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ON SOME MEAN SQUARE ESTIMATES IN

THE RANKIN-SELBERG PROBLEM

Aleksandar Ivić

An overview of the classical Rankin-Selberg problem involving the asymp-
totic formula for sums of coefficients of holomorphic cusp forms is given. We
also study the function ∆(x; ξ) (0 ≤ ξ ≤ 1), the error term in the Rankin-

Selberg problem weighted by ξ-th power of the logarithm. Mean square
estimates for ∆(x; ξ) are proved.

1. THE RANKIN-SELBERG PROBLEM

The classical Rankin-Selberg problem consists of the estimation of the

error term function

(1.1) ∆(x) :=
∑

n≤x

cn − Cx,

where the notation is as follows. Let ϕ(z) be a holomorphic cusp form of weight

κ with respect to the full modular group SL(2,Z), and denote by a(n) the n-th

Fourier coefficient of ϕ(z) (see e.g., R. A. Rankin [15] for a comprehensive

account). We suppose that ϕ(z) is a normalized eigenfunction for the Hecke

operators T (n), that is, a(1) = 1 and T (n)ϕ = a(n)ϕ for every n ∈ N. In (1.1)

C > 0 is a suitable constant (see e.g., [9] for its explicit expression), and cn is the

convolution function defined by

cn = n1−κ
∑

m2|n

m2(κ−1)
∣∣∣a
( n

m2

)∣∣∣
2

.

The classical Rankin-Selberg bound of 1939 is

(1.2) ∆(x) = O(x3/5),
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hitherto unimproved. In their works, done independently, R. A. Rankin [14]

derives (1.2) from a general result of E. Landau [11], while A. Selberg [17]

states the result with no proof. Although the exponent 3/5 in (1.2) represents one

of the longest standing records in analytic number theory, recently there have been

some developments in some other aspects of the Rankin-Selberg problem. In

this paper we shall present an overview of some of these new results. In addition,

we shall consider the weighted sum (the so-called Riesz logarithmic means of order

ξ), namely

(1.3)
1

Γ(ξ + 1)

∑

n≤x

cn logξ
(x
n

)
:= Cx + ∆(x; ξ) (ξ ≥ 0),

where C is as in (1.1), so that ∆(x) ≡ ∆(x; 0). The effect of introducing weights

such as the logarithmic weight in (1.3) is that the ensuing error term (in our case

this is ∆(x; ξ)) can be estimated better than the original error term (i.e., in our

case ∆(x; 0)). This was shown by Matsumoto, Tanigawa and the author in [9],

where it was proved that

(1.4) ∆(x; ξ) �ε x(3−2ξ)/5+ε (0 ≤ ξ ≤ 3/2).

Here and later ε denotes arbitrarily small constants, not necessarily the same ones

at each occurrence, while a�ε b means that the constant implied by the �-symbol

depends on ε. When ξ = 0 we recover (1.2) from (1.4), only with the extra ‘ε’ factor

present. In this work we shall pursue the investigations concerning ∆(x; ξ), and

deal with mean square bounds for this function.

2. THE FUNCTIONAL EQUATIONS

In view of (1.1) and (1.2) it follows that the generating Dirichlet series

(2.1) Z(s) :=
∞∑

n=1
cnn

−s (s = σ + it)

converges absolutely for σ > 1. The arithmetic function cn is multiplicative and

satisfies cn �ε n
ε. Moreover, it is well known (see e.g., R. A. Rankin [14], [15])

that Z(s) satisfies for all s the functional equation

(2.2) Γ(s+ κ− 1)Γ(s)Z(s) = (2π)4s−2Γ(κ− s)Γ(1 − s)Z(1 − s),

which provides then the analytic continuation of Z(s). In modern terminology Z(s)

belongs to the Selberg class S of L-functions of degree four (see A. Selberg [18]

and the survey paper of Kaczorowski–Perelli [10]). An important feature,

proved by G. Shimura [19] (see also A. Sankaranarayanan [16]) is

(2.3) Z(s) = ζ(s)
∞∑

n=1
bnn

−s = ζ(s)B(s),
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where B(s) is holomorphic for σ > 0, bn �ε n
ε (in fact

