Applicable Analysis and Discrete Mathematics: 1 (2007), 111–121.

Available electronically at http://pefmath.etf.bg.ac.yu

Presented at the conference: *Topics in Mathematical Analysis and Graph Theory*, Belgrade, September 1–4, 2006.

ON SOME MEAN SQUARE ESTIMATES IN THE RANKIN-SELBERG PROBLEM

Aleksandar Ivić

An overview of the classical RANKIN-SELBERG problem involving the asymptotic formula for sums of coefficients of holomorphic cusp forms is given. We also study the function $\Delta(x;\xi)$ ($0 \le \xi \le 1$), the error term in the RANKIN-SELBERG problem weighted by ξ -th power of the logarithm. Mean square estimates for $\Delta(x;\xi)$ are proved.

1. THE RANKIN-SELBERG PROBLEM

The classical RANKIN-SELBERG problem consists of the estimation of the error term function

(1.1)
$$\Delta(x) := \sum_{n \le x} c_n - Cx,$$

where the notation is as follows. Let $\varphi(z)$ be a holomorphic cusp form of weight κ with respect to the full modular group $SL(2,\mathbb{Z})$, and denote by a(n) the *n*-th FOURIER coefficient of $\varphi(z)$ (see e.g., R. A. RANKIN [15] for a comprehensive account). We suppose that $\varphi(z)$ is a normalized eigenfunction for the HECKE operators T(n), that is, a(1) = 1 and $T(n)\varphi = a(n)\varphi$ for every $n \in \mathbb{N}$. In (1.1) C > 0 is a suitable constant (see e.g., [9] for its explicit expression), and c_n is the convolution function defined by

$$c_n = n^{1-\kappa} \sum_{m^2|n} m^{2(\kappa-1)} \left| a\left(\frac{n}{m^2}\right) \right|^2.$$

The classical RANKIN-SELBERG bound of 1939 is

(1.2)
$$\Delta(x) = O(x^{3/5}),$$

²⁰⁰⁰ Mathematics Subject Classification. 11N37, 11M06, 44A15, 26A12.

Key Words and Phrases. The Rankin-Selberg problem, logarithmic means, Voronoï type formula, functional equation, Selberg class.

Aleksandar Ivić

hitherto unimproved. In their works, done independently, R. A. RANKIN [14] derives (1.2) from a general result of E. LANDAU [11], while A. SELBERG [17] states the result with no proof. Although the exponent 3/5 in (1.2) represents one of the longest standing records in analytic number theory, recently there have been some developments in some other aspects of the RANKIN-SELBERG problem. In this paper we shall present an overview of some of these new results. In addition, we shall consider the weighted sum (the so-called RIESZ logarithmic means of order ξ), namely

(1.3)
$$\frac{1}{\Gamma(\xi+1)} \sum_{n \le x} c_n \log^{\xi} \left(\frac{x}{n}\right) := Cx + \Delta(x;\xi) \qquad (\xi \ge 0),$$

where C is as in (1.1), so that $\Delta(x) \equiv \Delta(x; 0)$. The effect of introducing weights such as the logarithmic weight in (1.3) is that the ensuing error term (in our case this is $\Delta(x;\xi)$) can be estimated better than the original error term (i.e., in our case $\Delta(x; 0)$). This was shown by MATSUMOTO, TANIGAWA and the author in [9], where it was proved that

(1.4)
$$\Delta(x;\xi) \ll_{\varepsilon} x^{(3-2\xi)/5+\varepsilon} \qquad (0 \le \xi \le 3/2).$$

Here and later ε denotes arbitrarily small constants, not necessarily the same ones at each occurrence, while $a \ll_{\varepsilon} b$ means that the constant implied by the \ll -symbol depends on ε . When $\xi = 0$ we recover (1.2) from (1.4), only with the extra ' ε ' factor present. In this work we shall pursue the investigations concerning $\Delta(x;\xi)$, and deal with mean square bounds for this function.

