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COMPARISON INEQUALITIES BETWEEN
POLYNOMIALS WITH CONSTRAINTS ON THEIR

ZEROS

Abdullah Mir and Adil Hussain∗

The goal of this paper is to obtain some comparison inequalities for a linear
operator between polynomials in the plane. The polynomials under study
have constraints on their zeros and the estimates obtained turn out to be
generalizations of many classical inequalities for polynomials, including the
well known Erdős-Lax inequality and inequality of the Ankeny-Rivlin theo-
rem.

1. INTRODUCTION AND PRELIMINARIES

Let Pn be the class of all complex polynomials P (z) :=
n∑

v=0
avz

v of degree at

most n and P ′(z) is the derivative of P (z). A classical majorization result due to
Bernstein [4] is that, for two polynomials f(z) and h(z) with degree of f(z) not
exceeding that of h(z) and h(z) ̸= 0 for |z| > 1, the majorization |f(z)| ≤ |h(z)| on
the unit circle |z| = 1 implies the majorization of their derivatives |f ′(z)| ≤ |h′(z)|
on |z| = 1. In particular, this majorization result allows to establish the famous
Bernstein inequality [3] for the sup-norm on the unit circle: for P ∈ Pn, it is true
that

max
|z|=1

|P ′(z)| ≤ nmax
|z|=1

|P (z)|.(1)

The inequality (1) is best possible with equality holding for polynomials P (z) =
αzn, α being a complex number.
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Since their appearance a century ago, these inequalities of Bernstein have attracted
substantial attention and have been the starting point of a considerable body of
literature on polynomial approximations. Over a period, these inequalities were
generalized and extended in several directions, in different norms, and for different
classes of functions (see, for example, Gardner et al. [6], Marden [11], Milovanović
et al. [12], and Rahman and Schmeisser [16]). However, with regard to the max-
imum modulus of P (z) on the circle |z| = R, R ≥ 1, we have another classical
result, known as the Bernstein-Walsh lemma ([16], Corollary 12.1.3), which asserts
that, if f, h ∈ Pn with deg f ≤ deg h and h(z) ̸= 0 for |z| > 1, the majorization
|f(z)| ≤ |h(z)| on the unit circle |z| = 1 implies that |f(z)| < |h(z)| for |z| > 1,
unless f(z) = eiθg(z), θ ∈ R. From this, one can deduce that if P ∈ Pn, then for
R ≥ 1,

max
|z|=R

|P (z)| ≤ Rn max
|z|=1

|P (z)|.(2)

Equality holds in (2) if and only if P (z) has all its zeros at the origin. It was shown
by Govil, Qazi and Rahman [8] that the inequalities (1) and (2) are equivalent in
the sense that any of these inequalities can be derived from the other. For the class
of polynomials P ∈ Pn, not vanishing in the interior of the unit circle, the above
inequalities have been replaced by:

max
|z|=1

|P ′(z)| ≤ n

2
max
|z|=1

|P (z)|(3)

and

max
|z|=R

|P (z)| ≤ Rn + 1

2
max
|z|=1

|P (z)|, R ≥ 1.(4)

Both of the above inequalities are sharp and hold with equality for polynomials with
all their zeros on the unit circle. As is well known, inequality (3) was conjectured
by Erdős and later proved by Lax [10], while inequality (4) is due to Ankeny
and Rivlin [1]. It is topical in geometric function theory to study the extremal
problems of functions of a complex variable and generalize the classical polynomial
inequalities in various directions. Although the literature on polynomial inequalities
is vast and growing, over the years, many authors have produced an abundance of
various versions and generalizations of the above inequalities by introducing various
operators that preserve such types of inequalities between polynomials (see, for
example, [5], [9], [13], and [14]). It is an interesting problem, as pointed out
by Professor Q. I. Rahman to characterize all such operators, and as part of this
characterization, Rahman [15] (see also Rahman and Schmeisser [[16], page 538-
551]) introduced a class Bn of operators B that maps P ∈ Pn into B[P ] ∈ Pn. The
study of such operators preserving inequalities between polynomials in geometric
function theory is a problem of interest both in mathematics and in application
areas such as physical systems. In addition to having numerous applications, this
study has been the inspiration for much more research, both from a theoretical



Comparison inequalities between polynomials with constraints on their zeros 3

and practical point of view. Recently, in 2021, Rather et al. [17] considered the
generalized Bn operator N , which carries P ∈ Pn into N [P ] ∈ Pn defined by

N [P ](z) :=

m∑
ν=0

λν

(
nz

2

)ν
P (ν)(z)