∑
n≤x b

2
n ≤ x logA x holds,

too). It also satisfies the functional equation

B(s)∆1(s) = B(1 − s)∆1(1 − s),

∆1(s) = π−3s/2Γ
(

1
2 (s+ κ− 1)

)
Γ
(

1
2 (s+ κ)

)
Γ
(

1
2 (s+ κ+ 1)

)
,

and actually B(s) ∈ S with degree three. The decomposition (2.3) (the so-called

‘Shimura lift’) allows one to use, at least to some extent, results from the theory of

ζ(s) in connection with Z(s), and hence to derive results on ∆(x).

3. THE COMPLEX INTEGRATION APPROACH

A natural approach to the estimation of ∆(x), used by the author in [8], is to apply

the classical complex integration technique. We shall briefly present this approach

now. On using Perron’s inversion formula (see e.g., the Appendix of [3]), the

residue theorem and the convexity bound Z(s) �ε |t|2−2σ+ε (0 ≤ σ ≤ 1, |t| ≥ 1),

it follows that

(3.1) ∆(x) =
1

2πi

∫ 1

2
+iT

1

2
−iT

Z(s)

s
xs ds+Oε

(
xε
(
x1/2 +

x

T

))
(1 � T � x).

If we suppose that

(3.2)

∫ 2X

X

∣∣B
(

1
2 + it

)∣∣2 dt�ε X
θ+ε (θ ≥ 1),

and use the elementary fact
(
see [3] for the results on the moments of

∣∣ζ
(

1
2 + it

)∣∣)

that

(3.3)

∫ 2X

X

∣∣ζ
(

1
2 + it

)∣∣2 dt� X logX,

then from (2.3), (3.2), (3.3) and the Cauchy-Schwarz inequality for integrals we

obtain ∫ 2X

X

∣∣Z
(

1
2 + it

)∣∣dt�ε X
(1+θ)/2+ε.

Therefore (3.1) gives

(3.4) ∆(x) �ε x
ε(x1/2T θ/2−1/2 + xT−1) �ε x

θ
θ+1

+ ε

with T = x1/(θ+1). This was formulated in [8] as

Theorem A. If θ is given by (3.2), then

(3.5) ∆(x) �ε x
θ

θ+1
+ε
.
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To obtain a value for θ, note that B(s) belongs to the Selberg class of

degree three, hence B
(

1
2 + it

)
in (3.2) can be written as a sum of two Dirichlet

polynomials (e.g., by the reflection principle discussed in [3, Chapter 4]), each of

length � X3/2. Thus by the mean value theorem for Dirichlet polynomials

(op. cit.) we have θ ≤ 3/2 in (3.2). Hence (3.5) gives (with unimportant ε) the

Rankin-Selberg bound ∆(x) �ε x
3/5+ε. Clearly improvement will come from

better values of θ. Note that the best possible value of θ in (3.2) is θ = 1, which

follows from general results on Dirichlet series (see e.g., [3, Chapter 9]). It gives

1/2+ε as the exponent in the Rankin-Selberg problem, which is the limit of the

method (the conjectural exponent 3/8 + ε, which is best possible, is out of reach;

see the author’s work [4]). To attain this improvement one faces ssentially the same

problem as in proving the sixth moment for
∣∣ζ
(

1
2 + it

)∣∣, namely∫ T

0

∣∣ζ
(

1
2 + it

)∣∣6 dt �ε T 1+ε,

only this problem is even more difficult, because the arithmetic properties of the

coefficients bn are even less known than the properties of the divisor coefficients

d3(n) =
∑

abc=n;a,b,c∈N

1,

generated by ζ3(s). If we knew the analogue of the strongest sixth moment bound
∫ T

0

∣∣ζ
(

1
2 + it

)∣∣6 dt � T 5/4 logC T (C > 0),

namely the bound (3.2) with θ = 5/4, then (3.1) would yield ∆(x) �ε x5/9+ε,

improving substantially (1.2).