2. THE FUNCTIONAL EQUATIONS

In view of (1.1) and (1.2) it follows that the generating DIRICHLET series

(2.1)
$$Z(s) := \sum_{n=1}^{\infty} c_n n^{-s} \qquad (s = \sigma + it)$$

converges absolutely for $\sigma > 1$. The arithmetic function c_n is multiplicative and satisfies $c_n \ll_{\varepsilon} n^{\varepsilon}$. Moreover, it is well known (see e.g., R. A. RANKIN [14], [15]) that Z(s) satisfies for all s the functional equation

(2.2)
$$\Gamma(s+\kappa-1)\Gamma(s)Z(s) = (2\pi)^{4s-2}\Gamma(\kappa-s)\Gamma(1-s)Z(1-s),$$

which provides then the analytic continuation of Z(s). In modern terminology Z(s) belongs to the SELBERG class S of *L*-functions of degree four (see A. SELBERG [18] and the survey paper of KACZOROWSKI-PERELLI [10]). An important feature, proved by G. SHIMURA [19] (see also A. SANKARANARAYANAN [16]) is

(2.3)
$$Z(s) = \zeta(s) \sum_{n=1}^{\infty} b_n n^{-s} = \zeta(s) B(s),$$

where B(s) is holomorphic for $\sigma > 0$, $b_n \ll_{\varepsilon} n^{\varepsilon}$ (in fact $\sum_{n \leq x} b_n^2 \leq x \log^A x$ holds, too). It also satisfies the functional equation

$$B(s)\Delta_1(s) = B(1-s)\Delta_1(1-s), \Delta_1(s) = \pi^{-3s/2} \Gamma(\frac{1}{2}(s+\kappa-1)) \Gamma(\frac{1}{2}(s+\kappa)) \Gamma(\frac{1}{2}(s+\kappa+1)),$$

and actually $B(s) \in S$ with degree three. The decomposition (2.3) (the so-called 'Shimura lift') allows one to use, at least to some extent, results from the theory of $\zeta(s)$ in connection with Z(s), and hence to derive results on $\Delta(x)$.

3. THE COMPLEX INTEGRATION APPROACH

A natural approach to the estimation of $\Delta(x)$, used by the author in [8], is to apply the classical complex integration technique. We shall briefly present this approach now. On using PERRON's inversion formula (see e.g., the Appendix of [3]), the residue theorem and the convexity bound $Z(s) \ll_{\varepsilon} |t|^{2-2\sigma+\varepsilon}$ $(0 \le \sigma \le 1, |t| \ge 1)$, it follows that

(3.1)
$$\Delta(x) = \frac{1}{2\pi i} \int_{\frac{1}{2} - iT}^{\frac{1}{2} + iT} \frac{Z(s)}{s} x^s \, \mathrm{d}s + O_{\varepsilon} \left(x^{\varepsilon} \left(x^{1/2} + \frac{x}{T} \right) \right) \quad (1 \ll T \ll x).$$

If we suppose that

(3.2)
$$\int_{X}^{2X} \left| B\left(\frac{1}{2} + it\right) \right|^2 \mathrm{d}t \ll_{\varepsilon} X^{\theta + \varepsilon} \qquad (\theta \ge 1),$$

and use the elementary fact (see [3] for the results on the moments of $|\zeta(\frac{1}{2}+it)|$) that

(3.3)
$$\int_{X}^{2X} \left| \zeta \left(\frac{1}{2} + it \right) \right|^2 \mathrm{d}t \ll X \log X,$$

then from (2.3), (3.2), (3.3) and the CAUCHY-SCHWARZ inequality for integrals we obtain

$$\int_{X}^{2X} \left| Z\left(\frac{1}{2} + it\right) \right| \mathrm{d}t \ll_{\varepsilon} X^{(1+\theta)/2+\varepsilon}.$$

Therefore (3.1) gives

(3.4)
$$\Delta(x) \ll_{\varepsilon} x^{\varepsilon} (x^{1/2} T^{\theta/2 - 1/2} + x T^{-1}) \ll_{\varepsilon} x^{\frac{\theta}{\theta + 1} + \varepsilon}$$

