ON SOME MEAN SQUARE ESTIMATES IN THE RANKIN-SELBERG PROBLEM

Abstract

Aleksandar Ivić An overview of the classical Rankin-Selberg problem involving the asymptotic formula for sums of coefficients of holomorphic cusp forms is given. We also study the function $\Delta(x ; \xi)(0 \leq \xi \leq 1)$, the error term in the RankinSelberg problem weighted by ξ-th power of the logarithm. Mean square estimates for $\Delta(x ; \xi)$ are proved.

1. THE RANKIN-SELBERG PROBLEM

The classical Rankin-Selberg problem consists of the estimation of the error term function

$$
\begin{equation*}
\Delta(x):=\sum_{n \leq x} c_{n}-C x \tag{1.1}
\end{equation*}
$$

where the notation is as follows. Let $\varphi(z)$ be a holomorphic cusp form of weight κ with respect to the full modular group $S L(2, \mathbb{Z})$, and denote by $a(n)$ the n-th Fourier coefficient of $\varphi(z)$ (see e.g., R. A. Rankin [15] for a comprehensive account). We suppose that $\varphi(z)$ is a normalized eigenfunction for the Hecke operators $T(n)$, that is, $a(1)=1$ and $T(n) \varphi=a(n) \varphi$ for every $n \in \mathbb{N}$. In (1.1) $C>0$ is a suitable constant (see e.g., [9] for its explicit expression), and c_{n} is the convolution function defined by

$$
c_{n}=n^{1-\kappa} \sum_{m^{2} \mid n} m^{2(\kappa-1)}\left|a\left(\frac{n}{m^{2}}\right)\right|^{2}
$$

The classical Rankin-Selberg bound of 1939 is
(1.2)

$$
\Delta(x)=O\left(x^{3 / 5}\right)
$$

2000 Mathematics Subject Classification. 11N37, 11M06, 44A15, 26 A 12.
Key Words and Phrases. The Rankin-Selberg problem, logarithmic means, Voronoï type formula, functional equation, Selberg class.
hitherto unimproved. In their works, done independently, R. A. Rankin [14] derives (1.2) from a general result of E. Landau [11], while A. Selberg [17] states the result with no proof. Although the exponent $3 / 5$ in (1.2) represents one of the longest standing records in analytic number theory, recently there have been some developments in some other aspects of the Rankin-Selberg problem. In this paper we shall present an overview of some of these new results. In addition, we shall consider the weighted sum (the so-called Riesz logarithmic means of order $\xi)$, namely

$$
\begin{equation*}
\frac{1}{\Gamma(\xi+1)} \sum_{n \leq x} c_{n} \log ^{\xi}\left(\frac{x}{n}\right):=C x+\Delta(x ; \xi) \quad(\xi \geq 0) \tag{1.3}
\end{equation*}
$$

where C is as in (1.1), so that $\Delta(x) \equiv \Delta(x ; 0)$. The effect of introducing weights such as the logarithmic weight in (1.3) is that the ensuing error term (in our case this is $\Delta(x ; \xi))$ can be estimated better than the original error term (i.e., in our case $\Delta(x ; 0))$. This was shown by Matsumoto, Tanigawa and the author in [9], where it was proved that

$$
\begin{equation*}
\Delta(x ; \xi) \ll_{\varepsilon} x^{(3-2 \xi) / 5+\varepsilon} \quad(0 \leq \xi \leq 3 / 2) \tag{1.4}
\end{equation*}
$$

Here and later ε denotes arbitrarily small constants, not necessarily the same ones at each occurrence, while $a \ll_{\varepsilon} b$ means that the constant implied by the \ll-symbol depends on ε. When $\xi=0$ we recover (1.2) from (1.4), only with the extra ' ε ' factor present. In this work we shall pursue the investigations concerning $\Delta(x ; \xi)$, and deal with mean square bounds for this function.

2. THE FUNCTIONAL EQUATIONS

In view of (1.1) and (1.2) it follows that the generating Dirichlet series

$$
\begin{equation*}
Z(s):=\sum_{n=1}^{\infty} c_{n} n^{-s} \quad(s=\sigma+i t) \tag{2.1}
\end{equation*}
$$

converges absolutely for $\sigma>1$. The arithmetic function c_{n} is multiplicative and satisfies $c_{n}<_{\varepsilon} n^{\varepsilon}$. Moreover, it is well known (see e.g., R. A. Rankin [14], [15]) that $Z(s)$ satisfies for all s the functional equation

$$
\begin{equation*}
\Gamma(s+\kappa-1) \Gamma(s) Z(s)=(2 \pi)^{4 s-2} \Gamma(\kappa-s) \Gamma(1-s) Z(1-s) \tag{2.2}
\end{equation*}
$$

