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SOME NEW RESULTS RELATED TO THE CONSTANT e
AND FUNCTION (1 + 1/x)x

Xue-Feng Han, Chao-Ping Chen∗ and H. M. Srivastava

It is known that the constant e has the following series representations:

e =
∑∞

k=0
1
k!

and e =
∑∞

k=0
9k2+1
(3k)!

. The second series is extremely rapidly

convergent. In this paper, we present asymptotic expansions and two-sided

inequalities for the remainders Rn and Rn, where Rn = e −
∑n

k=0
1
k!

and

Rn = e −
∑n

k=0
9k2+1
(3k)!

. Also, we present some inequalities and completely

monotonic functions involving (1 + 1/x)x. We also consider a number of re-

lated developments on the subject of this paper.

1. INTRODUCTION AND MOTIVATION

Throughout this paper, N represents the set of positive integers and N0 := N∪{0}.
The constant e, which is also known as Euler’s number, can be defined by the
following limit:

e = lim
x→∞

(
1 +

1

x

)x

or by the infinite series as follows:

(1) e =

∞∑
k=0

1

k!
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as first published by Newton [24].

The constant e is the most important constant in mathematics because it
appears in countless mathematical contexts involving limits and derivatives. Joost
Bürgi seems to have been the first to formulate an approximation to e around 1620,
obtaining three-decimal-place accuracy (see [13, p. 31], [19] and [20, pp. 26–27];
see also the Preface in [30]).

For a large value of n in (1), the partial sum:

n∑
k=0

1

k!
= 1 + 1 +

1

2!
+

1

3!
+ · · ·+ 1

n!

gives a simple and direct approximation to e that is a good way of calculating
e to a high accuracy (see [2] and [7]). Numerical values of e are usually derived
by using either the optimized versions of the Taylor-Maclaurin series of ex or the
continued-fraction expansion approach initiated by Euler [7].

The constant e has many series representations (see [6, 27]), some of which
we reproduce below:

e =

∞∑
k=0

k + 1

2 · (k!)
=

∞∑
k=0

3− 4k2

(2k + 1)!
=

∞∑
k=0

2k + 1

(2k)!
=

∞∑
k=0

2(k + 1)

(2k + 1)!
=

∞∑
k=0

9k2 + 1

(3k)!
.(2)

By taking the first twenty terms in the series (1) and (2), we have∣∣∣∣∣e−
19∑
k=0

1

k!

∣∣∣∣∣ ≈ 4.315× 10−19 and

∣∣∣∣∣e−
19∑
k=0

k + 1

2 · (k!)

∣∣∣∣∣ ≈ 4.541× 10−18,

∣∣∣∣∣e−
19∑
k=0

3− 4k2

(2k + 1)!

∣∣∣∣∣ ≈ 4.776× 10−47 and

∣∣∣∣∣e−
19∑
k=0

2k + 1

(2k)!

∣∣∣∣∣ ≈ 5.028× 10−47

and∣∣∣∣∣e−
19∑
k=0

2(k + 1)

(2k + 1)!

∣∣∣∣∣ ≈ 1.256× 10−48 and

∣∣∣∣∣e−
19∑
k=0

9k2 + 1

(3k)!

∣∣∣∣∣ ≈ 4.327× 10−79.

It is observed that, among series representations in (1) and (2), the last series in
(2) would prove to be the best one.

We here consider the series (1) and the last series in (2). We set

Sn :=

n∑
k=0

1

k!
and Sn =

n∑
k=0

9k2 + 1

(3k)!
,

and we put

Rn := e− Sn =

∞∑
k=n+1

1

k!
(3)
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and

Rn := e− Sn =

∞∑
k=n+1

9k2 + 1

(3k)!
.(4)

Then, by using the Maple software, we find, as n→ ∞, that

1

(n+ 1)!
∼ 1

n · n!

(
1− 1

n
+

1

n2
− 1

n3
+

1

n4
− 1

n5
+ · · ·

)
,

1

(n+ 2)!
∼ 1

n · n!

(
1

n
− 3

n2
+

7

n3
− 15

n4
+

31

n5
− · · ·

)
,

1

(n+ 3)!
∼ 1

n · n!

(
1

n2
− 6

n3
+

25

n4
− 90

n5
+ · · ·

)
,

1

(n+ 4)!
∼ 1

n · n!

(
1

n3
− 10

n4
+

65

n5
− · · ·

)
,

1

(n+ 5)!
∼ 1

n · n!

(
1

n4
− 15

n5
+ · · ·

)
,

and so on. Summing these expansions side by side, we obtain the following asymp-
totic expansion of the remainder Rn:

Rn ∼ 1

n · n!

(
1− 1

n2
+

1

n3
+

2

n4
− · · ·

)
(n→ ∞).(5)

Also, by using the Maple software, we find, as n→ ∞, that

9(n+ 1)2 + 1(
3(n+ 1)

)
!

=
9(n+ 1)2 + 1(
3(n+ 1)

)
!
,

9(n+ 2)2 + 1(
3(n+ 2)

)
!

∼ 9(n+ 1)2 + 1(
3(n+ 1)

)
!

(
1

27n3
− 1

9n4
+

52

243n5

− 80

243n6
+

958

2187n7
− 394

729n8
+ · · ·

)
,

9(n+ 3)2 + 1(
3(n+ 3)

)
!

∼ 9(n+ 1)2 + 1(
3(n+ 1)

)
!

(
1

729n6
− 1

81n7
+

428

6561n8

− 578

2187n9
+

17893

19683n10
− · · ·

)
,



4 Xue-Feng Han, Chao-Ping Chen and H. M. Srivastava

9(n+ 4)2 + 1(
3(n+ 4)

)
!

∼ 9(n+ 1)2 + 1(
3(n+ 1)

)
!