ν!
,(5)

where λν ; ν = 0, 1, 2, ...,m, are such that all the zeros of

ϕ(z) =

m∑
ν=0

C(n, ν)λνz
ν , m ≤ n,(6)

lie in the half plane

|z| ≤
∣∣∣z − n

2

∣∣∣.(7)

It can be easily seen that if we take λν = 0 in (5) and (6) for 3 ≤ ν ≤ m, the
operator N reduces to the B-operator. In the same paper, Rather et al. [17]
established certain results concerning the upper bound of |N [P ]| for |z| ≥ 1. More
precisely, they proved the following results:

Theorem 1. If f(z) is a polynomial of degree n having all its zeros in |z| ≤ 1 and
P ∈ Pn such that |P (z)| ≤ |f(z)| for |z| = 1, then

|N [P ](z)| ≤ |N [f ](z)| for |z| ≥ 1.(8)

Equality in (8) holds for P (z) = eiγf(z), γ ∈ R.

Theorem 2. If P ∈ Pn, and P (z) ̸= 0 in |z| < 1, then

|N [P ](z)| ≤ 1

2

{∣∣N [ψn](z)
∣∣+ |λ0|

}
max
|z|=1

|P (z)| for |z| ≥ 1,(9)

where ψn(z) = zn. Equality in (9) holds for P (z) = azn + b, |a| = |b| ≠ 0.

The Erdős-Lax type inequalities and their extensions are seminal in the field of
classical analysis, and here, we are interested in establishing some new inequalities
in the uniform norm for the operator N , giving generalizations and refinements of
the above results and related inequalities. In the process, the authors thought of a
more general problem of investigating the dependence of

∣∣N [P (Rz)]−αN [P (rz)]+

β
{(

1+R
1+r

)n−|α|
}
N [P (rz)]

∣∣ for |z| = 1 on the maximum and minimum of |P (z)| for
every |α| ≤ 1, |β| ≤ 1, R ≥ r ≥ 1, and develop a unified method for arriving at
these results.
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2. MAIN RESULTS

Our first result in this direction will be a comparison inequality between com-
plex polynomials involving the operator N, when the zeros of one of the polynomials
are restricted. The obtained inequality gives compact generalizations of (1) and
(2) and includes Theorem 1 as a special case. More precisely, we first prove the
following result:

Theorem 3. If f(z) is a polynomial of degree n having all its zeros in |z| ≤ 1 and
P ∈ Pn such that |P (z)| ≤ |f(z)| for |z| = 1, then for every |α| ≤ 1, |β| ≤ 1 and
R ≥ r ≥ 1, we have∣∣∣∣N [P (Rz)]− αN [P (rz)] + β

{(
1 +R

1 + r

)n

− |α|
}
N [P (rz)]

∣∣∣∣
≤
∣∣∣∣N [f(Rz)]− αN [f(rz)] + β

{(
1 +R

1 + r

)n

− |α|
}
N [f(rz)]

∣∣∣∣ for |z| ≥ 1.

(10)

Equality in (10) holds for P (z) = eiγf(z), γ ∈ R.

The following result immediately follows from Theorem 3, if we take r = 1.

Corollary 4. If f(z) is a polynomial of degree n having all its zeros in |z| ≤ 1 and
P ∈ Pn such that |P (z)| ≤ |f(z)| for |z| = 1, then for every |α| ≤ 1, |β| ≤ 1 and
R ≥ 1, we have∣∣∣∣N [P (Rz)]− αN [P (z)] + β

{(
1 +R

2

)n

− |α|
}
N [P (z)]

∣∣∣∣
≤
∣∣∣∣N [f(Rz)]− αN [f(z)] + β

{(
1 +R

2

)n

− |α|
}
N [f(z)]

∣∣∣∣ for |z| ≥ 1.(11)

Equality in (11) holds for P (z) = eiγf(z), γ ∈ R.

Remark 5. For β = 0, Theorem 3 reduces to a result recently proved by Mir in
[13]. If we take α = β = 0 in (11), we get Theorem 1.

If in Theorem 3, we take f(z) = Mzn, where M = max|z|=1 |P (z)|, then we
get the following result.

