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SMOOTH SQUARED, TRIANGULAR, AND

HEXAGONAL BARGRAPHS

Toufik Mansour

In this paper, we find an explicit formula for the generating function for the

number of smooth squared (triangular, hexagonal) bargraphs according to the

perimeter and number of columns. In particular, we show that the number

of smooth squared, triangular, and hexagonal bargraphs with perimeter 2n

(resp. n, 2n) is asymptotic to
csr

1−n
s√
πn3

(resp.
ctr

1−n
t√
πn3

, ch√
πn3

√
2
n+2

), where

rs =
1+

3
√

181+24
√
78

12
− 23

12
3
√

181+24
√
78
, rt is the smallest positive root of the

polynomial p16−2p14+p12−2p11−2p10+2p9+4p8−5p6−2p5+p4−2p3−2p2+1

and cs, ct, ch are three constants, as n 7→ ∞.

1. INTRODUCTION

An animal on a two-dimensional lattice is an edge-connected set of basic
two-dimensional polygon-like cells on a two-dimensional lattice, where the connec-
tivity of two cells is defined by having a common edge. An example of animals are
squared polyominoes or just polyominoes. These are animals that are made by edge-
connected squares on the squared lattice and are well-studied in discrete geometry,
statistical physics, and combinatorics. For instance, they are used in the enumera-
tion of graphs [22], modeling the mechanics of macro-molecules [28,31], percolation
processes [10], and cell growth processes [15, 24, 29]. In combinatorics, the main
problem is to enumerate lattice animals of a specific size n; see [2,4,5,12,21,30,32]
and references therein. Since the enumeration of general animals is well-known as
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a hard problem, researchers restricted the study of animals with various conditions
such as directional convexity and/or directional growth in squared and hexago-
nal lattices. See [2, 3, 6, 8, 11, 13, 14, 23] for a few examples of the squared lattice
and [2,16,17,20,25,33] for the hexagonal lattice, where several important subsets of
animals including bargraphs, column-convex animals, and convex animals are stud-
ied. Although a natural extension to these works is to explore the animals residing
on the triangular lattice [2, 26], we were not able to find much work in this direc-
tion. Therefore, in this paper, we study smooth bargraphs in squared, triangular,
and hexagonal lattices.

1.1 Squared bargraphs

Let S = Z2 be the two-dimensional plane, where the angle between x-axis and
y-axis is π

2 counter clock-wise and we mark these axes with integer points. Then,
we partition S with squares, each having two edges parallel to the x-axis, two edges
parallel to the y-axis, and the edges of length one. We refer to this dimensional
plane as a squared lattice and to these squared building blocks as squared cells or
simply cells. Let the line x = j (resp. y = j) denote the line parallel with y-axis
(resp. x-axis), intersecting x-axis (resp. y-axis) at j.

A squared bargraph B or simple bargraph is an animal in S with m columns,
where the j-th column of B has aj cells between the lines x = j − 1 and x = j and
between the lines y = 0 and y = aj . A cell in B with at least one edge in common
with a cell in Bc := S \ B is referred to as a boundary cell of B and the common
edge is referred to as a boundary edge. The perimeter of B is the total number of
its boundary edges. For example, Figure 1 presents a bargraph with 16 cells and a
perimeter 28.

Figure 1: A squared bargraph

Bargraphs referred to as wall polyominoes or skylines [19], have recently been
studied from several directions and have led to various refined enumerations; see [27]
and references therein. The enumeration of bargraphs by their perimeter is studied
in [9]. In [7] the inner site-perimeter (the number of all cells in the bargraph that
have at least one boundary edge) of bargraphs is considered.
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1.2 Triangular bargraphs

Let T be the two-dimensional plane, where the angle between x-axis and y-axis is π
3

counter clock-wise and we mark these axes with integer points. Then, we partition
T with equilateral triangles; each with a horizontal edge parallel to the x-axis and
the sides of length one. We refer to this dimensional plane as a triangular lattice and
to these triangular building blocks as triangular cells or simply cells. Let the line
x = j (resp. y = j) denote the line parallel with y-axis (resp. x-axis), intersecting
x-axis (resp. y-axis) at j.