(
1

19683n9
− 2

2187n10
+ · · ·

)
,

and so on. Upon summing these expansions side by side, we obtain the following
asymptotic expansion of the remainder Rn,

Rn ∼ 9n2 + 18n+ 10

(3n+ 3)!

(
1 +

1

27n3
− 1

9n4
+

52

243n5

− 239

729n6
+

931

2187n7
− 3118

6561n8
+ · · ·

)
(n→ ∞).(6)

Even though we can obtain as many coefficients as we please in the right-
hand sides of (5) and (6) by using the Maple software, we here give a formula for
determining the coefficients of each asymptotic expansion, and then establish the
lower and upper bounds for the remainders Rn and Rn, which is the first aim of
the present paper.

It is well known that

(7)

(
1 +

1

n

)n

< e for n ∈ N.

By using (7), Hardy [18] presented a proof of Carleman’s inequality

(8)

∞∑
n=1

(a1a2 · · · an)1/n < e

∞∑
n=1

an,

where an ≥ 0 for n ∈ N and 0 <
∑∞

n=1 an < ∞. By estimating the weight
coefficient (1 + 1/n)n, some strengthened and generalized results of (8) have been
given, see two recently published article [10,11] and the references cited therein.

For n ∈ N, let

(9) In =

(
1 +

1

n

)n

.

The second aim of the present paper is to present some sharp inequalities related
to the quantities:

In−1

In
and

I2n
In−1In+1

for n ≥ 2.

Gautschi [15] proved that the harmonic mean of Γ(x) and Γ(1/x) is greater
than or equal to 1, namely,

2Γ(x)Γ(1/x)

Γ(x) + Γ(1/x)
≥ 1 for x > 0(10)
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with equality if x = 1. Similarly, Alzer and Jameson [1] proved that

2ψ(x)ψ(1/x)

ψ(x) + ψ(1/x)
≥ −γ for x > 0(11)

with equality if x = 1, where ψ(x) = Γ′(x)/Γ(x) denotes the psi function and
γ = 0.577 . . . is the Euler-Mascheroni constant. Nantomah [22] conjectured, then
Matej́ıčka [21] and Nantomah [23] proved that

(12)
2β(x)β(1/x)

β(x) + β(1/x)
≤ ln 2 for x > 0

with equality if x = 1, where β(x) is the Nielsen’s β-function defined in [25, p. 16]
by

β(x) =
1

2

[
ψ

(
x+ 1

2

)
− ψ

(x
2

)]
=

∫ ∞

0

e−xt

1 + e−t
dt for x > 0.

For x > 0, let

(13) I(x) =

(
1 +

1

x

)x

.

Motivated by the harmonic mean inequalities (10), (11) and (12), we here establish
the arithmetic mean inequality of I(x) and I(1/x), namely,

I(x) + I(1/x)

2
≤ 2 for x > 0

with equality if x = 1, which is the third aim of the present paper. Thus, we obtain

2I(x)I(1/x)

I(x) + I(1/x)
≤
√
I(x)I(1/x) ≤ I(x) + I(1/x)

2
≤ 2 for x > 0

with equality if x = 1.

The last aim of the present paper is to present completely monotonic functions
involving (1 + 1/x)x.

The numerical values, which we have given in this article, were computed by
using the computer program MAPLE 11.

2. ASYMPTOTIC EXPANSIONS AND INEQUALITIES OF RN AND
RN

Theorem 1. The remainder Rn, defined by (3), has the following asymptotic
expansion:

Rn ∼ 1

n · n!

∞∑
k=0

rk
nk

=
1

n · n!

(
1− 1

n2
+

1

n3
+

2

n4
− 9

n5
+

9

n6
+

50

n7
− · · ·

)
(14)
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as n → ∞, where the coefficients rk (k ≥ 0) are given by the following recursive
relation:

r0 = 1, r1 = 0, rk = (−1)k +

k∑
j=1

k−j∑
ℓ=0

(−1)k−ℓ−1jrℓ

(
k − j − 1

k − j − ℓ

)
for k ≥ 2.

(15)

Proof. We begin by setting

Tn :=
1

n · n!

∞∑
k=0

rk
nk
,

where rk (k ≥ 0) are real numbers to be determined. Then, in view of (5), we can
let Rn ∼ Tn and

∆Rn := Rn+1 −Rn ∼ Tn+1 − Tn =: ∆Tn as n→ ∞.

Thus, clearly, we have

∆Rn = − 1

n · n!
1

1 + 1
n

∼ − 1

n · n!

∞∑
k=0

(−1)k
1

nk
(n→ ∞),

which can be written for n→ ∞ as follows:

n · n!∆Rn ∼
∞∑
k=0

(−1)k+1 1

nk
.(16)

We also have

∆Tn =
1

(n+ 1) · (n+ 1)!

∞∑
k=0

rk
(n+ 1)k

− 1

n · n!

∞∑
k=0

rk
nk

=
1

n · n!

(
n

(n+ 1)2

∞∑
k=0

rk
(n+ 1)k

−
∞∑
k=0

rk
nk

)
.(17)

It is easy to see that

n

(n+ 1)2
∼

∞∑
k=0

ak
nk

(n→ ∞),

where

ak = (−1)k−1k for k ≥ 0.

Direct computation yields

∞∑
k=0

rk
(n+ 1)k

=

∞∑
k=0

rk
nk

(
1 +

1

n

)−k

=

∞∑
k=0

rk
nk

∞∑
j=0

(
−k
j

)
1

nj

=

∞∑
k=0

rk
nk

∞∑
j=0

(−1)j
(
k + j − 1

j

)
1

nj
=

∞∑
k=0

bk
nk
,(18)
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where

bk =

k∑
ℓ=0

rℓ(−1)k−ℓ

(
k − 1

k − ℓ

)
.