Corollary 6. If P ∈ Pn, then for every |α| ≤ 1, |β| ≤ 1 and R ≥ r ≥ 1, we have∣∣∣∣N [P (Rz)]− αN [P (rz)] + β

{(
1 +R

1 + r

)n

− |α|
}
N [P (rz)]

∣∣∣∣
≤
∣∣∣∣Rn − αrn + βrn

{(
1 +R

1 + r

)n

− |α|
}∣∣∣∣∣∣∣N [φn(z)]

∣∣∣max
|z|=1

|P (z)| for |z| ≥ 1,

(12)

where φn(z) = zn. Equality in (12) holds for P (z) = γzn, γ ̸= 0.
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If in (12), after substituting the value of N [φn(z)], we get for every |α| ≤ 1,
|β| ≤ 1 and R ≥ r ≥ 1,∣∣∣∣N [P (Rz)]− αN [P (rz)] + β

{(
1 +R

1 + r

)n

− |α|
}
N [P (rz)]

∣∣∣∣
≤
∣∣∣∣Rn − αrn + βrn

{(
1 +R

1 + r

)n

− |α|
}∣∣∣∣|z|n∣∣∣∣ m∑

ν=0

λν C(n, ν)

(
n

2

)ν∣∣∣∣max
|z|=1

|P (z)|,

(13)

for |z| ≥ 1, where λν ; 0 ≤ ν ≤ m, are such that all the zeros of ϕ(z) defined by (6)
lie in the half plane (7). Taking λν = 0, ν = 1, 2, 3, ...,m, in (13) and noting that
N [P ](z) = λ0P (z), we get the following result.

Corollary 7. If P ∈ Pn, then for every |α| ≤ 1, |β| ≤ 1 and R ≥ r ≥ 1, we have∣∣∣∣P (Rz)− αP (rz) + β

{(
1 +R

1 + r

)n

− |α|
}
P (rz)

∣∣∣∣
≤
∣∣∣∣Rn − αrn + βrn

{(
1 +R

1 + r

)n

− |α|
}∣∣∣∣|z|n max

|z|=1
|P (z)| for |z| ≥ 1.(14)

Equality in (14) holds for P (z) = γzn, γ ̸= 0.

If in (14), we take α = r = 1, β = 0 and divide both sides of it by R− 1 and
make R→ 1, we get

|P ′(z)| ≤ |z|n−1 max
|z|=1

|P (z)| for |z| ≥ 1,

which in particular yields (1), whereas (2) is a special case of (14), if we take
α = β = 0.

Next, we establish an estimate for the lower bound on |z| ≥ 1 of
∣∣N [P (Rz)]−

αN [P (rz)] + β
{(

1+R
1+r

)n − |α|
}
N [P (rz)]

∣∣ in the form of the following result:

Theorem 8. If P ∈ Pn, and P (z) has all its zeros in |z| ≤ 1, then for every
|α| ≤ 1, |β| ≤ 1 and R ≥ r ≥ 1, we have∣∣∣∣N [P (Rz)]− αN [P (rz)] + β

{(
1 +R

1 + r

)n

− |α|
}
N [P (rz)]

∣∣∣∣
≥
∣∣∣∣Rn − αrn + βrn

{(
1 +R

1 + r

)n

− |α|
}∣∣∣∣∣∣∣N [φn(z)]

∣∣∣m for |z| ≥ 1,(15)

where φn(z) = zn and m = min|z|=1 |P (z)|.

If in (15), we take β = 0, we get for every |α| ≤ 1 and R ≥ r ≥ 1,

|N [P (Rz)]− αN [P (rz)]| ≥ |Rn − αrn||N [φn(z)]| min
|z|=1

|P (z)| for |z| ≥ 1,

which generalizes the result of Aziz and Dawood ([2], Theorem 1).
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Theorem 9. If P ∈ Pn, and P (z) has all its zeros in |z| ≥ 1, then for every
|α| ≤ 1, |β| ≤ 1, R ≥ r ≥ 1, we have

∣∣∣∣N [P (Rz)]− αN [P (rz)] + β

{(
1 +R

1 + r

)n

− |α|
}
N [P (rz)]

∣∣∣∣
≤ 1

2

[∣∣∣∣Rn − αrn + βrn
{(

1 +R

1 + r

)n

− |α|
}∣∣∣∣∣∣∣N [φn(z)]

∣∣∣
+ |λ0|

∣∣∣∣1− α+ β

{(
1 +R

1 + r

)n

− |α|
}∣∣∣∣
]
max
|z|=1

|P (z)| for |z| ≥ 1,(16)

where φn(z) = zn. Equality in (16) holds for P (z) = γzn + δ with |γ| = |δ| ≠ 0.

Remark 10. For α = β = 0, Theorem 9 in particular gives Theorem 2 and for
suitable choices of λν ; 0 ≤ ν ≤ m, it yields inequalities (3) and (4) as well.

We now prove the following more refined result which besides strengthens
Theorem 9, also provides extensions of Theorem 2 and some results of Aziz and
Dawood [2].

