace expansion similar to the earlier results
given in the previous section.
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Now we will present interesting applications of our results. The well known
Pell numbers Pn are defined as

Pn = 2Pn−1 + Pn−2,

where P1 = 1 and P2 = 2.

The generating function of the Pell numbers is given as

P (z) =
∑
n≥0

Pnz
n =

1

1− 2z − z2
.

Thus we derive the following relations between the Pell numbers and the sums of
Delannoy numbers.

Theorem 15. For n > 0,

Pn+1 =

n∑
k=0

D (n− k, k) =

n∑
k=0

n−k∑
j=0

(
n− j

k

)(
k

j

)

and

P2n+1 =

n∑
k=0

D (n− k, k) 4n−k =

n∑
k=0

n−k∑
j=0

(
n− j

k

)(
k

j

)
4n−k.

Proof. The generating function of Pell numbers is obtained from the generating
functions of the Delannoy polynomials Γn by taking x = 1 and y = i (imaginary
unit, i =

√
−1), then by combining the above results we see that

Γn (1, i) =

n∑
k=0

n−k∑
j=0

(
n− j

k

)(
k

j

)
= Pn+1.

Similarly the generating function of odd indexed Pell numbers is obtained
from the generating functions of the Delannoy polynomials Γn by taking x = 1, y =
2i (imaginary unit, i =

√
−1) or x = 2, y = i, then by combining the above results

we see that

Γn (1, 2i) =

n∑
k=0

n−k∑
j=0

(
n− j

k

)(
k

j

)
4k = P2n+1,

which is an interesting relation and a new representation for the Pell numbers
according to our best literature acknowledgement.

We shall show the relation between the Chebyshev polynomials of the second
kind Un (x) and the Delannoy polynomial Γn (x, y) in the following result.
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Theorem 16. For n > 0, the Chebysev polynomials of the second kind Un (x) has
the representation

Un (x) = Γn

((
x+

√
x2 + 1

) 1
2

,
(
x+

√
x2 + 1

)− 1
2

)
=

n∑
k=0

n−k∑
j=0

(
n− j

k

)(
k

j

)(
x+

√
x2 + 1

)2k−n

(−1)
n+k

=

n∑
k=0

D (n− k, k)
(
x+

√
x2 + 1

)2k−n

(−1)
n+k

,

where Γn (x, y) is the Delannoy polynomial and D (n− k, k) is the Delannoy number
that are defined as before.

These relations can also be carried in determinantal representations con-
versely by the above results.

In that case, for example, we can derive for

E2n(w,w) = detE2n(w,w) = Γn (w,w) = Un (x) ,

where w =
√
x+

√
x2 + 1.

Specifically,

E2n(z, z) = detE2n(z, z) = Γn (z, z) = Fn,

where Fn is nth Fibonacci number and z =
√(

i+
√
3
)
/2. Equivalently the relation

just above could be given in terms of the generalized Delannoy polynomials as

Fn = Γn

(√(√
3 + i

)
/2,

√(
−i+

√
3
)
/2

)

or clearly

Fn = i−n
n∑

k=0

n−k∑
j=0

(
n− j

k

)(
k

j

)(
i+

√
3

2

)2k−2

(−1)
n+k

.

In general, we define the general second order recursion {Hn} as follows

Hn+1 = aHn + bHn−1

with H0 = 0 and H1 = 1.

By considering above relations including the general Delannoy polynomials,
we give a similar direction for the general sequence {Hn} by the following result
which generalizes the above results.
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Theorem 17. For n > 0, the general sequence {Hn} has the representation

Hn+1 =
1

2n

n∑
k=0

n−k∑
j=0

(
n− j

k

)(
k

j

)
(a−∆)

k
(a+∆)

n−k
,

where ∆ =
√
a2 − 4b.

The above representations for the general second order recurrence {Hn} ,
especially Fibonacci, Pell numbers and Chebyshev polynomials are new according
to our best literature acknowledgement.

3.3 The matrix En(x, y; a, b, c, d)

In this section, we shall investigate the perturbed generalizations of the Toeplitz

matrix En(x, y) which are defined by adding the 2× 2 square matrix

[
a b
c d

]
to

each matrix at the upper right corner.

As we mentioned before, we now evaluate LU-decomposition and the determi-
nant of En(x, y; a, b, c, d). We will use the Delannoy polynomials while formulating
entries of the matrices come from LU-decomposition and determinant of the matrix
En(x, y; a, b, c, d).