which provides then the analytic continuation of $Z(s)$. In modern terminology $Z(s)$ belongs to the Selberg class \mathcal{S} of L-functions of degree four (see A. Selberg [18] and the survey paper of Kaczorowski-Perelli [10]). An important feature, proved by G. Shimura [19] (see also A. Sankaranarayanan [16]) is

$$
\begin{equation*}
Z(s)=\zeta(s) \sum_{n=1}^{\infty} b_{n} n^{-s}=\zeta(s) B(s) \tag{2.3}
\end{equation*}
$$

where $B(s)$ is holomorphic for $\sigma>0, b_{n}<_{\varepsilon} n^{\varepsilon}$ (in fact $\sum_{n \leq x} b_{n}^{2} \leq x \log ^{A} x$ holds, too). It also satisfies the functional equation

$$
\begin{aligned}
B(s) \Delta_{1}(s) & =B(1-s) \Delta_{1}(1-s) \\
\Delta_{1}(s) & =\pi^{-3 s / 2} \Gamma\left(\frac{1}{2}(s+\kappa-1)\right) \Gamma\left(\frac{1}{2}(s+\kappa)\right) \Gamma\left(\frac{1}{2}(s+\kappa+1)\right),
\end{aligned}
$$

and actually $B(s) \in \mathcal{S}$ with degree three. The decomposition (2.3) (the so-called 'Shimura lift') allows one to use, at least to some extent, results from the theory of $\zeta(s)$ in connection with $Z(s)$, and hence to derive results on $\Delta(x)$.

3. THE COMPLEX INTEGRATION APPROACH

A natural approach to the estimation of $\Delta(x)$, used by the author in [8], is to apply the classical complex integration technique. We shall briefly present this approach now. On using Perron's inversion formula (see e.g., the Appendix of [3]), the residue theorem and the convexity bound $Z(s) \ll_{\varepsilon}|t|^{2-2 \sigma+\varepsilon}(0 \leq \sigma \leq 1,|t| \geq 1)$, it follows that

$$
\begin{equation*}
\Delta(x)=\frac{1}{2 \pi i} \int_{\frac{1}{2}-i T}^{\frac{1}{2}+i T} \frac{Z(s)}{s} x^{s} \mathrm{~d} s+O_{\varepsilon}\left(x^{\varepsilon}\left(x^{1 / 2}+\frac{x}{T}\right)\right) \quad(1 \ll T \ll x) \tag{3.1}
\end{equation*}
$$

If we suppose that

$$
\begin{equation*}
\int_{X}^{2 X}\left|B\left(\frac{1}{2}+i t\right)\right|^{2} \mathrm{~d} t<_{\varepsilon} X^{\theta+\varepsilon} \quad(\theta \geq 1) \tag{3.2}
\end{equation*}
$$

and use the elementary fact (see [3] for the results on the moments of $\left.\left|\zeta\left(\frac{1}{2}+i t\right)\right|\right)$ that

$$
\begin{equation*}
\int_{X}^{2 X}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2} \mathrm{~d} t \ll X \log X \tag{3.3}
\end{equation*}
$$

then from (2.3), (3.2), (3.3) and the CAUCHY-Schwarz inequality for integrals we obtain

$$
\int_{X}^{2 X}\left|Z\left(\frac{1}{2}+i t\right)\right| \mathrm{d} t<_{\varepsilon} X^{(1+\theta) / 2+\varepsilon}
$$

Therefore (3.1) gives

$$
\begin{equation*}
\Delta(x) \ll_{\varepsilon} x^{\varepsilon}\left(x^{1 / 2} T^{\theta / 2-1 / 2}+x T^{-1}\right)<_{\varepsilon} x^{\frac{\theta}{\theta+1}+\varepsilon} \tag{3.4}
\end{equation*}
$$

with $T=x^{1 /(\theta+1)}$. This was formulated in [8] as
Theorem A. If θ is given by (3.2), then

$$
\begin{equation*}
\Delta(x) \ll_{\varepsilon} x^{\frac{\theta}{\theta+1}+\varepsilon} . \tag{3.5}
\end{equation*}
$$