Theorem 11. If P ∈ Pn, and P (z) has all its zeros in |z| ≥ 1, then for every
|α| ≤ 1, |β| ≤ 1, R ≥ r ≥ 1, we have

∣∣∣∣N [P (Rz)]− αN [P (rz)] + β

{(
1 +R

1 + r

)n

− |α|
}
N [P (rz)]

∣∣∣∣
≤ 1

2

[(∣∣∣∣Rn − αrn + βrn
{(

1 +R

1 + r

)n

− |α|
}∣∣∣∣∣∣∣N [φn(z)]

∣∣∣
+ |λ0|

∣∣∣∣1− α+ β

{(
1 +R

1 + r

)n

− |α|
}∣∣∣∣
)
max
|z|=1

|P (z)|

−

(∣∣∣∣Rn − αrn + βrn
{(

1 +R

1 + r

)n

− |α|
}∣∣∣∣∣∣∣N [φn(z)]

∣∣∣
− |λ0|

∣∣∣∣1− α+ β

{(
1 +R

1 + r

)n

− |α|
}∣∣∣∣
)
m

]
for |z| ≥ 1,(17)

where φn(z) = zn and m = min|z|=1 |P (z)|. Equality in (17) holds for P (z) =
γzn + δ with |γ| = |δ| ≠ 0.

If in (17), after substituting the value of N [φn(z)], we get for every |α| ≤ 1,
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|β| ≤ 1 and R ≥ r ≥ 1,∣∣∣∣N [P (Rz)]− αN [P (rz)] + β

{(
1 +R

1 + r

)n

− |α|
}
N [P (rz)]

∣∣∣∣
≤ 1

2

[(∣∣∣∣Rn − αrn + βrn
{(

1 +R

1 + r

)n

− |α|
}∣∣∣∣|z|n∣∣∣∣ m∑

ν=0

λν C(n, ν)

(
n

2

)ν∣∣∣∣
+ |λ0|

∣∣∣∣1− α+ β

{(
1 +R

1 + r

)n

− |α|
}∣∣∣∣
)
max
|z|=1

|P (z)|

−

(∣∣∣∣Rn − αrn + βrn
{(

1 +R

1 + r

)n

− |α|
}∣∣∣∣|z|n∣∣∣∣ m∑

ν=0

λν C(n, ν)

(
n

2

)ν∣∣∣∣
− |λ0|

∣∣∣∣1− α+ β

{(
1 +R

1 + r

)n

− |α|
}∣∣∣∣
)
m

]
for |z| ≥ 1,

(18)

where m = min|z|=1 |P (z)| and λν ; 0 ≤ ν ≤ m, are such that all the zeros of ϕ(z)
defined by (6) lie in the half plane (7). Taking λν = 0, ν = 1, 2, 3, ...,m, in (18) and
noting that N [P ](z) = λ0P (z), we get the following result which is of independent
interest, because besides giving generalizations and refinements of (3) and (4), it
also provides generalizations of some results of Aziz and Dawood [2].

Corollary 12. If P ∈ Pn, and P (z) has all its zeros in |z| ≥ 1, then for |α| ≤ 1,
|β| ≤ 1, R ≥ r ≥ 1, we have∣∣∣∣P (Rz)− αP (rz) + β

{(
1 +R

1 + r

)n

− |α|
}
P (rz)

∣∣∣∣
≤ 1

2

[(∣∣∣∣Rn − αrn + βrn
{(

1 +R

1 + r

)n

− |α|
}∣∣∣∣|z|n

+

∣∣∣∣1− α+ β

{(
1 +R

1 + r

)n

− |α|
}∣∣∣∣
)
max
|z|=1

|P (z)|

−

(∣∣∣∣Rn − αrn + βrn
{(

1 +R

1 + r

)n

− |α|
}∣∣∣∣|z|n

−
∣∣∣∣1− α+ β

{(
1 +R

1 + r

)n

− |α|
}∣∣∣∣
)
m

]
, for |z| ≥ 1,(19)

where m = min|z|=1 |P (z)|. Equality in (19) holds for P (z) = γzn + δ with |γ| =
|δ| ≠ 0.

Remark 13. Taking α = r = 1 and β = 0 in (19) and divide both sides of it
by R − 1 and let R → 1, we get in particular a result of Aziz and Dawood ([2],
Theorem 2), whereas by taking α = β = 0 and r = 1 in (19), it yields a result of
Aziz and Dawood ([2], Theorem 3).
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A polynomial P ∈ Pn is said to be self-inversive if P (z) = δQ(z), where

Q(z) = znP ( 1z ) and |δ| = 1. Finally, we prove the following result for self-inversive
polynomials.