We then find from (17), a s n→ ∞, that

n · n!∆Tn ∼
∞∑
k=0

ak
nk

∞∑
k=0

bk
nk

−
∞∑
k=0

rk
nk

=

∞∑
k=0

 k∑
j=0

ajbk−j − rk

 1

nk
.(19)

Now, equating the coefficients of the term n−k on the right-hand sides of (16)
and (19), we obtain

(−1)k+1 =

k∑
j=0

ajbk−j − rk for k ≥ 0.

For k = 0, we obtain r0 = a0b0 + 1 = 1. For k = 1, we obtain r1 = −1 + r0 = 0.
And, for k ≥ 2, we have

rk = (−1)k +

k∑
j=0

ajbk−j = (−1)k + a0bk +

k∑
j=1

ajbk−j

= (−1)k +

k∑
j=1

(−1)j−1jbk−j = (−1)k +

k∑
j=1

k−j∑
ℓ=0

(−1)k−ℓ−1jrℓ

(
k − j − 1

k − j − ℓ

)
.

The proof of Theorem 1 is complete.

Next, by using the formula (15), we show how easily we can determine rk (k ≥
0) in (14). We give the first few coefficients rk as follows:

r0 = 1, r1 = 0,

r2 = 1− 2r0 + r1 = −1,

r3 = −1 + 3r0 − 3r1 + r2 = 1,

r4 = 1− 4r0 + 6r1 − 4r2 + r3 = 2.

We note that the values of rk (for k = 0, 1, 2, 3, 4) here are equal to the coefficients
of 1/nk (for k = 0, 1, 2, 3, 4) in (5), respectively.

Theorem 2. For all integers n ≥ 1, the following two-sided inequality holds true:

Ln < Rn < Un,(20)

where

Ln :=
1

n · n!

(
1− 1

n2
+

1

n3
+

2

n4
− 9

n5

)
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and

Un =
1

n · n!

(
1− 1

n2
+

1

n3
+

2

n4
− 9

n5
+

9

n6
+

50

n7

)
.

Proof. For n ≥ 1, let

ξn := Rn − Ln and ηn := Rn − Un.

We then have

lim
n→∞

ξn = lim
n→∞

ηn = 0.

In order to prove (20), it suffices to show that the sequence {ξn} is strictly de-
creasing and also that the {ηn} is strictly increasing for n ≥ 1. Direct computation
yields

ξn+1 − ξn = ∆Rn + Ln − Ln+1

= − 1

n · n!
1

1 + 1
n

+
1

n · n!

(
1− 1

n2
+

1

n3
+

2

n4
− 9

n5

)

− 1

n · n!
n

(n+ 1)2

(
1− 1

(n+ 1)2
+

1

(n+ 1)3
+

2

(n+ 1)4
− 9

(n+ 1)5

)

= −9 + 174n2 + 267n3 + 61n+ 231n4 + 104n5 + 9n6

n6(n+ 1)7 · n!
< 0

and

ηn+1 − ηn = ∆Rn + Un − Un+1

= − 1

n · n!
1

1 + 1
n

+
1

n · n!

(
1− 1

n2
+

1

n3
+

2

n4
− 9

n5
+

9

n6
+

50

n7

)

− 1

n · n!
n

(n+ 1)2

(
1− 1

(n+ 1)2
+

1

(n+ 1)3
+

2

(n+ 1)4

− 9

(n+ 1)5
+

9

(n+ 1)6
+

50

(n+ 1)7

)

=
50 + 459n+ 1872n2 + 4445n3 + 6751n4 + 6758n5 + 4395n6 + 1723n7 + 267n8

n8(n+ 1)9 · n!
> 0.

The proof of Theorem 2 is thus completed.
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Remark 3. We write (20) as follows:

Pn < e < Qn,(21)

where

Pn = Sn + Ln and Qn = Sn + Un.

For n = 10 in (21), we have

P10 = 2.718281828458 · · ·

and

Q10 = 2.718281828459 · · · .

We then get the approximate value of e, given by

e ≈ 2.71828182845.

The choice n = 100 in (21) yields the following approximate value of e:

e ≈2.71828182845904523536028747135266249775724709369995

95749669676277240766303535475945713821785251664274

27466391932003059921817413596629043572900334295260

59563073813232862794.

Theorem 4. The remainder Rn, defined by (4), has the following asymptotic
expansion:

Rn ∼ 9n2 + 18n+ 10

(3n+ 3)!

∞∑
k=0

λk
nk

=
9n2 + 18n+ 10

(3n+ 3)!

(
1 +

1

27n3
− 1

9n4
+

52

243n5

− 239

729n6
+

931

2187n7
− 3118

6561n8
+ · · ·

)
(n→ ∞)(22)

with the coefficients λk (k ≥ 0) given by the following recursive formula for λk:

λ0 = 1, λk =

k−1∑
j=0

j∑
ℓ=0

λℓ(−1)j−ℓ

(
j − 1

j − ℓ

)
dk−j for k ≥ 1,(23)

where

dk = (−1)k−1

[
2k

120
− 2

25

(
5

3

)k

+
5

16

(
4

3

)k
]
− 3ck

10
for k ≥ 1(24)

and

c1 = 1, c2 = −11

9
, ck = −2ck−1 −

10

9
ck−2 for k ≥ 3.(25)
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Proof. Let us set

In :=
9n2 + 18n+ 10

(3n+ 3)!

∞∑
k=0

λk
nk
,

where λk (k ≥ 0) are real numbers to be determined. Then, in view of (5), we can
let Rn ∼ In and

∆Rn := Rn −Rn+1 ∼ In − In+1 =: ∆In as n→ ∞.

We thus obtain

∆Rn =
9n2 + 18n+ 10

(3n+ 3)!
(26)

and

∆In =
9n2 + 18n+ 10

(3n+ 3)!