with $T = x^{1/(\theta+1)}$. This was formulated in [8] as

Theorem A. If θ is given by (3.2), then

(3.5)
$$\Delta(x) \ll_{\varepsilon} x^{\frac{\theta}{\theta+1}+\varepsilon}.$$

Aleksandar Ivić

To obtain a value for θ , note that B(s) belongs to the SELBERG class of degree three, hence $B(\frac{1}{2} + it)$ in (3.2) can be written as a sum of two DIRICHLET polynomials (e.g., by the reflection principle discussed in [3, Chapter 4]), each of length $\ll X^{3/2}$. Thus by the mean value theorem for DIRICHLET polynomials (op. cit.) we have $\theta \leq 3/2$ in (3.2). Hence (3.5) gives (with unimportant ε) the RANKIN-SELBERG bound $\Delta(x) \ll_{\varepsilon} x^{3/5+\varepsilon}$. Clearly improvement will come from better values of θ . Note that the best possible value of θ in (3.2) is $\theta = 1$, which follows from general results on DIRICHLET series (see e.g., [3, Chapter 9]). It gives $1/2 + \varepsilon$ as the exponent in the RANKIN-SELBERG problem, which is the limit of the method (the conjectural exponent $3/8 + \varepsilon$, which is best possible, is out of reach; see the author's work [4]). To attain this improvement one faces ssentially the same problem as in proving the sixth moment for $|\zeta(\frac{1}{2} + it)|$, namely

$$\int_0^T \left| \zeta \left(\frac{1}{2} + it \right) \right|^6 \mathrm{d}t \ll_{\varepsilon} T^{1+\varepsilon},$$

only this problem is even more difficult, because the arithmetic properties of the coefficients b_n are even less known than the properties of the divisor coefficients

$$d_3(n) = \sum_{abc=n; a, b, c \in \mathbb{N}} 1,$$

generated by $\zeta^3(s)$. If we knew the analogue of the strongest sixth moment bound

$$\int_0^T \left| \zeta \left(\frac{1}{2} + it \right) \right|^6 \mathrm{d}t \ \ll \ T^{5/4} \log^C T \qquad (C > 0),$$

namely the bound (3.2) with $\theta = 5/4$, then (3.1) would yield $\Delta(x) \ll_{\varepsilon} x^{5/9+\varepsilon}$, improving substantially (1.2).

The essential difficulty in this problem may be seen indirectly by comparing it with the estimation of $\Delta_4(x)$, the error term in the asymptotic formula for the summatory function of $d_4(n) = \sum_{abcd=n;a,b,c,d\in\mathbb{N}} 1$. The generating function in this case is $\zeta^4(s)$. The problem analogous to the estimation of $\Delta(x)$ is to estimate $\Delta_4(x)$, given the product representation

(3.6)
$$\sum_{n=1}^{\infty} d_4(n) n^{-s} = \zeta(s) G(s) = \zeta(s) \sum_{n=1}^{\infty} g(n) n^{-s} \quad (\sigma > 1)$$

with $g(n) \ll_{\varepsilon} n^{\varepsilon}$ and G(s) of degree three in the SELBERG class (with a pole of order three at s = 1). By the complex integration method one gets $\Delta_4(x) \ll_{\varepsilon} x^{1/2+\varepsilon}$ (here ' ε ' may be replaced by a log-factor) using the classical elementary bound $\int_0^T |\zeta(\frac{1}{2} + it)|^4 dt \ll T \log^4 T$. Curiously, this bound for $\Delta_4(x)$ has never been improved; exponential sum techniques seem to give a poor result here. However, if one knows only (3.6), then the situation is quite analogous to the RANKIN–SELBERG problem, and nothing better than the exponent 3/5 seems obtainable. The bound $\Delta(x) \ll_{\varepsilon} x^{1/2+\varepsilon}$ follows also directly from (3.1) if the LINDELÖF hypothesis for Z(s) (that $Z(\frac{1}{2} + it) \ll_{\varepsilon} |t|^{\varepsilon}$) is assumed.

4. MEAN SQUARE OF THE RANKIN–SELBERG ZETA–FUNCTION

(4.1)
$$\mu(\sigma) = \limsup_{t \to \infty} \frac{\log |\zeta(\sigma + it)|}{\log t}$$

denote the LINDELÖF function (the famous, hitherto unproved, LINDELÖF conjecture for $\zeta(s)$ is that $\mu(\sigma) = 0$ for $\sigma \geq \frac{1}{2}$, or equivalently that $\zeta(\frac{1}{2} + it) \ll_{\varepsilon} |t|^{\varepsilon}$). In [8] the author proved the following

Theorem B. If $\beta = 2/(5 - \mu(\frac{1}{2}))$, then for fixed σ satisfying $\frac{1}{2} < \sigma \le 1$ we have