A triangular bargraph B or simple bargraph is an animal in T with m columns,
where the j-th column of B has aj cells between the lines x = j − 1 and x = j and
between the lines y = 0 and y = ⌈aj/2⌉. Depending on the orientation of the top
cell of B, we identify two types of columns as seen in Figure 2. A cell in B with at
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Figure 2: From left to right, columns of type one and two

least one edge in common with a cell in Bc := T \ B is referred to as a boundary
cell of B and the common edge is referred to as a boundary edge. The perimeter
of B is the total number of its boundary edges. For example, Figure 3 presents a
triangular bargraph with 23 cells and perimeter 15.
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Figure 3: A triangular bargraph

There is a limited research on triangular bargraphs. However, in [26], the
examination of the number of triangular bargraphs, as well as other various families
of triangular animals, according to the perimeter is considered.

1.3 Hexagonal bargraphs

A hexagonal lattice H is a regular tiling of R2 such that exactly three hexagons meet
at each vertex and the vertices of each hexagon are (a, b), (a+ 1, b), (a+ 2, b+ 1),
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(a+ 1, b+ 2), (a, b+ 2), and (a− 1, b+ 1), for some a, b ∈ Z such that the vertices
of the leftmost lower hexagon in the first quarter of the plane R2 are (1, 0), (2, 0),
(3, 1), (2, 2), (1, 2), and (0, 1). We refer to these hexagons as hexagonal cells or
simply cells. Let the line x = j (resp. y = j) denote the line parallel with y-axis
(resp. x-axis), intersecting x-axis (resp. y-axis) at j. A hexagonal bargraph B or
simple bargraph is an animal in H with m columns, where the j-th column of B has
aj cells between the lines x = 2j − 2 and x = 2j + 1, and between the lines y = 0
and y = 2aj when j is odd, y = 1 and y = 2aj + 1 when j is even.

A cell in B with at least one edge in common with a cell in Bc := H \ B is
referred to as a boundary cell of B and the common edge is referred to as a boundary
edge. The perimeter of B is the total number of its boundary edges. For example,
Figure 4 presents a hexagonal bargraph with 9 cells and perimeter 32.
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Figure 4: A hexagonal bargraph

As we discussed in the introduction, on hexagonal animals several important
subsets of animals including bargraphs, column-convex animals, and convex animals
are considered (see [2, 16,17,20,25,33]).

1.4 Smooth bargraphs

A squared (triangular, hexagonal) bargraph B is said to be smooth if the difference
between the number of cells in two adjacent columns is either 0 or 1. In other words,
if the highest point in j-th column of B lies at line y = aj then |aj − aj−1| = 0, 1.
The paper aims to find an explicit formula for the generating function for the
number of smooth squared (triangular, hexagonal) bargraphs with respect to their
perimeter. More precisely, we show the following result.

Theorem 1. We have (1) the generating function for the number of smooth squared
bargraphs with at least one column according to the perimeter and the number of
columns is given by

S(p, q) =
p2q(1 + p2 − p2q − 5p4q)

2(1− p2)(1− 2p2q − p4q)2
−

p2q
√

(1− p2q)2 − 4p6q2

2(1− 2p2q − p4q)2

= qp4 + (q2 + q)p6 + (q3 + 3q2 + q)p8 + (q4 + 6q3 + 3q2 + q)p10 + · · · .
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Moreover, the number of smooth squared bargraphs with perimeter 2n in the squared
lattice is asymptotic to

√
r2 − 4r + 3(1840r2 + 336r + 1065)r1−n

16
√
πn3

with r = 1+
3
√

181+24
√
78

12 − 23

12
3
√

181+24
√
78

as n 7→ ∞.