∞∑
k=0

λk
nk

− 9(n+ 1)2 + 18(n+ 1) + 10

(3n+ 6)!

∞∑
k=0

λk
(n+ 1)k

=
9n2 + 18n+ 10

(3n+ 3)!

( ∞∑
k=0

λk
nk

− 9n2 + 36n+ 37

(3n+ 6)(3n+ 5)(3n+ 4)(9n2 + 18n+ 10)

∞∑
k=0

λk
(n+ 1)k

)
.(27)

It is easy to see that

9n2 + 36n+ 37

(3n+ 6)(3n+ 5)(3n+ 4)(9n2 + 18n+ 10)

=
1

60n(1 + 2
n )

− 2

15n(1 + 5
3n )

+
5

12(1 + 4
3n )

− 3

10

9n+ 7

9n2 + 18n+ 10

=

∞∑
k=1

(−1)k−1 2
k−1

60nk
−

∞∑
k=1

(−1)k−1 2

15

(
5

3

)k−1
1

nk

+

∞∑
k=1

(−1)k−1 5

12

(
4

3

)k−1
1

nk
− 3

10

9n+ 7

9n2 + 18n+ 10

=

∞∑
k=1

(−1)k−1

[
2k

120
− 2

25

(
5

3

)k

+
5

16

(
4

3

)k
]

1

nk
− 3

10

9n+ 7

9n2 + 18n+ 10
.

We now let

9n+ 7

9n2 + 18n+ 10
=

∞∑
k=1

ck
nk
,
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where ck (k ≥ 1) are real numbers to be determined. This can be written as follows:

9n+ 7 = (9n2 + 18n+ 10)

∞∑
k=1

ck
nk

and

9n+ 7 = 9c1n+ 9(c2 + 2c1) +

∞∑
k=1

(9ck+2 + 18ck+1 + 10ck)n
−k.(28)

By equating the coefficients of like powers of n on both sides of (28), we obtain

9c1 = 9, 9(c2 + 2c1) = 7, 9ck+2 + 18ck+1 + 10ck = 0 for k ≥ 1,

which yields the following recursive formula for ck:

c1 = 1, c2 = −11

9
, ck = −2ck−1 −

10

9
ck−2 for k ≥ 3.

We then find that

9n2 + 36n+ 37

(3n+ 6)(3n+ 5)(3n+ 4)(9n2 + 18n+ 10)
=

∞∑
k=0

dk
nk
,

where

d0 = 0, dk = (−1)k−1

[
2k

120
− 2

25

(
5

3

)k

+
5

16

(
4

3

)k
]
− 3ck

10
for k ≥ 1.

So, by applying (18), we have

∞∑
k=0

λk
(n+ 1)k

=

∞∑
k=0

µk

nk
,

where

µk =

k∑
ℓ=0

λℓ(−1)k−ℓ

(
k − 1

k − ℓ

)
.

We thus find from (27) that

∆In =
9n2 + 18n+ 10

(3n+ 3)!

 ∞∑
k=0

λk
nk

−
∞∑
k=0

dk
nk

∞∑
j=0

µj

nj


=

9n2 + 18n+ 10

(3n+ 3)!

∞∑
k=0

λk −
k∑

j=0

µjdk−j

 1

nk

=
9n2 + 18n+ 10

(3n+ 3)!

λ0 + ∞∑
k=1

λk −
k∑

j=0

µjdk−j

 1

nk

 .(29)
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By ∆Rn ∼ ∆In, we find from (26) and (29) that

λ0 = 1 and

λk =

k∑
j=0

µjdk−j =

k−1∑
j=0

µjdk−j =

k−1∑
j=0

j∑
ℓ=0

λℓ(−1)j−ℓ

(
j − 1

j − ℓ

)
dk−j for k ≥ 1,

where we have also noted that d0 = 0. The proof of Theorem 4 is now complete.

Next, by using the formula (23), we show how easily we can determine λk’s
in (22). Indeed, we see from (25) that

c1 = 1, c2 = −11

9
, c3 =

4

3
, c4 = −106

81
,

c5 =
92

81
, c6 = −596

729
, c7 =

272

729
, c8 =

1064

6561
.

We note that the sequence {ck} has the following explicit formula:

ck =

(
1

2
+

1

3
i

)(
−1 +

1

3
i

)k−1

+

(
1

2
− 1

3
i

)(
−1− 1

3
i

)k−1

(k ≥ 1; i =
√
−1).

We thus find from (24) that

d0 = d1 = d2 = 0, d3 =
1

27
, d4 = −1

9
, d5 =

52

243
,

d6 = − 80

243
, d7 =

958

2187
, d8 = −394

729
.
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We give the first few coefficients λk as follows:

λ0 = 1,

λ1 = λ0d1 = 0,

λ2 = λ0d2 + λ1d1 = 0,

λ3 = λ0d3 + λ1d2 − λ1d1 + λ2d1 = λ0d3 =
1

27
,

λ4 = λ0d4 + λ1d3 − λ1d2 + λ2d2 + λ1d1 − 2λ2d1 + λ3d1 = λ0d4 = −1

9
,

λ5 = λ0d5 + λ1d4 − λ1d3 + λ2d3 + λ1d2 − 2λ2d2 + λ3d2 − λ1d1 + 3λ2d1

− 3λ3d1 + λ4d1 = λ0d5 =
52

243
,

λ6 = λ0d6 + λ1d5 − λ1d4 + λ2d4 + λ1d3 − 2λ2d3 + λ3d3 − λ1d2 + 3λ2d2 − 3λ3d2

+ λ4d2 + λ1d1 − 4λ2d1 + 6λ3d1 − 4λ4d1 + λ5d1 = λ0d6 + λ3d3 = −239

729
,

λ7 = λ0d7 + λ3d4 − 3λ3d3 + λ4d3 =
931

2187
,

λ8 = λ0d8 + λ3d5 + λ4d4 − 3λ3d4 + λ5d3 − 4λ4d3 + 6λ3d3 = −3118

6561
.