(4.2)
$$\int_{1}^{T} |Z(\sigma + it)|^{2} dt = T \sum_{n=1}^{\infty} c_{n}^{2} n^{-2\sigma} + O_{\varepsilon}(T^{(2-2\sigma)/(1-\beta)+\varepsilon}).$$

This result is the sharpest one yet when σ is close to 1. For σ close to $\frac{1}{2}$ one cannot obtain an asymptotic formula, but only the upper bound (this is [7, eq. (9.27)])

(4.3)
$$\int_{T}^{2T} |Z(\sigma+it)|^2 dt \ll_{\varepsilon} T^{2\mu(1/2)(1-\sigma)+\varepsilon}(T+T^{3(1-\sigma)}) \quad (\frac{1}{2} \le \sigma \le 1).$$

The upper bound in (4.3) follows easily from (2.3) and the fact that, as already mentioned, $B(s) \in S$ with degree three, so that $B(\frac{1}{2} + it)$ can be approximated by DIRICHLET polynomials of length $\ll t^{3/2}$, and the mean value theorem for DIRICHLET polynomials yields

$$\int_{T}^{2T} |B(\sigma + it)|^2 \, \mathrm{d}t \ll_{\varepsilon} T^{\varepsilon} (T + T^{3(1-\sigma)}) \qquad \left(\frac{1}{2} \le \sigma \le 1\right).$$

Note that with the sharpest known result (see M. N. HUXLEY [2]) $\mu(1/2) \leq 32/205$ we obtain $\beta = 410/961 = 0.426638917...$ The limit is the value $\beta = 2/5$ if the LINDELÖF hypothesis (that $\mu(\frac{1}{2}) = 0$) is true. Thus (4.2) provides a true asymptotic formula for

$$\sigma > \frac{1+\beta}{2} = \frac{1371}{1922} = 0.7133194\dots$$

The proof of (4.2), given in [8], is based on the general method of the author's paper [6], which contains a historic discussion on the formulas for the left-hand side of (4.2) (see also K. MATSUMOTO [12]).

We are able to improve (4.2) in the case when $\sigma = 1$. The result is contained in

Theorem 1. We have

(4.4)
$$\int_{1}^{T} |Z(1+it)|^{2} dt = T \sum_{n=1}^{\infty} c_{n}^{2} n^{-2} + O_{\varepsilon}((\log T)^{2+\varepsilon}).$$

Proof. For $\sigma = \Re e s > 1$ and $X \ge 2$ we have

(4.5)
$$Z(s) = \sum_{n \le X} c_n n^{-s} + \int_X^\infty x^{-s} d\left(\sum_{n \le x} c_n\right)$$
$$= \sum_{n \le X} c_n n^{-s} + \frac{CX^{1-s}}{s-1} - \Delta(x)X^{-s} - s \int_X^\infty \Delta(x)x^{-s-1} dx.$$

By using (1.2) it is seen that the last integral converges absolutely for $\sigma = \Re e s > 3/5$, so that (4.5) provides the analytic continuation of Z(s) to this region. Taking s = 1 + it, $1 \le t \le T$, $X = T^{10}$, it follows that

(4.6)
$$\int_{1}^{T} |Z(1+it)|^2 \, \mathrm{d}t = \int_{1}^{T} \left\{ \left| \sum_{n \le X} c_n n^{-1-it} \right|^2 - 2C \Im \left(\sum_{n \le X} \frac{c_n}{nt} \left(\frac{X}{n} \right)^{it} \right) \right\} \, \mathrm{d}t + O(1).$$

By the mean value theorem for DIRICHLET polynomials we have

$$\int_{1}^{T} \left| \sum_{n \le X} c_n n^{-1-it} \right|^2 \mathrm{d}t = T \sum_{n \le X} c_n^2 + O\left(\sum_{n \le X} c_n^2 n^{-1} \right) = T \sum_{n=1}^{\infty} c_n^2 + O_{\varepsilon} \left((\log T)^{2+\varepsilon} \right),$$

where we used the bound (see K. MATSUMOTO [12])

(4.7)
$$\sum_{n \le x} c_n^2 \ll_{\varepsilon} x (\log x)^{1+\varepsilon}$$

and partial summation. Finally we have

(4.8)
$$\sum_{n \le X} \frac{c_n}{n} \int_1^T \frac{1}{t} \left(\frac{X}{n}\right)^{it} dt \ll \log \log T.$$

