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METHOD OF FACTORIZATION OF

ORDINARY DIFFERENTIAL OPERATORS

AND SOME OF ITS APPLICATIONS

Lev M. Berkovich

The paper is dedicated to analytical and algebraic approaches to the problem
of the integration of ordinary differential equations. The first part is devoted
to linear ordinary differential equations of the second and nth orders, while
the second deals with nonlinear ordinary differential equations. Factoriza-
tion of nonlinear equations of the second and the third orders both through
commutative and noncommutative nonlinear differential operators are con-
sidered. The method of the exact linearization for nonlinear equations is
explained. Some applications are also considered.

1. INTRODUCTION

The contents of this paper are closely connected to the problem of the in-
tegration of ordinary differential equations. Factorization of differential operators
is a very effective method for analyzing both linear and nonlinear ordinary dif-
ferential equations. It uses analogies between differential operators and algebraic
polynomials.

The prehistory of this method goes back to investigations of G. Frobenius
[29], E. Landau, [43] and G. Mammana [47].

The most efficacious is simultaneously using factorization method and vari-
ables transformation.

A great contribution to the problem of integrating ordinary differential equa-
tions was made by mathematicians of Serbia and the former Yugoslavia: M. Pet-
rović, T. Pejović, D. S. Mitrinović, B. Popov, I. Šapkarev, I. Bandić, P.
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Vasić, J. Kečkić, V. Kocić and others. The journal “Publications of the Faculty
of Electrical Engineering - Series Mathematics” (1956–2006), which was founded
by Professor D. S. Mitrinović, have played significant role in the regeneration of
interest in the problem of the solution of ordinary differential equations iin closed
form.

At the present time the importance of this problem has increased consider-
ably. Closed-form solutions are necessary both for new mathematical models in the
natural sciences and for the testiing of numerical and analytic algorithms.

In Section 2 we consider differential algebras of differential operators. We
place the main emphasis on their factorization.

In Section 3 it is shown how to use the method of LODE-2 and LODE-n
transformation. The Kummer-Liouville transformation, that is applied in this
work, is the most general transformation of variables that preserves the order and
the linearity of the given equation.

The solutions of the classical Kummer’s and Halphen’s problems of LODE-2
and LODE-n equivalence are given.

The criteria of LODE-n reducibility to equations with constant coefficients
are pointed out.

In Section 4 we consider the method of autonomization for nonlinear differ-
ential equations. It is applicable for equations that can be representad as a sum
of linear and nonlinear parts. The test for autonomization is also adduced. The
generalized Emden-Fowler’s equation and generalized Ermakov’s equation, which
frequently appear in different applications, are considered. The very important idea
of a nonlinear superposition principle for nonlinear differential equations is given.

In Section 5 the method of linearization of nonlinear differential equations
(see Berkovich [18, 22]) is applied to the equations of the second and third
orders. A nonlinear oscillator and the Euler-Poinsot case in the problem of the
gyroscope are good examples of the effectiveness of this method.

In Section 6 we simultaneously apply the method of transformation of vari-
ables and factorization of nonlinear differential operators to the generalized Emden-
Fowler’s equation of the third order, to Lienard’s equation and to the equation
of the anharmonic oscillator.

2. DIFFERENTIAL ALGEBRA OF DIFFERENTIAL OPERATORS

Definitions of the main concepts can be found in the following books: Ka-
plansky [32], Magid [46], Singer [56] and Berkovich [13, 22].

2.1. Differential field

Definition 1. A differential field is a pair (F, δ), where F is a functional field and
δ is a derivation. Let K be a number field of characteristic 0 (i.e. constant field
F ). It may be algebraically closed, or it may be not.

a′ := δ(a), a ∈ F,
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a ∈ F0 ⇔ a′ ∈ F0, c ∈ K ⇔ c′ = 0.

Example 1. Field (F, δ), where δ =
d

dx
= D, δ = x

d

dx
. Further let δ be D.

Example 2. Field (C(x), D), where C(x) is the field of rational functions over the
field of complex numbers C.

2.2. Ring of differential operators

Consider the set of differential operators of arbitrary order

L = anD
n + · · · + a1D + a0,

where n ∈ N, ai ∈ F0, ∀i. Multiplication in F0 is determined by the rule:

(2.1) Da = aD +D(a) = aD + a′.