Theorem 14. If P ∈ Pn is self-inversive, then for |α| ≤ 1, |β| ≤ 1, R ≥ r ≥ 1, we
have ∣∣∣∣N [P (Rz)]− αN [P (rz)] + β

{(
1 +R

1 + r

)n

− |α|
}
N [P (rz)]

∣∣∣∣
≤ 1

2

[∣∣∣∣Rn − αrn + βrn
{(

1 +R

1 + r

)n

− |α|
}∣∣∣∣∣∣∣N [φn(z)]

∣∣∣
+ |λ0|

∣∣∣∣1− α+ β

{(
1 +R

1 + r

)n

− |α|
}∣∣∣∣
]
max
|z|=1

|P (z)| for |z| ≥ 1,(20)

where φn(z) = zn. Equality in (20) holds for P (z) = zn + 1.

Remark 15. For α = β = 0, the above result in particular reduces to a result of
Rather et al. ([17], Theorem 1.4).

3. AUXILIARY RESULTS

In order to prove our main results, we need the following lemmas.

Lemma 16. If P ∈ Pn, and P (z) has all its zeros in |z| ≤ 1, then for every
R ≥ r ≥ 1, and |z| = 1,

|P (Rz)| ≥
(
1 +R

1 + r

)n

|P (rz)|.

Proof. The proof of this lemma is similar to the proof of Lemma 2.1 of Govil et al.
[7], and hence we omit the details.

If we take r = s = 1 and σ = n
2 in Theorem 1.1 of Rather et al. [17], we get

the following:

Lemma 17. If all the zeros of polynomial P ∈ Pn lie in |z| ≤ 1, then all the zeros
of N [P (z)] defined by (5) also lie in |z| ≤ 1.

Lemma 18. If P ∈ Pn, and P (z) ̸= 0 in |z| < 1, then for every complex numbers
|α| ≤ 1, |β| ≤ 1 and R ≥ r ≥ 1, we have∣∣∣∣N [P (Rz)]− αN [P (rz)] + β

{(
1 +R

1 + r

)n

− |α|
}
N [P (rz)]

∣∣∣∣
≤
∣∣∣∣N [Q(Rz)]− αN [Q(rz)] + β

{(
1 +R

1 + r

)n

− |α|
}
N [Q(rz)]

∣∣∣∣ for |z| ≥ 1,

(21)

where Q(z) = znP ( 1z ).
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Proof. Since Q(z) = znP ( 1z ), therefore, |P (z)| = |Q(z)| for |z| = 1. Also, since
P (z) ̸= 0 |z| < 1 and hence Q(z) ̸= 0 in |z| > 1, it follows by the maximum
modulus principle that |P (z)| ≤ |Q(z)| for |z| ≥ 1. Thus, inequality (21) holds
trivially for R = r according to Theorem 1.1. Therefore, we now presume that
R > r. If λ is any complex number such that |λ| > 1, it follows by Rouché’s
theorem that the polynomial T (z) = P (z) + λQ(z) has all its zeros in |z| ≤ 1. On
applying Lemma 16 to the polynomial T (z), we get for R > r ≥ 1 and for each
0 ≤ θ < 2π,

|T (Reiθ)| ≥
(
1 +R

1 + r

)n

|T (reiθ)|.(22)

Since T (Reiθ) ̸= 0 and 1+R
1+r > 1, for every R > r ≥ 1, it follows from (22) that

|T (Reiθ)| >
(
1 +R

1 + r

)n

|T (Reiθ)|

≥ |T (reiθ)|,

which is equivalent to

|T (Rz)| > |T (rz)| for |z| = 1 and R > r ≥ 1.(23)

If α is any complex number with |α| ≤ 1, we have

|T (Rz)− αT (rz)| ≥ |T (Rz)| − |α||T (rz)|

≥
{(

1 +R

1 + r

)n

− |α|
}
|T (rz)| for |z| = 1.(24)

Since T (Rz) has all its zeros in |z| ≤ 1
R < 1. Therefore, it follows from inequality

(23) by direct application of Rouché’s theorem that the polynomial T (Rz)−αT (rz)
has all its zeros in |z| < 1. Again from inequality (24), by direct application of
Rouché’s theorem, it follows that all the zeros of the polynomial T (Rz)−αT (rz)+
β
{(

1+R
1+r

)n
− |α|

}
|T (rz)| lie in |z| < 1, for any complex number β with |β| ≤ 1,

and R > r ≥ 1. Applying Lemma 17 and noting that N is a linear operator, we
conclude that all the zeros of the polynomial

H(z) := N [T (Rz)]− αN [T (rz)] + β

{(
1 +R

1 + r

)n

− |α|
}
N [T (rz)]

lie in |z| < 1, for every |α| ≤ 1, |β| ≤ 1 and R > r ≥ 1. Replacing T (z) by
P (z) + λQ(z), we conclude that all the zeros of the polynomial