To see that (4.8) holds, note first that for $X - X/\log T \le n \le X$ the integral over t is trivially estimated as $\ll \log T$, and the total contribution of such n is

$$\ll \log T \sum_{X-X/\log T \le n \le X} \frac{c_n}{n} \, \mathrm{d}x \ll 1$$

on using (1.1)-(1.2). For the remaining n we note that the integral over t equals

$$\frac{\left(\frac{X}{n}\right)^{it}}{it\log(X/n)} \bigg|_{1}^{T} + \frac{1}{i\log(X/n)} \int_{1}^{T} \left(\frac{X}{n}\right)^{it} \frac{\mathrm{d}t}{t^{2}}.$$

The contribution of those n is, using (1.1)–(1.2) again and making the change of variable X/u = v,

$$\ll \sum_{1 \le n \le X - X/\log T} \frac{c_n}{n \log(X/n)} = \int_{1-0}^{X - X/\log T} \frac{1}{u \log(X/u)} d(Cu + \Delta(u))$$

=
$$\int_1^{X - X/\log T} \frac{1}{u \log(X/u)} \left(C + \frac{\Delta(u)}{u} + \frac{\Delta(u)}{u \log(X/u)}\right) du + O(1)$$

$$\ll \int_1^{X - X/\log T} \frac{du}{u \log(X/u)} + 1 = \int_{(1-1/\log T)^{-1}}^X \frac{dv}{v \log v} + 1$$

=
$$\log \log X - \log \log(1 - 1/\log T)^{-1} + 1 \ll \log \log T,$$

and (4.8) follows.

One can improve the error term in (4.4) to $O(\log^2 T)$, which is the limit of the method. I am very grateful to Prof. ALBERTO PERELLI, who has kindly indicated this to me. The argument is very briefly as follows. Note that the coefficients c_n^2 are essentially the tensor product of the c_n 's, and the c_n are essentially the tensor product of the a(n)'s; "essentially" means in this case that the corresponding Lfunctions differ at most by a "fudge factor", i.e., a DIRICHLET series converging absolutely for $\sigma > 1/2$ and non-vanishing at s = 1. In terms of L-functions, the tensor product of the a(n) (the coefficients of the tensor square L-function) corresponds to the product of $\zeta(s)$ and the L-function of Sym^2 (SHIMURA's lift). Moreover, GELBART-JACQUET [1] have shown that Sym^2 is a cuspidal automorphic representation, so one can apply to the above product the general RANKIN-SELBERG theory to obtain "good properties" of the corresponding L-function. Since Sym^2 is irreducible, the L-function corresponding to c_n^2 has a double pole at s = 1 and a functional equation of RIEMANN type. It follows that the sum in (4.7) is asymptotic to $Dx \log x$ for some D > 0, and the assertion follows by following the preceding argument.

In concluding this section, let it be mentioned that, using (4.5), it easily follows that $Z(1+it) \ll \log |t|$ $(t \ge 2)$.

5. MEAN SQUARE OF $\Delta(x;\xi)$

In this section we shall consider mean square estimates for $\Delta(x;\xi)$, defined by (1.3). Although we could consider the range $\xi > 1$ as well, for technical reasons we shall restrict ourselves to the range $0 \le \xi \le 1$, which is the condition that will be assumed henceforth to hold. Let

(5.1)
$$\beta_{\xi} := \inf \left\{ \beta \ge 0 : \int_{1}^{X} \Delta^{2}(x;\xi) \, \mathrm{d}x \ll X^{1+2\beta} \right\}$$

The definition of β_{ξ} is the natural analogue of the classical constants in mean square estimates for the generalized DIRICHLET divisor problem (see [3, Chapter 13]). Our first result in this direction is

Theorem 2. We have

(5.2)
$$\frac{3-2\xi}{8} \leq \beta_{\xi} \leq \max\left(\frac{1-\xi}{2}, \frac{3-2\xi}{8}\right) \quad (0 \leq \xi \leq 1).$$

Proof. First of all, note that (5.2) implies that $\beta_{\xi} = (3 - 2\xi)/8$ for $\frac{1}{2} \le \xi \le 1$, so that in this interval the precise value of β_{ξ} is determined. The main tool in our investigations is the explicit VORONOÏ type formula for $\Delta(x;\xi)$. This is