We note that the values of λk (for k = 0, 1, 2, 3, 4, 5, 6, 7, 8) here are equal to the
coefficients of 1/nk (for k = 0, 1, 2, 3, 4, 5, 6, 7, 8) in (6), respectively.

Theorem 5. Let the remainder Rn be defined in (4). Then, for all integers n ≥ 1,

Ln < Rn < Un,(30)

where

Ln :=
9n2 + 18n+ 10

(3n+ 3)!

(
1 +

1

27n3
− 1

9n4

)
and

Un :=
9n2 + 18n+ 10

(3n+ 3)!

(
1 +

1

27n3
− 1

9n4
+

52

243n5

)
.

Proof. For n ≥ 1, let

xn := Rn − Ln and yn := Rn − Un.

Then, clearly, we have

lim
n→∞

xn = lim
n→∞

yn = 0.

In order to prove (30), it suffices to show that the sequence {xn} is strictly
decreasing and that the sequence {yn} is strictly increasing for n ≥ 1. Direct
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computation yields

xn − xn+1 =
9n2 + 18n+ 10

(3n+ 3)!
− Ln + Ln+1

=
9n2 + 18n+ 10

(3n+ 3)!
− 9n2 + 18n+ 10

(3n+ 3)!

(
1 +

1

27n3
− 1

9n4

)
+

9(n+ 1)2 + 18(n+ 1) + 10

(3(n+ 1) + 3)!

(
1 +

1

27(n+ 1)3
− 1

9(n+ 1)4

)
=

1

27n4(n+ 1)4(3n+ 6)!

(
1404n8 + 13293n7 + 54012n6 + 123121n5

+ 172750n4 + 153300n3 + 84258n2 + 26340n+ 3600
)
> 0

and

yn − yn+1 =
9n2 + 18n+ 10

(3n+ 3)!
− Un + Un+1

=
9n2 + 18n+ 10

(3n+ 3)!
− 9n2 + 18n+ 10

(3n+ 3)!

(
1 +

1

27n3
− 1

9n4
+

52

243n5

)
+

9(n+ 1)2 + 18(n+ 1) + 10

(3(n+ 1) + 3)!

(
1 +

1

27(n+ 1)3
− 1

9(n+ 1)4
+

52

243(n+ 1)5

)
= − 1

243n5(n+ 1)5(3n+ 6)!

(
19359n9 + 207171n8 + 971847n7 + 2624469n6

+ 4504202n5 + 5103030n4 + 3821274n3 + 1827492n2 + 507360n+ 62400
)
< 0.

We thus have completed the proof of Theorem 5.

Remark 6. We write (30) as follows:

Pn < e < Qn,(31)

where

Pn := Sn + Ln and Qn := Sn + Un.

For n = 10 in (31), we have

P10 = 2.7182818284590452353602874713526624977570 · · ·

and

Q10 = 2.7182818284590452353602874713526624977572 · · · .

We then get the following approximate value of e:

e ≈ 2.718281828459045235360287471352662497757.
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The choice n = 100 in (31) yields the approximate value of e as follows:

e ≈2.71828182845904523536028747135266249775724709369995

95749669676277240766303535475945713821785251664274

27466391932003059921817413596629043572900334295260

59563073813232862794349076323382988075319525101901

15738341879307021540891499348841675092447614606680

82264800168477411853742345442437107539077744992069

55170276183860626133138458300075204493382656029760

67371132007093287091274437470472306969772093101416

92836819025515108657463772111252389784425056953696

77078544996996794686445490598793163688923009879312

77361782154249992295763514822082698951936680331825

28869398496465105820939239829488793320362509443117

301238197068416140397019837.

Clearly, the two-sided inequality (31) is much better than the two-sided inequality
(21).

3. INEQUALITIES FOR In AND I(x)

Theorem 7. Let In be defined by (9). Then, for n ≥ 2,

1− 1

2n2 + 2
3n− 1

3

≤ In−1

In
< 1− 1

2n2 + 2
3n− 5

18

,(32)

where the constants 1
3 and 5

18 are the best possible.

Proof. First of all, we show that the left-hand side of (32) is valid for n = 2. Direct
computation yields[

In−1

In

]
n=2

=
8

9
and

[
1− 1

2n2 + 2
3n− 1

3

]
n=2

=
8

9
.

Hence, for n = 2, the equal sign on the left-hand side of (32) holds. In order to
prove the double inequality (32) for n ≥ 2, it suffices to show that

U(n) > 0 for n ≥ 3 and V (n) < 0 for n ≥ 2,

where

U(x) = (x− 1) ln

(
1 +

1

x− 1

)
− x ln

(
1 +

1

x

)
− ln

(
1− 1

2x2 + 2
3x− 1

3

)
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and

V (x) = (x− 1) ln

(
1 +

1

x− 1

)
− x ln

(
1 +

1

x

)
− ln

(
1− 1

2x2 + 2
3x− 5

18

)
.

Differentiation yields

U ′(x) = ln

(
1 +

1

x− 1

)
− ln

(
1 +

1

x

)
− 2(9x2 − 3x+ 1)

x(3x− 2)(6x2 + 2x− 1)

and

U ′′(x) =
2
[
109 + 1171(x− 3) + 1152(x− 3)2 + 393(x− 3)3 + 45(x− 3)4

]
x2(x2 − 1)(3x− 2)2(6x2 + 2x− 1)2

> 0

for x ≥ 3. We then obtain that, for x ≥ 3,

U ′(x) < lim
t→∞

U ′(t) = 0 =⇒ U(x) > lim
t→∞

U(t) = 0.

Therefore, the left-hand side of (32) is valid for n ≥ 2.