To obtain a value for θ, note that $B(s)$ belongs to the Selberg class of degree three, hence $B\left(\frac{1}{2}+i t\right)$ in (3.2) can be written as a sum of two Dirichlet polynomials (e.g., by the reflection principle discussed in [3, Chapter 4]), each of length $\ll X^{3 / 2}$. Thus by the mean value theorem for Dirichlet polynomials (op. cit.) we have $\theta \leq 3 / 2$ in (3.2). Hence (3.5) gives (with unimportant ε) the Rankin-Selberg bound $\Delta(x)<_{\varepsilon} x^{3 / 5+\varepsilon}$. Clearly improvement will come from better values of θ. Note that the best possible value of θ in (3.2) is $\theta=1$, which follows from general results on Dirichlet series (see e.g., [3, Chapter 9]). It gives $1 / 2+\varepsilon$ as the exponent in the Rankin-Selberg problem, which is the limit of the method (the conjectural exponent $3 / 8+\varepsilon$, which is best possible, is out of reach; see the author's work [4]). To attain this improvement one faces ssentially the same problem as in proving the sixth moment for $\left|\zeta\left(\frac{1}{2}+i t\right)\right|$, namely

$$
\int_{0}^{T}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{6} \mathrm{~d} t \ll_{\varepsilon} T^{1+\varepsilon}
$$

only this problem is even more difficult, because the arithmetic properties of the coefficients b_{n} are even less known than the properties of the divisor coefficients

$$
d_{3}(n)=\sum_{a b c=n ; a, b, c \in \mathbb{N}} 1,
$$

generated by $\zeta^{3}(s)$. If we knew the analogue of the strongest sixth moment bound

$$
\int_{0}^{T}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{6} \mathrm{~d} t \ll T^{5 / 4} \log ^{C} T \quad(C>0)
$$

namely the bound (3.2) with $\theta=5 / 4$, then (3.1) would yield $\Delta(x) \ll_{\varepsilon} x^{5 / 9+\varepsilon}$, improving substantially (1.2).

The essential difficulty in this problem may be seen indirectly by comparing it with the estimation of $\Delta_{4}(x)$, the error term in the asymptotic formula for the summatory function of $d_{4}(n)=\sum_{a b c d=n ; a, b, c, d \in \mathbb{N}} 1$. The generating function in this case is $\zeta^{4}(s)$. The problem analogous to the estimation of $\Delta(x)$ is to estimate $\Delta_{4}(x)$, given the product representation

$$
\begin{equation*}
\sum_{n=1}^{\infty} d_{4}(n) n^{-s}=\zeta(s) G(s)=\zeta(s) \sum_{n=1}^{\infty} g(n) n^{-s} \quad(\sigma>1) \tag{3.6}
\end{equation*}
$$

with $g(n) \ll_{\varepsilon} n^{\varepsilon}$ and $G(s)$ of degree three in the SELBERG class (with a pole of order three at $s=1$). By the complex integration method one gets $\Delta_{4}(x)<_{\varepsilon} x^{1 / 2+\varepsilon}$ (here ' ε ' may be replaced by a log-factor) using the classical elementary bound $\int_{0}^{T}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{4} \mathrm{~d} t \ll T \log ^{4} T$. Curiously, this bound for $\Delta_{4}(x)$ has never been improved; exponential sum techniques seem to give a poor result here. However, if one knows only (3.6), then the situation is quite analogous to the RANKIN-SELBERG problem, and nothing better than the exponent $3 / 5$ seems obtainable. The bound $\Delta(x) \ll_{\varepsilon} x^{1 / 2+\varepsilon}$ follows also directly from (3.1) if the LindeLÖF hypothesis for $Z(s)$ (that $\left.Z\left(\frac{1}{2}+i t\right)<_{\varepsilon}|t|^{\varepsilon}\right)$ is assumed.

4. MEAN SQUARE OF THE RANKIN-SELBERG ZETA-FUNCTION

Let, for a given $\sigma \in \mathbb{R}$,

$$
\begin{equation*}
\mu(\sigma)=\limsup _{t \rightarrow \infty} \frac{\log |\zeta(\sigma+i t)|}{\log t} \tag{4.1}
\end{equation*}
$$

denote the Lindelöf function (the famous, hitherto unproved, Lindelöf conjecture for $\zeta(s)$ is that $\mu(\sigma)=0$ for $\sigma \geq \frac{1}{2}$, or equivalently that $\left.\zeta\left(\frac{1}{2}+i t\right)<_{\varepsilon}|t|^{\varepsilon}\right)$. In [8] the author proved the following
Theorem B. If $\beta=2 /\left(5-\mu\left(\frac{1}{2}\right)\right)$, then for fixed σ satisfying $\frac{1}{2}<\sigma \leq 1$ we have

$$
\begin{equation*}
\int_{1}^{T}|Z(\sigma+i t)|^{2} \mathrm{~d} t=T \sum_{n=1}^{\infty} c_{n}^{2} n^{-2 \sigma}+O_{\varepsilon}\left(T^{(2-2 \sigma) /(1-\beta)+\varepsilon}\right) \tag{4.2}
\end{equation*}
$$