The essential difficulty in this problem may be seen indirectly by comparing

it with the estimation of ∆4(x), the error term in the asymptotic formula for the

summatory function of d4(n) =
∑

abcd=n;a,b,c,d∈N
1. The generating function in

this case is ζ4(s). The problem analogous to the estimation of ∆(x) is to estimate

∆4(x), given the product representation

(3.6)
∞∑

n=1
d4(n)n−s = ζ(s)G(s) = ζ(s)

∞∑
n=1

g(n)n−s (σ > 1)

with g(n) �ε n
ε and G(s) of degree three in the Selberg class (with a pole of order

three at s = 1). By the complex integration method one gets ∆4(x) �ε x
1/2+ε

(here ‘ε’ may be replaced by a log-factor) using the classical elementary bound∫ T

0

∣∣ζ
(

1
2 + it

)∣∣4 dt � T log4 T . Curiously, this bound for ∆4(x) has never been

improved; exponential sum techniques seem to give a poor result here. However, if

one knows only (3.6), then the situation is quite analogous to the Rankin–Selberg

problem, and nothing better than the exponent 3/5 seems obtainable. The bound

∆(x) �ε x1/2+ε follows also directly from (3.1) if the Lindelöf hypothesis for

Z(s) (that Z
(

1
2 + it

)
�ε |t|ε) is assumed.
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4. MEAN SQUARE OF THE RANKIN–SELBERG

ZETA–FUNCTION

Let, for a given σ ∈ R,

(4.1) µ(σ) = lim sup
t→∞

log |ζ(σ + it)|
log t

denote the Lindelöf function (the famous, hitherto unproved, Lindelöf conjec-

ture for ζ(s) is that µ(σ) = 0 for σ ≥ 1
2 , or equivalently that ζ

(
1
2 + it

)
�ε |t|ε). In

[8] the author proved the following

Theorem B. If β = 2/
(
5 − µ

(
1
2

))
, then for fixed σ satisfying 1

2 < σ ≤ 1 we have

(4.2)

∫ T

1

|Z(σ + it)|2 dt = T

∞∑

n=1

c2nn
−2σ +Oε(T

(2−2σ)/(1−β)+ε).

This result is the sharpest one yet when σ is close to 1. For σ close to 1
2

one cannot obtain an asymptotic formula, but only the upper bound (this is [7, eq.

(9.27)])

(4.3)

∫ 2T

T

|Z(σ + it)|2 dt�ε T 2µ(1/2)(1−σ)+ε(T + T 3(1−σ))
(

1
2 ≤ σ ≤ 1

)
.

The upper bound in (4.3) follows easily from (2.3) and the fact that, as already

mentioned, B(s) ∈ S with degree three, so that B
(

1
2 + it

)
can be approximated

by Dirichlet polynomials of length � t3/2, and the mean value theorem for

Dirichlet polynomials yields
∫ 2T

T

|B(σ + it)|2 dt�ε T ε(T + T 3(1−σ))
(

1
2 ≤ σ ≤ 1

)
.

Note that with the sharpest known result (see M. N. Huxley [2]) µ(1/2) ≤ 32/205

we obtain β = 410/961 = 0.426638917 . . . . The limit is the value β = 2/5 if

the Lindelöf hypothesis
(
that µ

(
1
2

)
= 0

)
is true. Thus (4.2) provides a true

asymptotic formula for

σ >
1 + β

2
=

1371

1922
= 0.7133194 . . . .

The proof of (4.2), given in [8], is based on the general method of the author’s

paper [6], which contains a historic discussion on the formulas for the left-hand

side of (4.2) (see also K. Matsumoto [12]).

We are able to improve (4.2) in the case when σ = 1. The result is contained

in

Theorem 1. We have

(4.4)

∫ T

1

|Z(1 + it)|2 dt = T
∞∑

n=1

c 2
n n

−2 +Oε((logT )2+ε).
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Proof. For σ = <e s > 1 and X ≥ 2 we have

(4.5) Z(s) =
∑

n≤X

cnn
−s +

∫ ∞

X

x−s d
( ∑

n≤x

cn

)

=
∑

n≤X

cnn
−s +

CX1−s

s− 1
− ∆(x)X−s − s

∫ ∞

X

∆(x)x−s−1 dx.