H(z) := N [P (Rz)]− αN [P (rz)] + β

{(
1 +R

1 + r

)n

− |α|
}
N [P (rz)]

+ λ

[
N [Q(Rz)]− αN [Q(rz)] + β

{(
1 +R

1 + r

)n

− |α|
}
N [Q(rz)]

]
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lie in |z| < 1, for all complex numbers α, β with |α| ≤ 1, |β| ≤ 1 and R > r ≥ 1.
This implies,∣∣∣∣N [P (Rz)]− αN [P (rz)] + β

{(
1 +R

1 + r

)n

− |α|
}
N [P (rz)]

∣∣∣∣
≤
∣∣∣∣N [Q(Rz)]− αN [Q(rz)] + β

{(
1 +R

1 + r

)n

− |α|
}
N [Q(rz)]

∣∣∣∣ for |z| ≥ 1.

(25)

If inequality (25) is not true, then there is a point z = z0 with |z0| ≥ 1, such that∣∣∣∣N [P (Rz)]− αN [P (rz)] + β

{(
1 +R

1 + r

)n

− |α|
}
N [P (rz)]

∣∣∣∣
>

∣∣∣∣N [Q(Rz)]− αN [Q(rz)] + β

{(
1 +R

1 + r

)n

− |α|
}
N [Q(rz)]

∣∣∣∣.
Taking

λ = −
N [P (Rz)]− αN [P (rz)] + β

{(
1+R
1+r

)n

− |α|
}
N [P (rz)]

N [Q(Rz)]− αN [Q(rz)] + β

{(
1+R
1+r

)n

− |α|
}
N [Q(rz)]

,

so that |λ| > 1, and with this choice of λ, we have H(z0) = 0 for |z0| ≥ 1, which
is clear contradiction to the fact that H(z) ̸= 0 for |z| ≥ 1. Thus for all complex
numbers α, β with |α| ≤ 1, |β| ≤ 1 and R > r ≥ 1, the inequality (25) holds and
this proves Lemma 18 completely.

Lemma 19. If P ∈ Pn, then for |α| ≤ 1, |β| ≤ 1 and R ≥ r ≥ 1, we have∣∣∣∣N [P (Rz)]− αN [P (rz)] + β

{(
1 +R

1 + r

)n

− |α|
}
N [P (rz)]

∣∣∣∣
+

∣∣∣∣N [Q(Rz)]− αN [Q(rz)] + β

{(
1 +R

1 + r

)n

− |α|
}
N [Q(rz)]

∣∣∣∣
≤

[∣∣∣∣Rn − αrn + βrn
{(

1 +R

1 + r

)n

− |α|
}∣∣∣∣∣∣∣N [φn(z)]

∣∣∣
+

∣∣∣∣1− αrn + βrn
{(

1 +R

1 + r

)n

− |α|
}∣∣∣∣|λ0|

]
max
|z|=1

|P (z)| for |z| ≥ 1,(26)

where φn(z) = zn and Q(z) = znP ( 1z ).

Proof. Let M = max|z|=1 |P (z)|, then |P (z)| ≤ M for |z| = 1. If λ is any complex
number with |λ| > 1, then by Rouché’s theorem the polynomial G(z) = P (z)+λM
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has no zeros in |z| < 1. Applying Lemma 18 to G(z), we have for |α| ≤ 1, |β| ≤ 1
and R ≥ r ≥ 1,∣∣∣∣N [G(Rz)]− αN [G(rz)] + β

{(
1 +R

1 + r

)n

− |α|
}
N [G(rz)]

∣∣∣∣
≤
∣∣∣∣N [H(Rz)]− αN [H(rz)] + β

{(
1 +R

1 + r

)n

− |α|
}
N [H(rz)]

∣∣∣∣ for |z| ≥ 1,

where H(z) = znG( 1z ) = Q(z)− λznM .
On substituting G(z), H(z) and using the fact that N is linear with N [1] = λ0, we
get from above inequality for |α| ≤ 1, |β| ≤ 1, |z| ≥ 1 and R ≥ r ≥ 1,∣∣∣∣∣N [P (Rz)]− αN [P (rz)] + β

{(
1 +R

1 + r

)n

− |α|
}
N [P (rz)]

+ λ0λM

[
1− α+ β

{(
1 +R

1 + r

)n

− |α|
}]∣∣∣∣∣

≤

∣∣∣∣∣N [Q(Rz)]− αN [Q(rz)] + β

{(
1 +R

1 + r

)n

− |α|
}
N [Q(rz)]

+ λM

[
Rn − αrn + βrn

{(
1 +R

1 + r

)n

− |α|
}]
N [φn(z)]