(2) the generating function for the number of smooth triangular bargraphs
with at least one column according to the perimeter and the number of columns is
given by

T (p, q) =
qp3(1 + p5q − p6q)

f(p, q)

(
(p+ 1)2qpu0 − (p+ 1)p6q2 +

1− pq − 3p2q − p3q

1− p

)
,

where f(p, q) = ((p2 − 1)p6q2 − (p3 + p2 +2p+1)pq+1)(p8q2 − p6q2 − p4q− 2p3q−
2p2q + 1) and

u0 =
(p2 − 1)p6q2 − (p+ 1)p2q + 1−

√
((p2 − 1)p6q2 − (p+ 1)p2q + 1)2 − 4q2p5(p+ 1)

2p3q(p+ 1)
.

Moreover, the number of smooth triangular bargraphs with perimeter n is asymp-
totic to

(r5(r − 1)2 − r + 1)
√
Arr

1−n

2Br

√
2πn3

with

Ar =2r12 − 2r14 − 5r11 − 6r10 + 7r9 + 16r8 − 25r6 − 11r5 + 6r4 − 13r3 − 14r2 + 8,

Br =2r15 − 2r14 − 2r13 + 4r12 − 3r11 − 2r10 − 2r9 + 3r8 + 4r7 − 9r6 − r5

+ 3r4 + r3 − 2r2 − 3r + 2,

as n 7→ ∞, where r ≈ 0.540323274 is the smallest positive root of the polynomial
p16 − 2p14 + p12 − 2p11 − 2p10 + 2p9 + 4p8 − 5p6 − 2p5 + p4 − 2p3 − 2p2 + 1.

(3) The generating function for the number of smooth hexagonal bargraphs
with at least one column according to the perimeter and number of columns is given
by

H(p, q) =
p6q(1 + p2)

1− p6q2(1 + p2)2

(
1 + p4q(1 + p2)

1− p4
− p6q2C(p8q2)

1− p4qC(p8q2)

)
,

where C(x) = 1−
√
1−4x
2x is the generating function for the Catalan numbers 1

n+1

(
2n
n

)
.

Moreover, the number of smooth triangular bargraphs with perimeter 2n, is asymp-
totic to

(304 + 215
√
2)
√
2
n+2

√
πn3

.



6 Toufik Manosur

The proof of this theorem is given in the next three sections.

2. SMOOTH SQUARED BARGRAPHS

Let S(p, q) be the generating function for the number of nonempty smooth
squared bargraphs according to the perimeter and number of columns. In order
to obtain an explicit formula for S(p, q), we define Sa(p, q) to be the generating
function for the number of smooth squared bargraphs according to the perimeter
and number of columns such that the first column has exactly a square cells. Note
that each smooth squared bargraph such that the first column has exactly a cells
can be decomposed as either (1) has exactly one column, or (2) has at least two
columns where the second column has exactly j ∈ {a− 1, a, a+1} cells, see Figure
5. Thus,

...

a

cells

...

a − 1

cells

...

a

cells

...

a

cells

...

a

cells

...

a + 1

cells

Figure 5: Decomposition of a smooth squared bargraph such that the first column
has exactly a cells

Sa(p, q) = p2a+2q + p4qSa−1(p, q) + p2qSa(p, q) + p2qSa+1(p, q),(1)

for all a ≥ 1, where S0(p, q) is defined to be 0. Define

S(p, q;u) =
∑
a≥1

Sa(p, q)u
a−1.

Then, by multiplying (1) by ua−1 and summing over a ≥ 1, we obtain

S(p, q;u) =
p4q

1− p2u
+ p4quS(p, q;u) + p2qS(p, q;u)

+
p2q

u
(S(p, q;u)− S1(p, q)),(2)

This functional equation that can be solved by the kernel method [1]. To do so, we
re-arrange (2) as(

1− p4qu− p2q − p2q

u

)
S(p, q;u) =

p4q

1− p2u
− p2q

u
S1(p, q).(3)
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By setting

u = u0(p, q) =
1− p2q −

√
(1− p2q)2 − 4p6q2

2p4q

into (3), we have

S1(p, q) =
p2u0(p, q)

1− p2u0(p, q)
=

2p4q + p2q − 1 +
√

(1− p2q)2 − 4p6q2

2(1− 2p2q − p4q)
.