By using (1.2) it is seen that the last integral converges absolutely for σ =

<e s > 3/5, so that (4.5) provides the analytic continuation of Z(s) to this region.

Taking s = 1 + it, 1 ≤ t ≤ T,X = T 10, it follows that

(4.6)

∫ T

1

|Z(1+it)|2 dt=

∫ T

1

{∣∣∣
∑

n≤X

cnn
−1−it

∣∣∣
2

−2C=m
(∑

n≤X

cn
nt

(X
n

)it)}
dt+O(1).

By the mean value theorem for Dirichlet polynomials we have

∫ T

1

∣∣∣
∑

n≤X

cnn
−1−it

∣∣∣
2

dt = T
∑

n≤X

c 2
n +O

( ∑
n≤X

c 2
n n

−1
)

= T
∞∑

n=1
c 2
n +Oε

(
(log T )2+ε

)
,

where we used the bound (see K. Matsumoto [12])

(4.7)
∑

n≤x

c 2
n �ε x(log x)1+ε

and partial summation. Finally we have

(4.8)
∑

n≤X

cn
n

∫ T

1

1

t

(
X

n

)it

dt� log logT.

To see that (4.8) holds, note first that for X −X/ logT ≤ n ≤ X the integral over

t is trivially estimated as � log T , and the total contribution of such n is

� logT
∑

X−X/ log T≤n≤X

cn
n

dx � 1

on using (1.1)–(1.2). For the remaining n we note that the integral over t equals

(
X
n

)it

it log(X/n)

∣∣∣∣∣

T

1

+
1

i log(X/n)

∫ T

1

(
X

n

)it
dt

t2
.

The contribution of those n is, using (1.1)–(1.2) again and making the change of

variable X/u = v,
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�
∑

1≤n≤X−X/ log T

cn
n log(X/n)

=

∫ X−X/ log T

1−0

1

u log(X/u)
d(Cu + ∆(u))

=

∫ X−X/ log T

1

1

u log(X/u)

(
C +

∆(u)

u
+

∆(u)

u log(X/u)

)
du+O(1)

�
∫ X−X/ log T

1

du

u log(X/u)
+ 1 =

∫ X

(1−1/ log T )−1

dv

v log v
+ 1

= log logX − log log(1 − 1/ logT )−1 + 1 � log logT,

and (4.8) follows.

One can improve the error term in (4.4) to O(log2 T ), which is the limit of the

method. I am very grateful to Prof. Alberto Perelli, who has kindly indicated

this to me. The argument is very briefly as follows. Note that the coefficients c 2
n

are essentially the tensor product of the cn’s, and the cn are essentially the tensor

product of the a(n)’s; “essentially” means in this case that the corresponding L-

functions differ at most by a “fudge factor”, i.e., a Dirichlet series converging ab-

solutely for σ > 1/2 and non-vanishing at s = 1. In terms of L-functions, the tensor

product of the a(n) (the coefficients of the tensor square L-function) corresponds

to the product of ζ(s) and the L-function of Sym2 (Shimura’s lift). Moreover,

Gelbart–Jacquet [1] have shown that Sym2 is a cuspidal automorphic repre-

sentation, so one can apply to the above product the general Rankin-Selberg

theory to obtain “good properties” of the corresponding L-function. Since Sym2

is irreducible, the L-function corresponding to c 2
n has a double pole at s = 1 and a

functional equation of Riemann type. It follows that the sum in (4.7) is asymptotic

to Dx log x for some D > 0, and the assertion follows by following the preceding

argument.

In concluding this section, let it be mentioned that, using (4.5), it easily

follows that Z(1 + it) � log |t| (t ≥ 2).