Differentiation yields

V ′(x) = ln

(
1 +

1

x− 1

)
− ln

(
1 +

1

x

)
− 1296x4 + 2160x3 + 648x2 − 120x+ 115

x(x+ 1)(36x2 + 12x− 23)(36x2 + 12x− 5)

and

V ′′(x) = − P6(x− 2)

x2(x− 1)(36x2 + 12x− 5)2(36x2 + 12x− 23)2(x+ 1)2
,

where

P6(x) =155930911 + 400928667x+ 422130384x2 + 232978896x3

+ 71102448x4 + 11380176x5 + 746496x6.

We then obtain that, for x ≥ 2,

V ′′(x) < 0 =⇒ V ′(x) > lim
t→∞

V ′(t) = 0 =⇒ V (x) < lim
t→∞

V (t) = 0.

Therefore, the right-hand side of (32) is valid for n ≥ 2.

If we write the double inequality (32) as

5

18
< xn ≤ 1

3
,
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where

xn = 2n2 +
2

3
n− 1

1− In−1

In

,(33)

we find that

x2 =
1

3

and

lim
n→∞

xn = lim
n→∞

{
2n2 +

2

3
n− 1

1− In−1

In

}

= lim
n→∞

{
2n2 +

2

3
n− 1

1
2n2 − 1

6n3 + 1
8n4 − 1

20n5 +O( 1
n6 )

}
= lim

n→∞

{
5

18
+O

(
1

n

)}
=

5

18
.

Hence, the double inequality (32) holds for n ≥ 2, and the constants 1
3 and 5

18 are
the best possible. The proof of Theorem 7 is complete.

Remark 8. Let the sequence {xn} be defined by (33). In order to prove Theorem
7 , it suffices to show that the sequence {xn} is strictly decreasing for n ≥ 2.

Remark 9. From the right-hand side of (32), we obtain

In < In+1 for n ∈ N.

This shows that the sequence {In}n∈N is strictly increasing.

Theorem 10. Let In be defined by (9). Then, for n ≥ 2,

1 +
1

n3 + 2n2 − 7
6

<
I2n

In−1In+1
≤ 1 +

1

n3 + 2n2 − 176
139

,(34)

where the constants 7
6 and 176

139 are the best possible.

Proof. First of all, we show that the right-hand side of (34) is valid for n = 2.
Direct computation yields[

I2n
In−1In+1

]
n=2

=
2187

2048
and

[
1 +

1

n3 + 2n2 − 176
139

]
n=2

=
2187

2048
.

Hence, for n = 2, the equal sign on the right-hand side of (34) holds. In order to
prove the double inequality (34) for n ≥ 2, it suffices to show that

p(n) > 0 for n ≥ 2 and q(n) < 0 for n ≥ 3,
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where

p(x) = 2x ln

(
1 +

1

x

)
− (x− 1) ln

(
1 +

1

x− 1

)
− (1 + x) ln

(
1 +

1

x+ 1

)
− ln

(
1 +

1

x3 + 2x2 − 7
6

)
and

q(x) = 2x ln

(
1 +

1

x

)
− (x− 1) ln

(
1 +

1

x− 1

)
− (1 + x) ln

(
1 +

1

x+ 1

)
− ln

(
1 +

1

x3 + 2x2 − 176
139

)
.

Differentiation yields

p′(x) = ln

 (
1 + 1

x

)2(
1 + 1

x−1

)(
1 + 1

x+1

)


+
2(7 + 48x2 + 276x3 + 378x4 + 198x5 + 36x6)

x(1 + x)(2 + x)(6x3 + 12x2 − 1)(6x3 + 12x2 − 7)

and

p′′(x) =
P10(x− 2)

x2(6x3 + 12x2 − 1)2(6x3 + 12x2 − 7)2(2 + x)2(x− 1)(1 + x)2
,

where

P10(x) =56238695 + 219901505x+ 382905747x2 + 391107816x3

+ 259578240x4 + 116999226x5 + 36276750x6 + 7641846x7

+ 1046898x8 + 84240x9 + 3024x10.

We then obtain that, for x ≥ 2,

p′′(x) > 0 =⇒ p′(x) < lim
t→∞

p′(t) = 0 =⇒ p(x) > lim
t→∞

p(t) = 0.

Therefore, the left-hand side of (34) is valid for n ≥ 2.

Differentiation yields

q′(x) = ln

 (
1 + 1

x

)2(
1 + 1

x−1

)(
1 + 1

x+1

)


+
38642x6 + 212531x5 + 405741x4 + 288564x3 + 36140x2 + 13024

x(x+ 1)(x+ 2)(139x3 + 278x2 − 37)(139x3 + 278x2 − 176)
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and

q′′(x) = − P11(x− 3)

x2(x− 1)(x+ 1)2(x+ 2)2(139x3 + 278x2 − 176)2(139x3 + 278x2 − 37)2
,

where

P11(x) =231145991851952 + 1449139445548576x+ 3015626308590458x2

+ 3311135822124859x3 + 2255215232619316x4 + 1025646710875072x5

322045070339960x6 + 70367089380622x7 + 10539007553692x8

+ 1034049254808x9 + 59969872270x10 + 1560344639x11.

We then obtain that, for x ≥ 3,

q′′(x) < 0 =⇒ q′(x) > lim
t→∞

q′(t) = 0 =⇒ q(x) < lim
t→∞

q(t) = 0.

Therefore, the right-hand side of (34) is valid for n ≥ 2.

If we write the double inequality (34) as

7

6
< yn ≤ 176

139
,

where

yn = n3 + 2n2 − 1
I2
n

In−1In+1
− 1

,(35)

we find that

y2 =
176

139

and

lim
n→∞

yn = lim
n→∞

n3 + 2n2 − 1
I2
n

In−1In+1
− 1


= lim

n→∞

{
n3 + 2n2 − 1

1
n3 − 2

n4 + 4
n5 − 41

6n6 + 23
2n7 − 56

30n8 +O( 1
n9 )

}
= lim

n→∞

{
7

6
+O

(
1

n

)}
=

7

6
.