(5.3)
$$\Delta(x;\xi) = V_{\xi}(x,N) + R_{\xi}(x,N),$$

where, for $N \gg 1$, (5.4)

$$V_{\xi}(x,N) = (2\pi)^{-1-\xi} x^{(3-2\xi)/8} \sum_{n \le N} c_n n^{-(5+2\xi)/8} \cos\left(8\pi (xn)^{1/4} + \frac{1}{2} \left(\frac{1}{2} - \xi\right)\pi\right),$$
$$R_{\xi}(x,N) \ll_{\varepsilon} (xN)^{\varepsilon} \left(1 + x^{(3-\xi)/4} N^{-(1+\xi)/4} + (xN)^{(1-\xi)/4} + x^{(1-2\xi)/8}\right).$$

This follows from the work of U. VORHAUER [20] (for $\xi = 0$ this is also proved in [9]), specialized to the case when

$$A = \frac{1}{(2\pi)^2}, B = (2\pi)^4, M = L = 2, b_1 = b_2 = d_1 = d_2 = 1, \beta_1 = \kappa - \frac{1}{2}, b_2 = \frac{1}{2}, \delta_1 = \kappa - \frac{3}{2}, \delta_2 = -\frac{1}{2}, \gamma = 1, p = B, q = 4, \lambda = 2, \Lambda = -1, C = (2\pi)^{-5/2}.$$

In (5.3)–(5.4) we take N = x, so that $R_{\xi}(x, N) \ll_{\varepsilon} x^{(1-\xi)/2+\varepsilon}$. Since $\frac{1-\xi}{2} \leq \frac{3-2\xi}{8}$ for $\xi \geq \frac{1}{2}$, the lower bound in (5.2) follows by the method of [4]. For the upper bound we use $c_n \ll_{\varepsilon} n^{\varepsilon}$ and note that $(e(z) = \exp(2\pi i z))$

$$\begin{split} &\int_{X}^{2X} \left| \sum_{K < k \le 2K} c_k k^{-(5+2\xi)/8} \mathrm{e}(4(xk)^{1/4}) \right|^2 \mathrm{d}x \\ &\ll X + \sum_{k_1 \neq k_2} c_{k_1} c_{k_2} (k_1 k_2)^{-(5+2\xi)/8} \int_{X}^{2X} \mathrm{e}(4x^{1/4} (k_1^{1/4} - k_2^{1/4})) \,\mathrm{d}x \\ &\ll_{\varepsilon} X + X^{3/4 + \varepsilon} K^{-(5+2\xi)/4} \sum_{k_1 \neq k_2} \left| k_1^{1/4} - k_2^{1/4} \right|^{-1} \\ &\ll_{\varepsilon} X + X^{3/4 + \varepsilon} K^{(1-\xi)/2}, \end{split}$$

where we used the first derivative test (cf. [3, Lemma 2.1]). Since $K \ll X$ and

$$\int_{X}^{2X} \Delta^2(x;\xi) \,\mathrm{d}x \ll \int_{X}^{2X} |V_{\xi}(x,N)|^2 \,\mathrm{d}x + \int_{X}^{2X} |R(x,N)|^2 \,\mathrm{d}x,$$

it follows that

$$\int_{X}^{2X} \Delta^2(x;\xi) \,\mathrm{d}x \ll_{\varepsilon} X^{(7-2\xi)/4+\varepsilon} + X^{2-\xi+\varepsilon},$$

which clearly proves the assertion.

Our last result is a bound for β_{ξ} , which improves on (5.2) when ξ is small. This is

Theorem 3. We have

(5.5)
$$\beta_{\xi} \leq \frac{2-2\xi}{5-2\mu(\frac{1}{2})} \qquad \left(0 \leq \xi \leq \frac{1}{6}\left(1+2\mu(\frac{1}{2})\right)\right).$$

Proof. We start from

(5.6)
$$\Delta(x;\xi) = \frac{1}{2\pi i} \lim_{T \to \infty} \int_{c-iT}^{c+iT} Z(s) \frac{x^s}{s^{\xi+1}} \,\mathrm{d}s,$$

where $0 < c = c(\xi) < 1$ is a suitable constant (see K. MATSUMOTO [13] for a detailed derivation of formulas analogous to (5.6)). By the MELLIN inversion formula we have (see e.g., the Appendix of [3])

$$Z(s)s^{-\xi-1} = \int_0^\infty \Delta(1/x;\xi)x^{s-1} \,\mathrm{d}x \qquad (\Re e \, s = c).$$