This result is the sharpest one yet when σ is close to 1 . For σ close to $\frac{1}{2}$ one cannot obtain an asymptotic formula, but only the upper bound (this is [7, eq. (9.27)])

$$
\begin{equation*}
\int_{T}^{2 T}|Z(\sigma+i t)|^{2} \mathrm{~d} t<_{\varepsilon} T^{2 \mu(1 / 2)(1-\sigma)+\varepsilon}\left(T+T^{3(1-\sigma)}\right) \quad\left(\frac{1}{2} \leq \sigma \leq 1\right) \tag{4.3}
\end{equation*}
$$

The upper bound in (4.3) follows easily from (2.3) and the fact that, as already mentioned, $B(s) \in \mathcal{S}$ with degree three, so that $B\left(\frac{1}{2}+i t\right)$ can be approximated by Dirichlet polynomials of length $\ll t^{3 / 2}$, and the mean value theorem for Dirichlet polynomials yields

$$
\int_{T}^{2 T}|B(\sigma+i t)|^{2} \mathrm{~d} t<_{\varepsilon} T^{\varepsilon}\left(T+T^{3(1-\sigma)}\right) \quad\left(\frac{1}{2} \leq \sigma \leq 1\right)
$$

Note that with the sharpest known result (see M. N. Huxley [2]) $\mu(1 / 2) \leq 32 / 205$ we obtain $\beta=410 / 961=0.426638917 \ldots$. The limit is the value $\beta=2 / 5$ if the Lindelöf hypothesis (that $\mu\left(\frac{1}{2}\right)=0$) is true. Thus (4.2) provides a true asymptotic formula for

$$
\sigma>\frac{1+\beta}{2}=\frac{1371}{1922}=0.7133194 \ldots
$$

The proof of (4.2), given in [8], is based on the general method of the author's paper [6], which contains a historic discussion on the formulas for the left-hand side of (4.2) (see also K. Matsumoto [12]).

We are able to improve (4.2) in the case when $\sigma=1$. The result is contained in

Theorem 1. We have

$$
\begin{equation*}
\int_{1}^{T}|Z(1+i t)|^{2} \mathrm{~d} t=T \sum_{n=1}^{\infty} c_{n}^{2} n^{-2}+O_{\varepsilon}\left((\log T)^{2+\varepsilon}\right) \tag{4.4}
\end{equation*}
$$

Proof. For $\sigma=\Re \mathrm{e} s>1$ and $X \geq 2$ we have

$$
\begin{align*}
Z(s) & =\sum_{n \leq X} c_{n} n^{-s}+\int_{X}^{\infty} x^{-s} \mathrm{~d}\left(\sum_{n \leq x} c_{n}\right) \tag{4.5}\\
& =\sum_{n \leq X} c_{n} n^{-s}+\frac{C X^{1-s}}{s-1}-\Delta(x) X^{-s}-s \int_{X}^{\infty} \Delta(x) x^{-s-1} \mathrm{~d} x .
\end{align*}
$$

By using (1.2) it is seen that the last integral converges absolutely for $\sigma=$ $\Re \mathrm{e} s>3 / 5$, so that (4.5) provides the analytic continuation of $Z(s)$ to this region. Taking $s=1+i t, 1 \leq t \leq T, X=T^{10}$, it follows that
(4.6) $\int_{1}^{T}|Z(1+i t)|^{2} \mathrm{~d} t=\int_{1}^{T}\left\{\left|\sum_{n \leq X} c_{n} n^{-1-i t}\right|^{2}-2 C \Im m\left(\sum_{n \leq X} \frac{c_{n}}{n t}\left(\frac{X}{n}\right)^{i t}\right)\right\} \mathrm{d} t+O(1)$.

By the mean value theorem for Dirichlet polynomials we have

$$
\int_{1}^{T}\left|\sum_{n \leq X} c_{n} n^{-1-i t}\right|^{2} \mathrm{~d} t=T \sum_{n \leq X} c_{n}^{2}+O\left(\sum_{n \leq X} c_{n}^{2} n^{-1}\right)=T \sum_{n=1}^{\infty} c_{n}^{2}+O_{\varepsilon}\left((\log T)^{2+\varepsilon}\right),
$$

where we used the bound (see K. Matsumoto [12])

$$
\begin{equation*}
\sum_{n \leq x} c_{n}^{2} \ll_{\varepsilon} x(\log x)^{1+\varepsilon} \tag{4.7}
\end{equation*}
$$

and partial summation. Finally we have

$$
\begin{equation*}
\sum_{n \leq X} \frac{c_{n}}{n} \int_{1}^{T} \frac{1}{t}\left(\frac{X}{n}\right)^{i t} \mathrm{~d} t \ll \log \log T \tag{4.8}
\end{equation*}
$$