We are going to define a unit lower triangular matrix L = [Li,j ]1≤i,j≤n,
that has the only nonzero elements on the main diagonal, the first and the second
subdiagonals. Its entries are explicitly given by

Li,i =1;

Li,i−1=

0, i ≡2 1 & i ̸= n;
1

xΓm−1

[
x2yΓm−2 + Γm−1

]
, i ≡2 0 & i ̸= n;

Li,i−2=

{
1, i ≡2 1;

−x2Γm−2/Γm−1, i ≡2 0;

together with the following exceptional element

Ln,n−1 =



(−1)
m
axΓm−1

cxn−2 + Γm + (−1)
m
ayΓm−1

, n ≡2 1;

cxn−2 + y [(x− (−1)
m
a)xΓm−2 + Γm−1]

(x− (−1)
m
a) Γm−1

, n ≡2 0.
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For example if n = 7, then we have

L =



1 0 0 0 0 0 0
1

x
1 0 0 0 0 0

1 0 1 0 0 0 0

0 −x2Γ0

Γ1

x2yΓ0 + Γ1

xΓ1
1 0 0 0

0 0 1 0 1 0 0

0 0 0
−x2Γ1

Γ2

x2yΓ1 + Γ2

xΓ2
1 0

0 0 0 0 1 − axΓ2

cx5 + Γ3 − ayΓ2
1


.

We define also an upper triangular matrix Un = [Ui,j ]1≤i,j≤n, that has the
only nonzero elements on the diagonal, the first superdiagonal, and the last two
columns, which are given by

Ui,i =

{
x, i ≡2 1 & i< n− 1;

Γm/xΓm−1, i ≡2 0 & i< n− 1;

Ui,i+1 =y, i< n− 2

Ui,n−1=

{
(−1)

m
a, i ≡2 1 & i < n− 2;[

cxi−1 + (−1)
m
ayΓm−1

]
/xΓm−1, i ≡2 0 & i < n− 1;

Ui,n =

{
(−1)

m
b, i ≡2 1 & i < n− 1;[

dxi−1 + (−1)
m
byΓm−1

]
/xΓm−1, i ≡2 0 & i < n− 1;

and the following amended exceptional entries

Un−2,n−1 =


cxn−3 + (x− (−1)

m
a) yΓm−2

xΓm−2
, n ≡2 0;

y − (−1)
m
a, n ≡2 1;

Un−1,n−1 =

x− (−1)
m
a, n ≡2 0;

Γm + (−1)
m
ayΓm−1 + cxn−2

xΓm−1
, n ≡2 1;

Un−1,n =

y − (−1)
m
b, n ≡2 0;

dxn−2 + (x+ (−1)
m
b) yΓm−1

xΓm−1
, n ≡2 1;

and for n ≡2 0,

Un,n =
1

(x− (−1)
m
a) Γm−1

×(Γm + ax
[
Φm−1 + y2Φm−2

]
+(−1)m

{
byΓm−1 − xn−2 [ad− bc+ (−1)m (cy − dx)]

})
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and for n ≡2 1,

Un,n =
(x+ (−1)

m
b) Γm − (−1)mxn−2 (ad− bc− (−1)

m
cx)

Γm + (−1)
m
ayΓm−1 + cxn−2

.

For instance, we have

U7 =



x y 0 0 0 a b

0 Γ1

xΓ0
y 0 0 cx−ayΓ0

xΓ0

dx−byΓ0

xΓ0

0 0 x y 0 −a −b

0 0 0 Γ2

xΓ2
y cx3+ayΓ1

xΓ1

dx3+byΓ1

xΓ1

0 0 0 0 x a+ y b

0 0 0 0 0 Γ3−ayΓ2+cx5

xΓ2

dx5+(x−b)yΓ2

xΓ2

0 0 0 0 0 0 (x−b)Γ3+x5(ad−bc+cx)
Γ3−ayΓ2+cx5


.

Similar to the previous section, by the help of Lemma 13, we shall give the
following result without proof.

Theorem 18. With the above defined triangular matrices L and U , the matrix
En(x, y; a, b, c, d) admits the following LU-decomposition

En(x, y; a, b, c, d) = LU.

Consequently, we can evaluate the determinant detEn(x, y; a, b, c, d) in the
following corollary.

Corollary 19.

detEn(x, y; a, b, c, d) = detU

=

n∏
k=1

Uk,k = Un,nUn−1,n−1

n−2∏
k=1

Uk,k

= Un,nUn−1,n−1

{
Γm−1, n ≡2 0;
xΓm−1, n ≡2 1.

Especially,

detE2m(x, y; a, b, c, d) = Γm + ax
(
Φm−1 + y2Φm−2

)
+ (−1)m

×
{
byΓm−1 − xn−2 [ad− bc+ (−1)m (cy − dx)]

}
and

detE2m+1(x, y; a, b, c, d) = (x+ (−1)
m
b) Γm

− (−1)mxn−2 (ad− bc− (−1)
m
cx) .
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4. A GENERALIZATION OF THE THIRD TOEPLITZ MATRIX

We present a generalization of the Toeplitz matrix En(x, y) defined in the
previous section and evaluate its determinant.

We define the Toeplitz matrix Ψn(x, y, τ) as follows

Ψn(x, y, τ) =
[
λi−j

]
1≤i,j≤n

: λ0 = x, λ−1 = y, λ1 = y

and

λ2 =

{
τ if i is even,
x if i is odd.

When τ = (−1)
j
x, the matrix Ψn(x, y, τ) is reduced to the matrix En(x, y).