Hence, by (3) with u = 1, we have the following result.

Theorem 2. The generating function for the number of smooth squared bargraphs
with at least one column according to the perimeter and number of columns is given
by

S(p, q) =
p2q(1 + p2 − p2q − 5p4q)

2(1− p2)(1− 2p2q − p4q)2
− p2q

2(1− 2p2q − p4q)2

√
(1− p2q)2 − 4p6q2

= qp4 + (q2 + q)p6 + (q3 + 3q2 + q)p8 + (q4 + 6q3 + 3q2 + q)p10 + · · · .

By singularity analysis (see for instance [18]), we see that the coefficient of
pn in

S(
√
p, 1) =

p(1− 5p2)

2(1− p)(1− 2p− p2)2
− p

2(1− 2p− p2)2

√
(1− p)2 − 4p3,

namely, the number of smooth squared bargraphs with perimeter 2n, is asymptotic
to √

r2 − 4r + 3(1840r2 + 336r + 1065)r1−n

16
√
πn3

with r = 1
12

3
√
181 + 24

√
78− 23

12
3
√

181+24
√
78

+ 1
12 , as n 7→ ∞.

3. SMOOTH TRIANGULAR BARGRAPHS

Let T (p, q) be the generating function for the number of nonempty smooth
triangular bargraphs according to the perimeter and number of columns. In order

to obtain an explicit formula for T (p, q), we define T
(i)
a (p, q), i = 1, 2, to be the

generating function for the number of smooth triangular bargraphs according to the
perimeter and number of columns such that the first column has exactly a cells and

its type is i (see Figure 2). Define T (i)(p, q;u) =
∑

a≥1 T
(i)
a (p, q)ua−1 for i = 1, 2.

Clearly,

T (p, q) = T (1)(p, q; 1) + T (2)(p, q; 1).(4)

By considering the number of cells in the second column (if it exists) of a smooth
triangular bargraph such that the column has a type 1 and exactly a cells (see
Figures 6), we obtain
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Figure 6: Decomposition of a smooth triangular bargraph such that the first column
has type 1 and exactly a cells

T (1)
a (p, q) = pa+2q + p4qT

(1)
a−2(p, q) + p2qT (1)

a (p, q) + p2qT
(1)
a+2(p, q)

+ p4qT
(2)
a−3(p, q) + p2qT

(2)
a−1(p, q) + p2qT

(2)
a+1(p, q).

By considering the number of cells in the second column (if it exists) in a
smooth triangular bargraph such that the column has a type 2 and exactly a cells
(see Figures 6), we obtain
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Figure 7: Decomposition of a smooth triangular bargraph such that the first column
has type 2 and exactly a cells

T (2)
a (p, q) = pa+2q + p3qT

(1)
a−1(p, q) + p3qT

(1)
a+1(p, q) + p3qT

(1)
a+3(p, q)

+ p3qT
(2)
a−2(p, q) + p3qT (2)

a (p, q) + p3qT
(2)
a+2(p, q).

By multiplying T
(1)
a (p, q) (respectively, T

(2)
a (p, q)) by u(a−2)/2 (respectively, u(a−1)/2)

and summing over all a = 2b ≥ 2 (respectively, a = 2b + 1 ≥ 1) (here, we define

T
(1)
0 (p, q) = T

(2)
0 (p, q) = 0), we obtain

T (1)(p, q;u) =
p4q

1− p2u
+ p4quT (1)(p, q;u) + p2qT (1)(p, q;u)

+
p2q

u
(T (1)(p, q;u)− T (1)(p, q; 0)) + p4quT (2)(p, q;u)

+ p2qT (2)(p, q;u) +
p2q

u
(T (2)(p, q;u)− T (2)(p, q; 0))(5)
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and