To see that (4.8) holds, note first that for $X-X / \log T \leq n \leq X$ the integral over t is trivially estimated as $\ll \log T$, and the total contribution of such n is

$$
\ll \log T \sum_{X-X / \log T \leq n \leq X} \frac{c_{n}}{n} \mathrm{~d} x \ll 1
$$

on using (1.1)-(1.2). For the remaining n we note that the integral over t equals

$$
\left.\frac{\left(\frac{X}{n}\right)^{i t}}{i t \log (X / n)}\right|_{1} ^{T}+\frac{1}{i \log (X / n)} \int_{1}^{T}\left(\frac{X}{n}\right)^{i t} \frac{\mathrm{~d} t}{t^{2}}
$$

The contribution of those n is, using (1.1)-(1.2) again and making the change of variable $X / u=v$,

$$
\begin{aligned}
& \ll \sum_{1 \leq n \leq X-X / \log T} \frac{c_{n}}{n \log (X / n)}=\int_{1-0}^{X-X / \log T} \frac{1}{u \log (X / u)} \mathrm{d}(C u+\Delta(u)) \\
& =\int_{1}^{X-X / \log T} \frac{1}{u \log (X / u)}\left(C+\frac{\Delta(u)}{u}+\frac{\Delta(u)}{u \log (X / u)}\right) \mathrm{d} u+O(1) \\
& \ll \int_{1}^{X-X / \log T} \frac{\mathrm{~d} u}{u \log (X / u)}+1=\int_{(1-1 / \log T)^{-1}}^{X} \frac{\mathrm{~d} v}{v \log v}+1 \\
& =\log \log X-\log \log (1-1 / \log T)^{-1}+1 \ll \log \log T
\end{aligned}
$$

and (4.8) follows.
One can improve the error term in (4.4) to $O\left(\log ^{2} T\right)$, which is the limit of the method. I am very grateful to Prof. Alberto Perelli, who has kindly indicated this to me. The argument is very briefly as follows. Note that the coefficients c_{n}^{2} are essentially the tensor product of the c_{n} 's, and the c_{n} are essentially the tensor product of the $a(n)$'s; "essentially" means in this case that the corresponding L functions differ at most by a "fudge factor", i.e., a Dirichlet series converging absolutely for $\sigma>1 / 2$ and non-vanishing at $s=1$. In terms of L-functions, the tensor product of the $a(n)$ (the coefficients of the tensor square L-function) corresponds to the product of $\zeta(s)$ and the L-function of $S y m^{2}$ (Shimura's lift). Moreover, Gelbart-Jacquet [1] have shown that $S y m^{2}$ is a cuspidal automorphic representation, so one can apply to the above product the general RANKIN-SELBERG theory to obtain "good properties" of the corresponding L-function. Since $S y m^{2}$ is irreducible, the L-function corresponding to c_{n}^{2} has a double pole at $s=1$ and a functional equation of Riemann type. It follows that the sum in (4.7) is asymptotic to $D x \log x$ for some $D>0$, and the assertion follows by following the preceding argument.

In concluding this section, let it be mentioned that, using (4.5), it easily follows that $Z(1+i t) \ll \log |t|(t \geq 2)$.

5. MEAN SQUARE OF $\Delta(x ; \xi)$

In this section we shall consider mean square estimates for $\Delta(x ; \xi)$, defined by (1.3). Although we could consider the range $\xi>1$ as well, for technical reasons we shall restrict ourselves to the range $0 \leq \xi \leq 1$, which is the condition that will be assumed henceforth to hold. Let

$$
\begin{equation*}
\beta_{\xi}:=\inf \left\{\beta \geq 0: \int_{1}^{X} \Delta^{2}(x ; \xi) \mathrm{d} x \ll X^{1+2 \beta}\right\} \tag{5.1}
\end{equation*}
$$

The definition of β_{ξ} is the natural analogue of the classical constants in mean square estimates for the generalized Dirichlet divisor problem (see [3, Chapter 13]). Our first result in this direction is

Theorem 2. We have

$$
\begin{equation*}
\frac{3-2 \xi}{8} \leq \beta_{\xi} \leq \max \left(\frac{1-\xi}{2}, \frac{3-2 \xi}{8}\right) \quad(0 \leq \xi \leq 1) \tag{5.2}
\end{equation*}
$$