As a special case of the general matrix, we will return to the matrix En(x, y). We
evaluate the determinant of the matrix Ψn(x, y, τ) and we don’t give its perturbed
version. We clarify why we study the matrices Ψn(x, y, τ) and En(x, y) separately?
Because the result related with Ψn(x, y, τ) would be different from the result related
with En(x, y) since their forms although the general result includes the special
result. The reason for this is that we formulate the determinants of these matrices
by using different grouping their values.

For example, the matrix Ψ6(x, y, τ) has the form

Ψ6(x, y, τ) =


x y 0 0 0 0
y x y 0 0 0
x y x y 0 0
0 τ y x y 0
0 0 x y x y
0 0 0 τ y x

 .

We only present our results related with the matrix Ψn(x, y, τ) without proof.

Theorem 20. For n ≥ 0,

detΨ4n+1(x, y, τ) = xdetΨ4n(x, y, τ)

=

n∑
k=0

(
n+ k

2k

)
τn−kxn+1−ky2(n−k)

(
x2 − y2

)2k
and

detΨ4n−1(x, y, τ) = xdetΨ4n−2(x, y, τ)

=

n∑
k=1

(
n+ k − 1

2k − 1

)
τn−kxn+1−ky2(n−k)

(
x2 − y2

)2k−1
.

If we take τ = −x, the matrix Ψn(x, y, τ) equals the matrix En(x, y). In
the previous section we already derive a formula for det En(x, y). And we derive



Determinant evaluation of banded Toeplitz matrices via bivariate polynomials 25

a formula for det En(x, y) from Theorem 20 by taking τ = −x. Then we equalize
these formulas and get a combinatorial identity for later use. Since special case of
det En(x, y) equals to the Delannoy polynomials, we also obtain a new combinatorial
representation for them by using the combinatorial identity we derived.

Therefore by taking τ = −x and expanding the powers of
(
x2 − y2

)
in the

formulas of detΨn and rearranging them, we have that for n ≥ 0,

detΨ4n+1(x, y,−x) = xdetΨ4n(x, y,−x)

= x2n+1y2n (−1)
n

n∑
k=0

2k∑
j=0

(
2k

j

)(
n+ k

2k

)
(−1)

k+j (
xy−1

)2k−2j

and

detΨ4n−1(x, y,−x) = xdetΨ4n−2(x, y,−x)

=
(
x2 − y2

)
x2n−1y2n−2 (−1)

n−1
n−1∑
k=0

2k∑
j=0

(
n+ k

2k + 1

)(
2k

j

)
(−1)

k+j (
xy−1

)2k−2j
.

By combining these results and the results of Theorem 14, we reach at the
following result.

Theorem 21. For n ≥ 0,

n∑
k=0

2k∑
j=0

(
n+ k

2k

)(
2k

j

)
(−1)

k+j (
xy−1

)2k−2j

=

2n∑
k=0

2n−k∑
j=0

(
2n− j

k

)(
k

j

)(
x−1y

)2k−2n
(−1)

n+k

and

2n−1∑
k=0

2n−1−k∑
j=0

(
2n− 1− j

k

)(
k

j

)(
xy−1

)2k
(−1)

n+k

=
(
x2y−2 − 1

) n∑
k=0

2k∑
j=0

(
2k

j

)(
n+ k

2k + 1

)
(−1)

k+j (
xy−1

)2k−2j+2n−2
.

Thus by using the equalities above, we have new combinatorial representa-
tions for the generalized Delannoy polynomials by the following result.

Corollary 22. For n > 0,

Γ2n (x, y) = (−1)
n
(xy)

2n
n∑

k=0

2k∑
j=0

(
2k

j

)(
n+ k

2k

)
(−1)

k+j (
xy−1

)2k−2j
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and

Γ2n (x, y) = (−1)
n+1

y4n−2
(
x2y−2 − 1

)
×

n∑
k=0

2k∑
j=0

(
2k

j

)(
n+ k

2k + 1

)
(−1)

k+j (
xy−1

)2k−2j+2n−2
.
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21. M. Püschel, J. M.F. Moura: The algebraic approach to the discrete cosine and
sine transforms and their fast algorithms. SIAM J. Comput. 32 (2003), 1280–1316.

22. G. Strang: The discrete cosine transform. SIAM Rev. 41 (1999), 135–147.

23. S.-F. Xu: On the Jacobi matrix inverse eigenvalue problem with mixed given data.
SIAM J. Matrix Anal. Appl. 17 (1996), 632–639.

24. W. C. Yueh, S. S. Cheng: Explicit eigenvalues and inverses of tridiagonal Toeplitz
matrices with four perturbed corners. ANZIAM J. 49 (2008), 361–387.

Abdullah Alazemi (Received 27. 09. 2021.)
Department of Mathematics, (Revised 26. 07. 2023.)
Kuwait University,
Safat 13060, Kuwait
E-mail: abdullah.alazemi@ku.edu.kw

Emrah Kılıç
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