T (2)(p, q;u) =
p3q

1− p2u
+ p3quT (1)(p, q;u) + p3qT (1)(p, q;u)

+
p3q

u
(T (1)(p, q;u)− T (1)(p, q; 0)) + p3quT (2)(p, q;u)

+ p3qT (2)(p, q;u) +
p3q

u
(T (2)(p, q;u)− T (2)(p, q; 0)).(6)

By considering p·(5)-(6), we obtain

T (2)(p, q;u) =
p3q(1− p2)

(1− p2u)(1− p3qu+ p5qu)
+

p(1 + p2qu− p4qu)

2− p3qu+ p5qu
T (1)(p, q;u).(7)

Hence, (5) can be written as

−p2q + (p8q2 − p6q2 − p3q − p2q + 1)u− p3q(p+ 1)u2

u(1− p3qu+ p5qu)
T (1)(p, q;u)

= −p2q

u
T (1)(p, q; 0) +

p4q((p5q − p3q − 1)(p3q − pq − 1)− q2p6(p2 − 1)2u)

(1− p2u)(1− p3qu+ p5qu)
.(8)

By setting

u0 = u(p, q) =
p8q2 − p6q2 − p3q − p2q + 1

2p3q(p+ 1)

−
√

(p8q2 − p6q2 − p3q − p2q + 1)2 − 4q2p5(p+ 1)

2p3q(p+ 1)

into (8), we have

T (1)(p, q; 0) =
p2q(p+ 1)(p6q − p5q − 1)

p8q2 − p6q2 − p4q − p3q − 2p2q − pq + 1
u0

+
p4q(p8q2 − p7q2 − p6q2 + p5q2 − p5q − p2q + pq + q + 1)

p8q2 − p6q2 − p4q − p3q − 2p2q − pq + 1
.

Hence, by (8) and then by (7), we obtain explicit formulas for the generating
function T (1)(p, q;u) and T (2)(p, q;u), which, by (4), leads to the following result.

Theorem 3. The generating function for the number of smooth triangular bar-
graphs with at least one column according to the perimeter and number of columns
is given by

T (p, q) =
qp3(1 + p5q − p6q)

f(p, q)

(
(p+ 1)2qpu0 − (p+ 1)p6q2 +

1− pq − 3p2q − p3q

1− p

)
,

= qp3 + qp4 + q(q + 1)p5 + q(3q + 1)p6 + q(q2 + 5q + 1)p7 + · · · ,

where f(p, q) = (p8q2− p6q2− p4q− p3q− 2p2q− pq+1)(p8q2− p6q2− p4q− 2p3q−
2p2q + 1).
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By singularity analysis (see for instance [18]), we see that the coefficient of
pn in

T (p, 1) =
p(p6 − p5 − 1)

√
(p8 − p6 − p3 − p2 + 1)2 − 4p5(p+ 1)

2(p+ 1)2(p6 − 2p5 + 2p4 − 2p3 + p2 − 2p+ 1)(p7 − p6 − p3 − 2p+ 1)

+
p(p6 − p5 − 1)(p9 − p8 + p7 − p6 − p4 − 4p3 + p2 − p+ 1)

2(p+ 1)2(p7 − p6 − p3 − 2p+ 1)(p− 1)(p6 − 2p5 + 2p4 − 2p3 + p2 − 2p+ 1)
,

namely the number of smooth triangular bargraphs with perimeter n, is asymptotic
to

(r5(r − 1)2 − r + 1)
√
Arr

1−n

2Br

√
2πn3

≈ 3013.3562752348 · r1−n

4
√
πn3

with

Ar =2r12 − 2r14 − 5r11 − 6r10 + 7r9 + 16r8 − 25r6 − 11r5 + 6r4 − 13r3 − 14r2 + 8,

Br =2r15 − 2r14 − 2r13 + 4r12 − 3r11 − 2r10 − 2r9 + 3r8 + 4r7 − 9r6 − r5

+ 3r4 + r3 − 2r2 − 3r + 2,

as n 7→ ∞, where r ≈ 0.540323274 is the smallest positive root of the polynomial
p16 − 2p14 + p12 − 2p11 − 2p10 + 2p9 + 4p8 − 5p6 − 2p5 + p4 − 2p3 − 2p2 + 1.