Hence by PARSEVAL's formula for MELLIN tranforms (op. cit.) we obtain, for $\beta_{\xi} < \sigma < 1$,

(5.7)
$$\frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{|Z(\sigma+it)|^2}{|\sigma+it|^{2\xi+2}} dt = \int_0^{\infty} \Delta^2 (1/x;\xi) x^{2\sigma-1} dx$$
$$= \int_0^{\infty} \Delta^2 (x;\xi) x^{-2\sigma-1} dx \gg X^{-2\sigma-1} \int_X^{2X} \Delta^2 (x;\xi) dx.$$

Therefore if the first integral converges for $\sigma = \sigma_0 + \varepsilon$, then (5.7) gives

$$\int_X^{2X} \Delta^2(x;\xi) \, \mathrm{d}x \, \ll X^{2\sigma+1},$$

namely $\beta_{\xi} \leq \sigma_0$. The functional equation (2.2) and STIRLING's formula in the form

$$|\Gamma(s)| = \sqrt{2\pi} |t|^{\sigma - 1/2} e^{-\pi |t|/2} \left(1 + O(|t|^{-1}) \right) \qquad (|t| \ge t_0 > 0)$$

imply that

(5.8)
$$Z(s) = \mathcal{X}(s)Z(1-s), \quad \mathcal{X}(\sigma+it) \asymp |t|^{2-4\sigma} \quad (s = \sigma+it, 0 \le \sigma \le 1, |t| \ge 2).$$

Thus it follows on using (4.3) that

$$\int_{T}^{2T} |Z(\sigma+it)|^2 \,\mathrm{d}t \ll T^{4-8\sigma} \int_{T}^{2T} |Z(1-\sigma+it)|^2 \,\mathrm{d}t$$
$$\ll_{\varepsilon} T^{4-8\sigma+2\mu(\frac{1}{2})\sigma+\max(1,3\sigma)+\varepsilon}.$$

But we have $4 - 8\sigma + 2\mu(\frac{1}{2})\sigma + \max(1, 3\sigma) = 4 - 5\sigma + 2\mu(\frac{1}{2})\sigma < 2\xi + 2$ for

(5.9)
$$\sigma > \sigma_0 = \frac{2 - 2\xi}{5 - 2\mu(\frac{1}{2})},$$

provided that $\sigma_0 \geq 1/3$, which occurs if $0 \leq \xi \leq \frac{1}{6} \left(1 + 2\mu(\frac{1}{2})\right)$. Thus the first integral in (5.7) converges if (5.9) holds, and Theorem 3 is proved. Note that this result is a generalization of Theorem 7 in [8], which says that $\beta_0 \leq (2 - 2\xi)/(5 - 2\mu(\frac{1}{2}))$.

In the case when $\beta_{\xi} = (3 - 2\xi)/8$ we could actually derive an asymptotic formula for the integral of the mean square of $\Delta(x;\xi)$, much in the same way that this was done in [9] for the square of $\Delta_1(x) := \int_0^x \Delta(u) \, du$, where it was shown that

(5.10)
$$\int_{1}^{X} \Delta_{1}^{2}(x) \, \mathrm{d}x = DX^{13/4} + O_{\varepsilon}(X^{3+\varepsilon})$$

with explicit D > 0 (in [12] the error term was improved to $O_{\varepsilon}(X^3(\log X)^{3+\varepsilon})$). In the case of $\Delta(x; 1)$ the formula (5.10) may be used directly, since

(5.11)
$$\frac{1}{x}\Delta_1(x) = \frac{1}{x}\int_0^x \Delta(u) \,\mathrm{d}u = \Delta(x;1) + O_\varepsilon(x^\varepsilon)$$

To see that (5.11) holds, note that with $c = 1 - \varepsilon$ we have

$$\begin{split} \Delta(x;1) &= \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} Z(s) \frac{x^s}{s^2} \,\mathrm{d}s \\ &= \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} Z(s) \frac{x^s}{s(s+1)} \,\mathrm{d}s + \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} Z(s) \frac{x^s}{s^2(s+1)} \,\mathrm{d}s \\ &= \frac{1}{x} \int_0^x \Delta(u) \,\mathrm{d}u + \frac{1}{2\pi i} \int_{\varepsilon-i\infty}^{\varepsilon+i\infty} Z(s) \frac{x^s}{s^2(s+1)} \,\mathrm{d}s \\ &= \frac{1}{x} \Delta_1(x) + O_{\varepsilon}(x^{\varepsilon}), \end{split}$$

on applying (5.8) to the last integral above.