5. MEAN SQUARE OF ∆(x; ξ)

In this section we shall consider mean square estimates for ∆(x; ξ), defined by

(1.3). Although we could consider the range ξ > 1 as well, for technical reasons we

shall restrict ourselves to the range 0 ≤ ξ ≤ 1, which is the condition that will be

assumed henceforth to hold. Let

(5.1) βξ := inf
{
β ≥ 0 :

∫ X

1

∆2(x; ξ) dx� X1+2β
}
.

The definition of βξ is the natural analogue of the classical constants in mean square

estimates for the generalized Dirichlet divisor problem (see [3, Chapter 13]). Our

first result in this direction is
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Theorem 2. We have

(5.2)
3 − 2ξ

8
≤ βξ ≤ max

(
1 − ξ

2
,

3 − 2ξ

8

)
(0 ≤ ξ ≤ 1).

Proof. First of all, note that (5.2) implies that βξ = (3 − 2ξ)/8 for 1
2 ≤ ξ ≤ 1,

so that in this interval the precise value of βξ is determined. The main tool in our

investigations is the explicit Voronöı type formula for ∆(x; ξ). This is

(5.3) ∆(x; ξ) = Vξ(x,N) +Rξ(x,N),

where, for N � 1,

(5.4)

Vξ(x,N) = (2π)−1−ξx(3−2ξ)/8
∑

n≤N

cnn
−(5+2ξ)/8 cos

(
8π(xn)1/4 + 1

2

(
1
2 − ξ

)
π
)
,

Rξ(x,N) �ε (xN)ε
(
1 + x(3−ξ)/4N−(1+ξ)/4 + (xN)(1−ξ)/4 + x(1−2ξ)/8

)
.

This follows from the work of U. Vorhauer [20] (for ξ = 0 this is also proved in

[9]), specialized to the case when

A =
1

(2π)2
, B = (2π)4,M = L = 2, b1 = b2 = d1 = d2 = 1, β1 = κ− 1

2 , b2 = 1
2 ,

δ1 = κ− 3
2 , δ2 = − 1

2 , γ = 1, p = B, q = 4, λ = 2,Λ = −1, C = (2π)−5/2.

In (5.3)–(5.4) we take N = x, so that Rξ(x,N) �ε x
(1−ξ)/2+ε. Since 1−ξ

2 ≤ 3−2ξ
8

for ξ ≥ 1
2 , the lower bound in (5.2) follows by the method of [4]. For the upper

bound we use cn �ε n
ε and note that (e(z) = exp(2πiz))

∫ 2X

X

∣∣∣
∑

K<k≤2K

ckk
−(5+2ξ)/8e(4(xk)1/4)

∣∣∣
2

dx

� X +
∑

k1 6=k2

ck1
ck2

(k1k2)
−(5+2ξ)/8

∫ 2X

X

e(4x1/4(k
1/4
1 − k

1/4
2 )) dx

�ε X +X3/4+εK−(5+2ξ)/4
∑

k1 6=k2

∣∣∣k1/4
1 − k

1/4
2

∣∣∣
−1

�ε X +X3/4+εK(1−ξ)/2,

where we used the first derivative test (cf. [3, Lemma 2.1]). Since K � X and

∫ 2X

X

∆2(x; ξ) dx �
∫ 2X

X

|Vξ(x,N)|2 dx+

∫ 2X

X

|R(x,N)|2 dx,

it follows that ∫ 2X

X

∆2(x; ξ) dx �ε X
(7−2ξ)/4+ε +X2−ξ+ε,
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which clearly proves the assertion.

Our last result is a bound for βξ, which improves on (5.2) when ξ is small.

This is

Theorem 3. We have

(5.5) βξ ≤ 2 − 2ξ

5 − 2µ
(

1
2

)
(
0 ≤ ξ ≤ 1

6

(
1 + 2µ

(
1
2

)))
.

Proof. We start from

(5.6) ∆(x; ξ) =
1

2πi
lim

T→∞

∫ c+iT

c−iT

Z(s)
xs

sξ+1
ds,

where 0 < c = c(ξ) < 1 is a suitable constant (see K. Matsumoto [13] for

a detailed derivation of formulas analogous to (5.6)). By the Mellin inversion

formula we have (see e.g., the Appendix of [3])

Z(s)s−ξ−1 =

∫ ∞

0

∆(1/x; ξ)xs−1 dx (<e s = c).