Proof. First of all, note that (5.2) implies that $\beta_{\xi}=(3-2 \xi) / 8$ for $\frac{1}{2} \leq \xi \leq 1$, so that in this interval the precise value of β_{ξ} is determined. The main tool in our investigations is the explicit Voronoï type formula for $\Delta(x ; \xi)$. This is

$$
\begin{equation*}
\Delta(x ; \xi)=V_{\xi}(x, N)+R_{\xi}(x, N) \tag{5.3}
\end{equation*}
$$

where, for $N \gg 1$,

$$
\begin{align*}
& V_{\xi}(x, N)=(2 \pi)^{-1-\xi} x^{(3-2 \xi) / 8} \sum_{n \leq N} c_{n} n^{-(5+2 \xi) / 8} \cos \left(8 \pi(x n)^{1 / 4}+\frac{1}{2}\left(\frac{1}{2}-\xi\right) \pi\right), \tag{5.4}\\
& R_{\xi}(x, N)<_{\varepsilon}(x N)^{\varepsilon}\left(1+x^{(3-\xi) / 4} N^{-(1+\xi) / 4}+(x N)^{(1-\xi) / 4}+x^{(1-2 \xi) / 8}\right) .
\end{align*}
$$

This follows from the work of U. Vorhauer [20] (for $\xi=0$ this is also proved in $[\mathbf{9}]$), specialized to the case when

$$
\begin{gathered}
A=\frac{1}{(2 \pi)^{2}}, B=(2 \pi)^{4}, M=L=2, b_{1}=b_{2}=d_{1}=d_{2}=1, \beta_{1}=\kappa-\frac{1}{2}, b_{2}=\frac{1}{2} \\
\delta_{1}=\kappa-\frac{3}{2}, \delta_{2}=-\frac{1}{2}, \gamma=1, p=B, q=4, \lambda=2, \Lambda=-1, C=(2 \pi)^{-5 / 2}
\end{gathered}
$$

In (5.3)-(5.4) we take $N=x$, so that $R_{\xi}(x, N) \ll_{\varepsilon} x^{(1-\xi) / 2+\varepsilon}$. Since $\frac{1-\xi}{2} \leq \frac{3-2 \xi}{8}$ for $\xi \geq \frac{1}{2}$, the lower bound in (5.2) follows by the method of [4]. For the upper bound we use $c_{n}<_{\varepsilon} n^{\varepsilon}$ and note that (e $\left.(z)=\exp (2 \pi i z)\right)$

$$
\begin{aligned}
& \int_{X}^{2 X}\left|\sum_{K<k \leq 2 K} c_{k} k^{-(5+2 \xi) / 8} \mathrm{e}\left(4(x k)^{1 / 4}\right)\right|^{2} \mathrm{~d} x \\
& \ll X+\sum_{k_{1} \neq k_{2}} c_{k_{1}} c_{k_{2}}\left(k_{1} k_{2}\right)^{-(5+2 \xi) / 8} \int_{X}^{2 X} \mathrm{e}\left(4 x^{1 / 4}\left(k_{1}^{1 / 4}-k_{2}^{1 / 4}\right)\right) \mathrm{d} x \\
& \ll \varepsilon X+X^{3 / 4+\varepsilon} K^{-(5+2 \xi) / 4} \sum_{k_{1} \neq k_{2}}\left|k_{1}^{1 / 4}-k_{2}^{1 / 4}\right|^{-1} \\
& \ll \varepsilon X+X^{3 / 4+\varepsilon} K^{(1-\xi) / 2}
\end{aligned}
$$

where we used the first derivative test (cf. [3, Lemma 2.1]). Since $K \ll X$ and

$$
\int_{X}^{2 X} \Delta^{2}(x ; \xi) \mathrm{d} x \ll \int_{X}^{2 X}\left|V_{\xi}(x, N)\right|^{2} \mathrm{~d} x+\int_{X}^{2 X}|R(x, N)|^{2} \mathrm{~d} x
$$

it follows that

$$
\int_{X}^{2 X} \Delta^{2}(x ; \xi) \mathrm{d} x<_{\varepsilon} X^{(7-2 \xi) / 4+\varepsilon}+X^{2-\xi+\varepsilon}
$$

which clearly proves the assertion.
Our last result is a bound for β_{ξ}, which improves on (5.2) when ξ is small. This is

Theorem 3. We have

$$
\begin{equation*}
\beta_{\xi} \leq \frac{2-2 \xi}{5-2 \mu\left(\frac{1}{2}\right)} \quad\left(0 \leq \xi \leq \frac{1}{6}\left(1+2 \mu\left(\frac{1}{2}\right)\right)\right) \tag{5.5}
\end{equation*}
$$

Proof. We start from

$$
\begin{equation*}
\Delta(x ; \xi)=\frac{1}{2 \pi i} \lim _{T \rightarrow \infty} \int_{c-i T}^{c+i T} Z(s) \frac{x^{s}}{s^{\xi+1}} \mathrm{~d} s \tag{5.6}
\end{equation*}
$$

where $0<c=c(\xi)<1$ is a suitable constant (see K. Matsumoto [13] for a detailed derivation of formulas analogous to (5.6)). By the Mellin inversion formula we have (see e.g., the Appendix of [3])

$$
Z(s) s^{-\xi-1}=\int_{0}^{\infty} \Delta(1 / x ; \xi) x^{s-1} \mathrm{~d} x \quad(\Re \mathrm{e} s=c)
$$