4. SMOOTH HEXAGONAL BARGRAPHS

Let H(p, q) be the generating function for the number of nonempty smooth
hexagonal bargraphs according to the perimeter and number of columns. In order
to obtain an explicit formula for H(p, q), we define Ha(p, q) to be the generating
function for the number of smooth hexagonal bargraphs according to the perimeter
and number of columns such that the first column has exactly a cells. By consid-
ering the number of cells in the second column of a hexagonal bargraph such that
the number of cells in the first column is exactly a (see Figure 8), we obtain

Ha(p, q) = qp4a+2 + qp6H ′
a−1(p, q) + qp4H ′

a(p, q)

and

H ′
a(p, q) = qp4a+2 + qp4Ha(p, q) + qp2Ha+1(p, q),

where H ′
a(p, q) is the generating function for the number of nonempty shifted

smooth hexagonal bargraphs according to the perimeter and number of columns. A
shifted smooth hexagonal bargraph is a nonempty smooth hexagonal bargraph after
removing its first column.

Define H(p, q;u) =
∑

a≥1 Ha(p, q)u
a−1 and H ′(p, q;u) =

∑
a≥1 H

′
a(p, q)u

a−1.

Then, by multiplying the above recurrences by ua−1 and summing over a ≥ 1, we
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Figure 8: Decomposition of a smooth hexagonal bargraph such that the first column
has exactly a cells

obtain

H(p, q;u) =
qp6

1− p4u
+ qp6uH ′(p, q;u) + qp4H ′(p, q;u),

H ′(p, q;u) =
qp6

1− p4u
+ qp4H(p, q;u) +

qp2

u
(H(p, q;u)−H(p, q; 0)).

By expressing H ′(p, q;u) in terms of H(p, q;u), and then substituting it into the
second equation, we have

−p6q2 + (1− 2p8q2)u− p10q2u2

p4qu(1 + p2u)
H(p, q;u) = −p2q

u
H(p, q; 0) +

p2(1 + p4q + p6qu)

1− p4u2
.

(9)

Let C(x) = 1−
√
1−4x
2x be the generating function for the Catalan numbers 1

n+1

(
2n
n

)
.

By setting u0 = u(p, q) = p6q2C2(p8q2) into (9), we have

H(p, q; 0) =
p6qC(p8q2)

1− p4qC(p8q2)
.

Hence, by (9), we have the following result.

Theorem 4. The generating function for the number of smooth hexagonal bar-
graphs with at least one column according to the perimeter and number of columns
is given by

H(p, q) =
p6q(1 + p2)

1− p6q2(1 + p2)2

(
1 + p4q(1 + p2)

1− p4
− p6q2C(p8q2)

1− p4qC(p8q2)

)
.
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By singularity analysis (see for instance [18]), we see that the coefficient of
pn in

H(
√
p, 1) =

p3(3 + p+ 2p2 − p3 − 8p4 − 8p5 − 5p6 − 2p7)

2(1− p2)(1− p3(1 + p)2)2

− p3(1 + p)(1 + p2(1 + p))
√
1− 4p4

2(1− p3(1 + p)2)2
,

namely the number of smooth triangular bargraphs with perimeter n, is asymptotic

to 304+215
√
2√

πn3

√
2
n+2

.
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33. M. Vöge, A. J. Guttmann: On the number of hexagonal polyominoes, Theoret.
Computer Sci. 307 (2003), 433–453.



14 Toufik Manosur

Toufik Mansour (Received 03. 06. 2022.)
Department of Mathematics, (Revised 18. 01. 2024.)
University of Haifa,
3498838 Haifa, Israel
E-mail: tmansour@univ.haifa.ac.il