Hence by Parseval’s formula for Mellin tranforms (op. cit.) we obtain, for

βξ < σ < 1,

(5.7)
1

2π

∫ ∞

−∞

|Z(σ + it)|2
|σ + it|2ξ+2

dt =

∫ ∞

0

∆2(1/x; ξ)x2σ−1 dx

=

∫ ∞

0

∆2(x; ξ)x−2σ−1 dx� X−2σ−1

∫ 2X

X

∆2(x; ξ) dx.

Therefore if the first integral converges for σ = σ0 + ε, then (5.7) gives

∫ 2X

X

∆2(x; ξ) dx � X2σ+1,

namely βξ ≤ σ0. The functional equation (2.2) and Stirling’s formula in the form

|Γ(s)| =
√

2π|t|σ−1/2e−π|t|/2
(
1 +O(|t|−1)

)
(|t| ≥ t0 > 0)

imply that

(5.8) Z(s) = X (s)Z(1−s), X (σ+it) � |t|2−4σ (s = σ+it, 0 ≤ σ ≤ 1, |t| ≥ 2).

Thus it follows on using (4.3) that

∫ 2T

T

|Z(σ + it)|2 dt � T 4−8σ

∫ 2T

T

|Z(1 − σ + it)|2 dt

�ε T 4−8σ+2µ( 1

2
)σ+max(1,3σ)+ε.
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But we have 4 − 8σ + 2µ(1
2 )σ + max(1, 3σ) = 4 − 5σ + 2µ

(
1
2

)
σ < 2ξ + 2 for

(5.9) σ > σ0 =
2 − 2ξ

5 − 2µ
(

1
2

) ,

provided that σ0 ≥ 1/3, which occurs if 0 ≤ ξ ≤ 1
6

(
1 + 2µ

(
1
2

))
. Thus the first

integral in (5.7) converges if (5.9) holds, and Theorem 3 is proved. Note that this

result is a generalization of Theorem 7 in [8], which says that β0 ≤ (2 − 2ξ)/
(
5 −

2µ
(

1
2

))
.

In the case when βξ = (3 − 2ξ)/8 we could actually derive an asymptotic

formula for the integral of the mean square of ∆(x; ξ), much in the same way that

this was done in [9] for the square of ∆1(x) :=
∫ x

0
∆(u) du, where it was shown

that

(5.10)

∫ X

1

∆2
1(x) dx = DX13/4 +Oε(X

3+ε)

with explicit D > 0 (in [12] the error term was improved to Oε(X
3(logX)3+ε)).

In the case of ∆(x; 1) the formula (5.10) may be used directly, since

(5.11)
1

x
∆1(x) =

1

x

∫ x

0

∆(u) du = ∆(x; 1) +Oε(x
ε).

To see that (5.11) holds, note that with c = 1 − ε we have

∆(x; 1) =
1

2πi

∫ c+i∞

c−i∞

Z(s)
xs

s2
ds

=
1

2πi

∫ c+i∞

c−i∞

Z(s)
xs

s(s+ 1)
ds+

1

2πi

∫ c+i∞

c−i∞

Z(s)
xs

s2(s+ 1)
ds

=
1

x

∫ x

0

∆(u) du+
1

2πi

∫ ε+i∞

ε−i∞

Z(s)
xs

s2(s+ 1)
ds

=
1

x
∆1(x) +Oε(x

ε),

on applying (5.8) to the last integral above.

REFERENCES

1. S. Gelbart, H. Jacquet: A relation between automorphic forms on GL(2) and GL(3),

Proc. Nat. Acad. Sci. U.S.A., 73 (1976), 3348–3350.

2. M. N. Huxley: Exponential sums and the Riemann zeta-function V. Proc. London

Math. Soc., (3) 90 (2005), 1–41.
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6. A. Ivić: On mean values of zeta-functions in the critical strip. J. Théorie des Nombres
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