Hence, the double inequality (34) holds for n ≥ 2, and the constants 7
6 and 176

139 are
the best possible. The proof of Theorem 10 is complete.

Remark 11. Let the sequence {yn} be defined by (35). In order to prove Theorem
10, it suffices to show that the sequence {yn} is strictly decreasing for n ≥ 2.
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Remark 12. A sequence {an}n∈N of real numbers is called strictly log-convex (log-
concave), if it is positive and

a2n+1 < (>)anan+2 for n ∈ N.

By the arithmetic-geometric mean inequality, the log-convexity implies the convex-
ity, and the concavity implies the log-concavity. From the left-hand side of (34),
we obtain

I2n+1 > InIn+2 for n ∈ N.

This shows that the sequence {In}n∈N is strictly log-concave.

Turán [28] proved that, for |x| ≤ 1 and n ∈ N,

0 ≤ Pn(x)
2 − Pn−1(x)Pn+1(x),(36)

where Pn(x) denotes the Legendre polynomial of degree n. The inequality (36)
has attracted much interest from many mathematicians, various inequalities of the
same type were presented for other special functions. From the left-hand side of
(34), we obtain the following Turán-type inequality:

0 < I2n − In−1In+1 for n ≥ 2.

Some computer experiments led us to pose the following conjecture.

Conjecture 13. Let In be defined by (9). Then, for n ≥ 2,

e2

n3 + 3n2 + 11
6 n− a

< I2n − In−1In+1 ≤ e2

n3 + 3n2 + 11
6 n− b

,

with the best possible constants

a =
1

2
and b =

71

3
− 432e2

139
= 0.702118 . . . .

Theorem 14. Let I(x) be defined by (13). Then, for x > 0,

I(x) + I(1/x)

2
≤ 2(37)

with equality if x = 1.

Proof. It suffices to show that the inequality (37) holds for x ≥ 1. Consider the
function F (x) defined by

F (x) =
I(x) + I(1/x)

2
, x ≥ 1.
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Differentiation yields

(38) 2xF ′(x) = G(x)−G

(
1

x

)
,

where

G(x) = xI ′(x) = x

(
1 +

1

x

)x [
ln

(
1 +

1

x

)
− 1

x+ 1

]
.

Differentiation yields

− G′(x)

x
(
1 + 1

x

)x =
x+ 2

x(x+ 1)2
− 1

x
ln

(
1 +

1

x

)
−
[
ln

(
1 +

1

x

)
− 1

x+ 1

]2
.(39)

We consider two cases to prove G′(x) < 0 for x ≥ 1.

Case 1. 1 ≤ x ≤ 2.

Using the techniques in [8], we now prove G′(x) < 0 for 1 ≤ x ≤ 2. Write
(39) as

− G′(x)

x
(
1 + 1

x

)x = Q(x)− P (x),

where

P (x) =
1

x
ln

(
1 +

1

x

)
+

[
ln

(
1 +

1

x

)
− 1

x+ 1

]2
and Q(x) =

x+ 2

x(x+ 1)2
.

Clearly, Q(x) is strictly decreasing on (0,∞). Noting that the functions

1

x
ln

(
1 +

1

x

)
and ln

(
1 +

1

x

)
− 1

x+ 1

are both strictly decreasing and ln
(
1 + 1

x

)
− 1

x+1 > 0 on (0,∞), we see that P (x)
is strictly decreasing on (0,∞). We divide the interval [1, 2] into 100 subintervals:

[1, 2] =

99⋃
k=0

[
1 +

k

100
, 1 +

k + 1

100

]
.

By direct computation we get

Q

(
1 +

k + 1

100

)
> P

(
1 +

k

100

)
for k = 0, 1, 2, . . . , 99.

Hence,

Q(x) > P (x) for x ∈
[
1 +

k

100
, 1 +

k + 1

100

]
and k = 0, 1, 2, . . . , 99.
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This implies that Q(x) > P (x) and G′(x) < 0 hold for 1 ≤ x ≤ 2.

Case 2. x ≥ 2.

It is well known that

2m∑
j=1

(−1)j−1

j
tj < ln(1 + t) <

2m−1∑
j=1

(−1)j−1

j
tj(40)

for −1 < t ≤ 1 and m ∈ N. Using the right-hand side of (40), we obtain that for
x ≥ 2,

− G′(x)

x
(
1 + 1

x

)x =
x+ 2

x(x+ 1)2
− 1

x
ln

(
1 +

1

x

)
−
[
ln

(
1 +

1

x

)
− 1

x+ 1

]2
>

x+ 2

x(x+ 1)2
− 1

x

(
1

x
− 1

2x2
+

1

3x3

)
−
[(

1

x
− 1

2x2
+

1

3x3

)
− 1

x+ 1

]2
=

144 + 352(x− 2) + 315(x− 2)2 + 123(x− 2)3 + 18(x− 2)4

36x6(x+ 1)
> 0.

Hence, G′(x) < 0 holds for x ≥ 1. Therefore, the function G(x) is strictly
decreasing for x > 1. We see from (38) that F ′(x) < 0 for x ∈ (1,∞). Therefore,
the function F (x) strictly decreasing on (1,∞), and we have, for x ≥ 1,

I(x) + I(1/x)

2
= F (x) ≤ F (1) = 2

with equality if x = 1. The proof of Theorem 10 is complete.

4. COMPLETELY MONOTONIC FUNCTIONS

A function f is said to be completely monotonic on an open interval (a, b)
(−∞ ≤ a < b ≤ ∞) if

(41) (−1)nf (n)(x) ≥ 0 for a < x < b and n ∈ N0.