From (2.1) Leibnitz’ formula follows:

Dib =

i
∑

k=0

(i
k

)

b(i−k)Dk.

F0[D] is an associative but not a commutative ring.

2.3. Factorization of differential operators

Definition 2. An operator, L, is factorizable in F0 if it can be represented as the
product of differential operators of lower order. The latter operators have coeffi-
cients in F0. Under factorization the source number field may be extended to the
algebraically closed field K.

Equivalent definition:

Definition 3. The equation, Ly = 0, of order n is factorizable in F0 if both this
equation and the equation, My = 0, of order less than n have a common nontrivial
integral.

Otherwise L is said to be not factorizable in F0.

2.4. Right differential analogue of Bezout’s theorem

Theorem 1. Dividing L by D − α from the right we get

f(x) = exp
(

−
∫

α dx
)

L exp
(

∫

α dx
)

.

In the ring F0[D] Horner-type schemes take place by analogy with algebraic
polynomials.

Using the right differential analogue of Horner’s scheme one can make an
expansion

L =
n−1
∑

s=0
βsD

s(D − α), βn−1 = 1.
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Using the left differential analogue of Horner’s scheme one can make an expansion:

L = (D − α)
n−1
∑

s=0
βsD

s, βn−1 = 1.

2.5. Conjugation operator and its properties

Definition 4. Transformation of conjugation, τ , is linear operator that acts on
the Linear Ordinary Differential Operator (LODO) as it pointed out below :

τ
(

p(x)Dn
)

= (−1)nDnp(x) = (−1)n
n
∑

k=0

(

n
k

)

p(k)Dn−k,

τ
( n
∑

s=0
Csps(x)D

s
)

=
r
∑

s=0
Csτ

(

psD
s
)

, Cs = const.

Let L∗ be the operator, τL, that is formally conjugated to L

L∗ ≡ τ
( n
∑

k=0

akD
k
)

=
n
∑

k=0

(−1)kDkak =
n
∑

k=0

k
∑

s=0

(−1)k
(

k
s

)

a
(s)
k Dk−s.

Let L and M be LODOes. Then

τ(LM) = τ(M)τ(L) = M∗L∗.

2.6. Left differential analogue of Bezout’s theorem

Theorem 2. Dividing L by D − α from the left we get

g(x) = exp
(

∫

α dx
)

L∗ exp
(

−
∫

α dx
)

.

2.7. Selfconjugated and antiselfconjugated operators

Theorem 3. A selfconjugated operator, L2n, can be represented as

L2n ≡
1
∏

k=2n

(βkD − αk) =
n
∏

k=1

(βkD + β′
k + αk)

1
∏

k=n

(βkD − αk).

Theorem 4. An antiselfconjugated operator, L2n+1, can be represented as

L2n+1 ≡
1
∏

s=2n+1
(βsD − αs)

=
n
∏

k=1

(βkD + β′
k + αk)

(

− 2
∫

αn+1 dxD − αn+1

) 1
∏

k=n

(βkD − αk).
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2.8. Reducible selfconjugated and antiselfconjugated operators

Theorem 5 (see Berkovich, Rozov and Eishinsky [4]). A selfconjugated oper-
ator that admits the factorization,

(2.2) L2n =

n
∏

k=1

(

D +
2n+ 1 − 2k

2n− 1
α
)

1
∏

k=n

(

D − 2n+ 1 − 2k

2n− 1
α
)

,

can be represented as

exp
( 4n

2n− 1

∫

α dx
)

L2n =

(

exp
( 2

2n− 1

∫

α dx
)

(D − α)

)2n

.

Theorem 6 [4]. An antiselfconjugated operator that admits the factorization,

(2.3) L2n+1 =

n
∏

k=1

(

D +
n+ 1 − k

n
α
)

D

1
∏

k=n

(

D − n+ 1 − k

n
α
)

,

can be represented as

exp
(2n+ 1

n

∫

α dx
)

L2n+1 =

(

exp
( 1

n

∫

α dx
)

(D − α)

)2n+1

.

The operator, (2.2), is called a reducible selfconjugated operator.

The operator, (2.3), is called a reducible antiselfconjugated operator.

2.9. Liouvillian and Euler expansions

A set Λ is a generalized Liouvillian (Euler) expansion of the field F0 if there
is a tower of fields,

F0 ⊂ F1 ⊂ . . . ⊂ Fn = Λ,

such that one of the following conditions is fulfilled

• a. Fi = Fi−1(α), where Fi−1(α) is the field of rational functions of α with
coefficients from Fi−1 and α′ ∈ Fi−1.