Hence by Parseval's formula for Mellin tranforms (op. cit.) we obtain, for $\beta_{\xi}<\sigma<1$,

$$
\begin{align*}
\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{|Z(\sigma+i t)|^{2}}{|\sigma+i t|^{2 \xi+2}} \mathrm{~d} t & =\int_{0}^{\infty} \Delta^{2}(1 / x ; \xi) x^{2 \sigma-1} \mathrm{~d} x \tag{5.7}\\
& =\int_{0}^{\infty} \Delta^{2}(x ; \xi) x^{-2 \sigma-1} \mathrm{~d} x \gg X^{-2 \sigma-1} \int_{X}^{2 X} \Delta^{2}(x ; \xi) \mathrm{d} x
\end{align*}
$$

Therefore if the first integral converges for $\sigma=\sigma_{0}+\varepsilon$, then (5.7) gives

$$
\int_{X}^{2 X} \Delta^{2}(x ; \xi) \mathrm{d} x \ll X^{2 \sigma+1}
$$

namely $\beta_{\xi} \leq \sigma_{0}$. The functional equation (2.2) and STIRLING's formula in the form

$$
|\Gamma(s)|=\sqrt{2 \pi}|t|^{\sigma-1 / 2} \mathrm{e}^{-\pi|t| / 2}\left(1+O\left(|t|^{-1}\right)\right) \quad\left(|t| \geq t_{0}>0\right)
$$

imply that
(5.8) $Z(s)=\mathcal{X}(s) Z(1-s), \quad \mathcal{X}(\sigma+i t) \asymp|t|^{2-4 \sigma} \quad(s=\sigma+i t, 0 \leq \sigma \leq 1,|t| \geq 2)$.

Thus it follows on using (4.3) that

$$
\begin{aligned}
\int_{T}^{2 T}|Z(\sigma+i t)|^{2} \mathrm{~d} t & \ll T^{4-8 \sigma} \int_{T}^{2 T}|Z(1-\sigma+i t)|^{2} \mathrm{~d} t \\
& \ll \varepsilon T^{4-8 \sigma+2 \mu\left(\frac{1}{2}\right) \sigma+\max (1,3 \sigma)+\varepsilon}
\end{aligned}
$$

But we have $4-8 \sigma+2 \mu\left(\frac{1}{2}\right) \sigma+\max (1,3 \sigma)=4-5 \sigma+2 \mu\left(\frac{1}{2}\right) \sigma<2 \xi+2$ for

$$
\begin{equation*}
\sigma>\sigma_{0}=\frac{2-2 \xi}{5-2 \mu\left(\frac{1}{2}\right)} \tag{5.9}
\end{equation*}
$$

provided that $\sigma_{0} \geq 1 / 3$, which occurs if $0 \leq \xi \leq \frac{1}{6}\left(1+2 \mu\left(\frac{1}{2}\right)\right)$. Thus the first integral in (5.7) converges if (5.9) holds, and Theorem 3 is proved. Note that this result is a generalization of Theorem 7 in $[\mathbf{8}]$, which says that $\beta_{0} \leq(2-2 \xi) /(5-$ $\left.2 \mu\left(\frac{1}{2}\right)\right)$.

In the case when $\beta_{\xi}=(3-2 \xi) / 8$ we could actually derive an asymptotic formula for the integral of the mean square of $\Delta(x ; \xi)$, much in the same way that this was done in [9] for the square of $\Delta_{1}(x):=\int_{0}^{x} \Delta(u) \mathrm{d} u$, where it was shown that

$$
\begin{equation*}
\int_{1}^{X} \Delta_{1}^{2}(x) \mathrm{d} x=D X^{13 / 4}+O_{\varepsilon}\left(X^{3+\varepsilon}\right) \tag{5.10}
\end{equation*}
$$

with explicit $D>0\left(\right.$ in $[\mathbf{1 2}]$ the error term was improved to $\left.O_{\varepsilon}\left(X^{3}(\log X)^{3+\varepsilon}\right)\right)$. In the case of $\Delta(x ; 1)$ the formula (5.10) may be used directly, since

$$
\begin{equation*}
\frac{1}{x} \Delta_{1}(x)=\frac{1}{x} \int_{0}^{x} \Delta(u) \mathrm{d} u=\Delta(x ; 1)+O_{\varepsilon}\left(x^{\varepsilon}\right) . \tag{5.11}
\end{equation*}
$$