If, in addition, f is continuous at x = a, then it is called completely monotonic on
[a, b), with similar definitions for (a, b] and [a, b].

Dubourdieu [14, p. 98] pointed out that if a non-constant function f is
completely monotonic over (a,∞), then the strict inequality in (41) holds true. See
also [17] for a simpler proof of this result. It is known (Bernstein’s Theorem) that
f is completely monotonic on (0,∞) if and only if

f(x) =

∫ ∞

0

e−xt dµ(t),

where µ is a nonnegative measure on [0,∞) such that the integral converges for all
x > 0 (see [29, p. 161]). This means that a completely monotonic function f on
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[0, ∞) is a Laplace transform with respect to the measure µ. The main properties
of completely monotonic functions are given in [29, Chapter IV].

Recall [16] that a positive function f is said to be logarithmically completely
monotonic on an interval I if its logarithm ln f satisfies

(−1)k[ln f(x)](k) ≥ 0 for x ∈ I and k ∈ N.

Recall that a function f is said to be a Bernstein function on an interval I if
f > 0 and f ′ is completely monotonic on I.

Lemma 15. Denote I = (a, b) with a ≤ 0 and 0 < b ≤ ∞. Let the function ϕ have
derivatives of all orders on I and ϕ(0) = 0. Define the function f1 by

f1(x) =


ϕ(x)

x
, x ̸= 0

ϕ′(0), x = 0.

If ϕ′ is completely monotonic on I, then f1 is completely monotonic on I.

Lemma 15 follows from Theorem 2.1 and Remark 2.2 (i) of [9].

Theorem 16. For x > −1, let

(42) f1(x) =
ln(1 + x)

x
x ̸= 0 and f1(0) = 1.

Then the function f1(x) is completely monotonic on (−1,∞).

Proof. Let ϕ(x) = ln(1 + x). Then

f1(x) =


ϕ(x)

x
, x ̸= 0,

1, x = 0.

We have ϕ(0) = 0 and

(−1)nϕ(n+1)(x) =
n!

(1 + x)n+1
> 0 for x > −1 and n ∈ N0.

Hence, the function ϕ′ is completely monotonic on (−1,∞). We see from Lemma 15
that the function f1(x), defined by (42), is completely monotonic on (−1,∞).

Remark 17. Theorem 16 shows that the function

(43) f(x) = (1 + x)
1/x

, x ̸= 0 and f(0) = e

is logarithmically completely monotonic on (−1,∞). It was shown in [3–5, 26]
that a logarithmically completely monotonic function f on I must be completely
monotonic on I. Hence, the function f(x), defined by (43), is completely monotonic
on (−1,∞).
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Theorem 18. The function

g(x) = x ln (1 + 1/x)

is a Bernstein function on (0,∞).

Proof. By using the integral representation

lnx =

∫ ∞

0

e−t − e−xt

t
dt, x > 0,

we get

g(x) = x ln

(
1 +

1

x

)
= x

∫ ∞

0

e−xt − e−(x+1)t

t
dt = x

∫ ∞

0

φ(t)e−xtdt,

where

φ(t) =
1− e−t

t
=
et − 1

tet
.

Differentiation yields

φ′(t) = −e
t − 1− t

t2et
= − 1

t2et

∞∑
n=2

tn

n!
< 0, t > 0.

Hence, the function φ(t) is strictly decreasing on (0,∞), and we have

φ(t) > lim
u→∞

φ(u) = 0, t > 0.

Direct computation yields

(−1)ng(n)(x) = (−1)n
n∑

k=0

(
n

k

)
x(k)

(∫ ∞

0

φ(t)e−xtdt

)(n−k)

= x

∫ ∞

0

φ(t)e−xttndt− n

∫ ∞

0

φ(t)e−xttn−1dt

=

∫ n/x

0

φ(t)e−xttn−1(xt− n)dt+

∫ ∞

n/x

φ(t)e−xttn−1(xt− n)dt

< φ(n/x)

∫ n/x

0

e−xttn−1(xt− n)dt+ φ(n/x)

∫ ∞

n/x

e−xttn−1(xt− n)dt

= φ(n/x)

∫ ∞

0

e−xttn−1(xt− n)dt.(44)

Noting that

m!

xm+1
=

∫ ∞

0

tme−xtdt for x > 0 and m ∈ N0,
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we find ∫ ∞

0

e−xttn−1(xt− n)dt = 0.

We then obtain from (44) that

(−1)ng(n)(x) < 0 for x > 0 and n ∈ N,

which can be written as

(−1)n(g′(x))(n) > 0 for x > 0 and n ∈ N0.

Clearly, the function g′(x) is completely monotonic on (0,∞). Therefore, the func-
tion g(x) is a Bernstein function on (0,∞).

Remark 19. Chen et al. [12, Theorem 3] proved that if f is a Bernstein function
on an interval I, then 1/f is completely monotonic on I. We see from Theorem 18
that the function 1/g(x) is completely monotonic on (0,∞).

5. CONCLUSION

Here, in our present investigation, we have first revisited several rapidly con-
vergent and not-so-rapidy convergent series representations for the familiar constant
e, which is also known as Euler’s number. We have then presented asymptotic ex-
pansions and two-sided inequalities for the remainders Rn and Rn, which are given
by

Rn = e−
n∑

k=0

1

k!
and Rn = e−

n∑
k=0

9k2 + 1

(3k)!
.

We present some sharp inequalities related to the quantities:

In−1

In
and

I2n
In−1In+1

for n ≥ 2.

We establish the arithmetic mean inequality of I(x) and I(1/x), namely,

I(x) + I(1/x)

2
≤ 2 for x > 0

with equality if x = 1. Finally, we present completely monotonic functions involving
(1+1/x)x. We have also considered a number of related developments on the subject
of this paper.
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