REFERENCES

- S. GELBART, H. JACQUET: A relation between automorphic forms on GL(2) and GL(3), Proc. Nat. Acad. Sci. U.S.A., 73 (1976), 3348–3350.
- M. N. HUXLEY: Exponential sums and the Riemann zeta-function V. Proc. London Math. Soc., (3) 90 (2005), 1–41.
- A. IVIĆ: The Riemann zeta-function. John Wiley & Sons, New York, 1985 (2nd ed., Dover, Mineola, N.Y., 2003).

- A. IVIĆ: Large values of certain number-theoretic error terms. Acta Arith. 56 (1990), 135–159.
- A. IVIĆ: On some conjectures and results for the Riemann zeta-function and Hecke series. Acta Arith., 99 (2001), 155–145.
- A. IVIĆ: On mean values of zeta-functions in the critical strip. J. Théorie des Nombres de Bordeaux, 15 (2003), 163–173.
- A. IVIĆ: Estimates of convolutions of certain number-theoretic error terms. Inter. J. of Math. and Mathematical Sciences, 2004:1, 1–23.
- 8. A. IVIĆ: Convolutions and mean square estimates of certain number-theoretic error terms. subm. to Publs. Inst. Math. (Beograd). arXiv.math.NT/0512306
- A. IVIĆ, K. MATSUMOTO, Y. TANIGAWA: On Riesz mean of the coefficients of the Rankin-Selberg series. Math. Proc. Camb. Phil. Soc., 127 (1999), 117–131.
- A. KACZOROWSKI, A. PERELLI: *The Selberg class: a survey*, in "Number Theory in Progress, Proc. Conf. in honour of A. Schinzel (K. Györy et al. eds)", de Gruyter, Berlin, 1999, pp. 953–992.
- E. LANDAU: Uber die Anzahl der Gitterpunkte in gewissen Bereichen II. Nachr. Ges. Wiss. Göttingen, 1915, 209–243.
- K. MATSUMOTO: The mean values and the universality of Rankin-Selberg L-functions. M. Jutila (ed.) et al., Number theory. "Proc. Turku symposium on number theory in memory of K. Inkeri", Turku, Finland, May 31-June 4, 1999. de Gruyter, Berlin, 2001, pp. 201–221.
- K. MATSUMOTO: Liftings and mean value theorems for automorphic L-functions. Proc. London Math. Soc., (3) 90 (2005), 297–320.
- R. A. RANKIN: Contributions to the theory of Ramanujan's function τ(n) and similar arithmetical functions. II, The order of Fourier coefficients of integral modular forms. Math. Proc. Cambridge Phil. Soc., 35 (1939), 357–372.
- 15. R. A. RANKIN: Modular Forms. Ellis Horwood Ltd., Chichester, England, 1984.
- A. SANKARANARAYANAN:, Fundamental properties of symmetric square L-functions I. Illinois J. Math., 46 (2002), 23–43.
- A. SELBERG: Bemerkungen über eine Dirichletsche Reihe, die mit der Theorie der Modulformen nahe verbunden ist. Arch. Math. Naturvid., 43 (1940), 47–50.
- A. SELBERG: Old and new conjectures and results about a class of Dirichlet series, in "Proc. Amalfi Conf. Analytic Number Theory 1989 (E. Bombieri et al. eds.)", University of Salerno, Salerno, 1992, pp. 367–385.
- G. SHIMURA: On the holomorphy of certain Dirichlet series. Proc. London Math. Soc., 31 (1975), 79–98.
- U. VORHAUER: Three two-dimensional Weyl steps in the circle problem II. The logarithmic Riesz mean for a class of arithmetic functions. Acta Arith., 91 (1999), 57–73.

Katedra Matematike RGF-a, Univerzitet u Beogradu, Đušina 7,

11000 Beograd, Serbia

E-mail: ivic@rgf.bg.ac.yu, aivic@matf.bg.ac.yu