∣∣∣∣∣,
(27)

where Q(z) = znP ( 1z ).
Choosing the argument of λ suitably, which is possible by Corollary 6 such that∣∣∣∣∣N [Q(Rz)]− αN [Q(rz)] + β

{(
1 +R

1 + r

)n

− |α|
}
N [Q(rz)]

+ λM

[
Rn − αrn + βrn

{(
1 +R

1 + r

)n

− |α|
}]
N [φn(z)]

∣∣∣∣∣
= |λ|M

∣∣∣∣Rn − αrn + βrn
{(

1 +R

1 + r

)n

− |α|
}∣∣∣∣∣∣∣N [φn(z)]

∣∣∣
−

∣∣∣∣∣N [Q(Rz)]− αN [Q(rz)] + β

{(
1 +R

1 + r

)n

− |α|
}
N [Q(rz)]

∣∣∣∣∣,
we get from (27) the required result on making |λ| → 1. This completes the proof
of Lemma 19.
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4. PROOFS OF THE MAIN RESULTS

Proof of Theorem 3. The result holds trivially for R = r, by virtue of Theorem
1, so we now assume that R > r. By Rouché’s theorem, the polynomial T (z) =
P (z) − λf(z), with |λ| > 1, has all its zeros in |z| ≤ 1. On applying Lemmas 16
and 17 and proceeding similarly as in the proof of Lemma 18, the result follows.
Hence, we omit the details.

Proof of Theorem 8. Let m = min|z|=1 |P (z)|. In case m = 0, there is nothing
to prove. Assume that m > 0, so that all the zeros of P (z) lie in |z| < 1 and we
have, m|z|n ≤ |P (z)| for |z| = 1. Applying Theorem 3 with f(z) replaced by mzn,
we obtain for every |α| ≤ 1, |β| ≤ 1 and R ≥ r ≥ 1,∣∣∣∣N [P (Rz)]− αN [P (rz)] + β

{(
1 +R

1 + r

)n

− |α|
}
N [P (rz)]

∣∣∣∣
≥
∣∣∣∣Rn − αrn + βrn

{(
1 +R

1 + r

)n

− |α|
}∣∣∣∣∣∣∣N [φn(z)]

∣∣∣m for |z| ≥ 1,

which is inequality (15). This completes the proof of Theorem 8.

Proof of Theorem 9. Since P (z) ̸= 0 in |z| < 1, therefore by Lemma 18, we
have∣∣∣∣N [P (Rz)]− αN [P (rz)] + β

{(
1 +R

1 + r

)n

− |α|
}
N [P (rz)]

∣∣∣∣
≤
∣∣∣∣N [Q(Rz)]− αN [Q(rz)] + β

{(
1 +R

1 + r

)n

− |α|
}
N [Q(rz)]

∣∣∣∣,
for |z| ≥ 1 and Q(z) = znP ( 1z ).
Equivalently,

2

∣∣∣∣N [P (Rz)]− αN [P (rz)] + β

{(
1 +R

1 + r

)n

− |α|
}
N [P (rz)]

∣∣∣∣
≤
∣∣∣∣N [P (Rz)]− αN [P (rz)] + β

{(
1 +R

1 + r

)n

− |α|
}
N [P (rz)]

∣∣∣∣
+

∣∣∣∣N [Q(Rz)]− αN [Q(rz)] + β

{(
1 +R

1 + r

)n

− |α|
}
N [Q(rz)]

∣∣∣∣,
which on applying Lemma 19, gives the desired result. This completes the proof of
Theorem 9.

Proof of Theorem 11. If P (z) has a zero on |z| = 1, the result follows from
Theorem 9. Henceforth, we assume that P (z) has all its zeros in |z| > 1, so that
m = min|z|=1 |P (z)| > 0. Now for every complex number λ with |λ| < 1, we have
|λm| < m ≤ |P (z)| for |z| = 1. Therefore, by Rouché’s theorem, the polynomial

G(z) = P (z)+λmzn does not vanish in |z| ≤ 1. HenceH(z) = znG( 1z ) = Q(z)+λm,

where Q(z) = znP ( 1z ), has all its zeros in |z| ≤ 1 and |G(z)| = |H(z)| for |z| = 1.
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On applying Lemma 18 and noting that N is a linear operator with N [1] = λ0, we
get for every |α| ≤ 1, |β| ≤ 1, R ≥ r ≥ 1 and |z| ≥ 1,

∣∣∣∣N [G(Rz)]− αN [G(rz)] + β

{(
1 +R

1 + r

)n

− |α|
}
N [G(rz)]

∣∣∣∣
≤
∣∣∣∣N [H(Rz)]− αN [H(rz)] + β

{(
1 +R

1 + r

)n

− |α|
}
N [H(rz)]

∣∣∣∣.