To see that (5.11) holds, note that with $c=1-\varepsilon$ we have

$$
\begin{aligned}
\Delta(x ; 1) & =\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} Z(s) \frac{x^{s}}{s^{2}} \mathrm{~d} s \\
& =\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} Z(s) \frac{x^{s}}{s(s+1)} \mathrm{d} s+\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} Z(s) \frac{x^{s}}{s^{2}(s+1)} \mathrm{d} s \\
& =\frac{1}{x} \int_{0}^{x} \Delta(u) \mathrm{d} u+\frac{1}{2 \pi i} \int_{\varepsilon-i \infty}^{\varepsilon+i \infty} Z(s) \frac{x^{s}}{s^{2}(s+1)} \mathrm{d} s \\
& =\frac{1}{x} \Delta_{1}(x)+O_{\varepsilon}\left(x^{\varepsilon}\right)
\end{aligned}
$$

on applying (5.8) to the last integral above.

REFERENCES

1. S. Gelbart, H. Jacquet: A relation between automorphic forms on $G L(2)$ and $G L(3)$, Proc. Nat. Acad. Sci. U.S.A., 73 (1976), 3348-3350.
2. M. N. Huxley: Exponential sums and the Riemann zeta-function V. Proc. London Math. Soc., (3) 90 (2005), 1-41.
3. A. IvIĆ: The Riemann zeta-function. John Wiley \& Sons, New York, 1985 (2nd ed., Dover, Mineola, N.Y., 2003).
4. A. Ivić: Large values of certain number-theoretic error terms. Acta Arith. 56 (1990), 135-159.
5. A. Ivić: On some conjectures and results for the Riemann zeta-function and Hecke series. Acta Arith., 99 (2001), 155-145.
6. A. Ivić: On mean values of zeta-functions in the critical strip. J. Théorie des Nombres de Bordeaux, 15 (2003), 163-173.
7. A. Ivić: Estimates of convolutions of certain number-theoretic error terms. Inter. J. of Math. and Mathematical Sciences, 2004:1, 1-23.
8. A. Ivić: Convolutions and mean square estimates of certain number-theoretic error terms. subm. to Publs. Inst. Math. (Beograd). arXiv.math.NT/0512306
9. A. Ivić, K. Matsumoto, Y. Tanigawa: On Riesz mean of the coefficients of the Rankin-Selberg series. Math. Proc. Camb. Phil. Soc., 127 (1999), 117-131.
10. A. Kaczorowski, A. Perelli: The Selberg class: a survey, in "Number Theory in Progress, Proc. Conf. in honour of A. Schinzel (K. Györy et al. eds)", de Gruyter, Berlin, 1999, pp. 953-992.
11. E. Landau: Über die Anzahl der Gitterpunkte in gewissen Bereichen II. Nachr. Ges. Wiss. Göttingen, 1915, 209-243.
12. K. Matsumoto: The mean values and the universality of Rankin-Selberg L-functions. M. Jutila (ed.) et al., Number theory. "Proc. Turku symposium on number theory in memory of K. Inkeri", Turku, Finland, May 31-June 4, 1999. de Gruyter, Berlin, 2001, pp. 201-221.
13. K. Matsumoto: Liftings and mean value theorems for automorphic L-functions. Proc. London Math. Soc., (3) 90 (2005), 297-320.
14. R. A. Rankin: Contributions to the theory of Ramanujan's function $\tau(n)$ and similar arithmetical functions. II, The order of Fourier coefficients of integral modular forms. Math. Proc. Cambridge Phil. Soc., 35 (1939), 357-372.
15. R. A. Rankin: Modular Forms. Ellis Horwood Ltd., Chichester, England, 1984.
16. A. Sankaranarayanan:, Fundamental properties of symmetric square L-functions I. Illinois J. Math., 46 (2002), 23-43.
17. A. Selberg: Bemerkungen über eine Dirichletsche Reihe, die mit der Theorie der Modulformen nahe verbunden ist. Arch. Math. Naturvid., 43 (1940), 47-50.
18. A. Selberg: Old and new conjectures and results about a class of Dirichlet series, in "Proc. Amalfi Conf. Analytic Number Theory 1989 (E. Bombieri et al. eds.)", University of Salerno, Salerno, 1992, pp. 367-385.
19. G. Shimura: On the holomorphy of certain Dirichlet series. Proc. London Math. Soc., 31 (1975), 79-98.
20. U. Vorhauer: Three two-dimensional Weyl steps in the circle problem II. The logarithmic Riesz mean for a class of arithmetic functions. Acta Arith., 91 (1999), 57-73.

Katedra Matematike RGF-a,
Univerzitet u Beogradu, Đušina 7,
11000 Beograd, Serbia
E-mail: ivic@rgf.bg.ac.yu, aivic@matf.bg.ac.yu