Equivalently,

∣∣∣∣∣N [P (Rz)]− αN [P (rz)] + β

{(
1 +R

1 + r

)n

− |α|
}
N [P (rz)]

+ λm

[
Rn − αrn + βrn

{(
1 +R

1 + r

)n

− |α|
}]
N [φn(z)]

∣∣∣∣∣
≤

∣∣∣∣∣N [Q(Rz)]− αN [Q(rz)] + β

{(
1 +R

1 + r

)n

− |α|
}
N [Q(rz)]

+ λ0λm

[
1− α+ β

{(
1 +R

1 + r

)n

− |α|
}]∣∣∣∣∣ for |z| ≥ 1,(28)

where φn(z) = zn and Q(z) = znP ( 1z ). Choosing the argument of λ in left hand
side of (28) such that

∣∣∣∣∣N [P (Rz)]− αN [P (rz)] + β

{(
1 +R

1 + r

)n

− |α|
}
N [P (rz)]

+ λm

[
Rn − αrn + βrn

{(
1 +R

1 + r

)n

− |α|
}]
N [φn(z)]

∣∣∣∣∣
=

∣∣∣∣∣N [P (Rz)]− αN [P (rz)] + β

{(
1 +R

1 + r

)n

− |α|
}
N [P (rz)]

∣∣∣∣∣
+m|λ|

∣∣∣∣Rn − αrn + βrn
{(

1 +R

1 + r

)n

− |α|
}∣∣∣∣∣∣∣N [φn(z)]

∣∣∣,
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we get for |α| ≤ 1, |β| ≤ 1 and R ≥ r ≥ 1,∣∣∣∣∣N [P (Rz)]− αN [P (rz)] + β

{(
1 +R

1 + r

)n

− |α|
}
N [P (rz)]

∣∣∣∣∣
+m|λ|

∣∣∣∣Rn − αrn + βrn
{(

1 +R

1 + r

)n

− |α|
}∣∣∣∣∣∣∣N [φn(z)]

∣∣∣
≤

∣∣∣∣∣N [Q(Rz)]− αN [Q(rz)] + β

{(
1 +R

1 + r

)n

− |α|
}
N [Q(rz)]

∣∣∣∣∣
+m|λ0||λ|

∣∣∣∣1− α+ β

{(
1 +R

1 + r

)n

− |α|
}∣∣∣∣ for |z| ≥ 1.

This gives by using Lemma 19 and making |λ| → 1,∣∣∣∣N [P (Rz)]− αN [P (rz)] + β

{(
1 +R

1 + r

)n

− |α|
}
N [P (rz)]

∣∣∣∣
≤ 1

2

[(∣∣∣∣Rn − αrn + βrn
{(

1 +R

1 + r

)n

− |α|
}∣∣∣∣∣∣N [φn(z)]

∣∣
+ |λ0|

∣∣∣∣1− α+ β

{(
1 +R

1 + r

)n

− |α|
}∣∣∣∣
)
max
|z|=1

|P (z)|

−

(∣∣∣∣Rn − αrn + βrn
{(

1 +R

1 + r

)n

− |α|
}∣∣∣∣∣∣N [φn(z)]

∣∣
− |λ0|

∣∣∣∣1− α+ β

{(
1 +R

1 + r

)n

− |α|
}∣∣∣∣
)
m

]
,

which is the desired inequality and this completes the proof of Theorem 11.

Proof of Theorem 14. Recall that P ∈ Pn is self-inversive, therefore P (z) =

δQ(z), where Q(z) = znP ( 1z ) and |δ| = 1. It gives for every |α| ≤ 1, |β| ≤ 1 and
R ≥ r ≥ 1,∣∣∣∣N [P (Rz)]− αN [P (rz)] + β

{(
1 +R

1 + r

)n

− |α|
}
N [P (rz)]

∣∣∣∣
=

∣∣∣∣N [Q(Rz)]− αN [Q(rz)] + β

{(
1 +R

1 + r

)n

− |α|
}
N [Q(rz)]

∣∣∣∣ for all z.

The above inequality combined with Lemma 19 yields (20). This completes the
proof of Theorem 14.
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5. CONCLUSION

In this paper, we continue the study about the comparison inequalities for a linear
operator between polynomials in the plane, following up on a study started by
various authors in the recent past. More specifically, we establish some new Erdős-
Lax type inequalities for a constrained polynomial.

Acknowledgments. The authors are deeply grateful to the anonymous referees
for their valuable comments and constructive suggestions for improvements of this
paper.
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