• b. Fi = Fi−1(α), α 6= 0, α′/α ∈ Fi−1.

• c. Fi = Fi−1(α), where α satisfies an algebraic equation of order n ≥ 2.

• d. Fi = Fi−1(y1, y2), where y1 and y2 constitute a basis of the equation

(2.4) y′′ + a1y
′ + a0y = 0, a1, a0 ∈ Fi−1.

.If (a), (b) or (c) is satisfied, then we get a Liouvillian expansion Λ0. If in
addition condition (d) is satisfied, then we have a generalized Liouvillian (Euler)
expansion Λ of the field F0.
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2.10. Picard-Vessiot expansion

Definition 5. The Picard-Vessiot expansion for the equation

(2.5) Ly ≡
n
∑

s=0
asy

(s) = 0, as ∈ F0

is the differential field F0(y1, . . . , yn), where y1, y2, . . . , yn is a basis of equation
(2.5).

Definition 6. Equation (2.5) can be integrated in quadratures if PV ⊂ Λ0.

Definition 7 Equation (2.5) has an Euler solution if PV ⊂ Λ.

2.11. Mammana’s theorems

Theorem 7. It is always possible to factorize the equation Ly = 0 by an infinite
number of ways through operators of the first order

(2.6) Ly ≡
1
∏

k=n

(D − αk)y = 0,

where αk are complex-valued functions of x.

Example 3.

D2 + 1 ≡
(

D +
i(c1e

ix − c2e
−ix)

c1eix + c2e−ix

)(

D − i(c1e
ix − c2e

−ix)

c1eix + c2e−ix

)

.

Theorem 8. Suppose that we have an equation Ly = 0, as ∈ Cs(I), I = {x|a <
x < b}. Let αk be real-valued functions in I.

Factorization of (2.6) in I exists if and only if any solution y(x) of the equa-
tion Ly = 0 is nonoscillating, i.e. it has no more than n − 1 zeroes (counted
according to their multiplicity) in I.

Example 4.

D2 + 1 ≡
(

D +
−c1 sinx+ c2 cosx

c1 cosx+ c2 sinx

)(

D − −c1 sinx+ c2 cosx

c1 cosx+ c2 sinx

)

.

2.12. Factorization in ground differential field

The equation

(2.7) y′′ + a0y = 0

admits the factorization

(2.8) (D + α)(D − α)y = 0,
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where α(x) satisfies the Riccati equation

α′ + α2 + a0 = 0, a0 ∈ C(x).

They also have the form

α =

n
∑

i=1

mi
∑

j=1

cij
(x− ri)j

+ p(x), α ∈ C(x),

where p(x) is a polynomial.

Example 5 (Kovacic [41]). Equation

y′′ =
(

x2 − 2x+ 3 +
1

x
+

7

4x2
− 5

x3
+

1

x4

)

y

admits the factorization
(

D +
1

x+ 1
+

1

x− 1
− 3

2x
+

1

x2
+ x− 1

)(

D − 1

x+ 1

− 1

x− 1
+

3

2x
− 1

x2
− x+ 1

)

y = 0

and has the particular solution

y = (x2 − 1)x−3/2 exp
(

− 1

x
+

1

2
x2 − x

)

.

The factorization of differential operators of order n

L = any
(n) + an−1y

(n−1) + · · · + a1y
′ + a0,

namely representation as

L = (βnD − αn)(βn−1D − αn−1) · · · (β2D − α2)(β1D − α1),

was considered in works by (Mitrinović [48], Popov [54], Berkovich [13, 21,

22, 25] and others).

2.13. Factorization in the quadratic expansion of the field F0

Lemma 1 (see, for e.g., Kaplansky [32]). The factorization, (2.8), takes place in
the quadratic expansion of the field F0, or in other words the condition

α2 − p(x)α+ q(x) = 0, p, q ∈ F0, p 6= 0

is fullfiled if and only if the following relations are satisfied :

p′′ + 3pp′ + p3 + 2a′ + 4ap = 0, 2q = p′ + p2 + 2a.
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Example 6. The equation (see [22, 25])

Ly ≡ y′′ +

(

3

16
x−2 − bx−1

)

y = 0

admits the factorization

Ly ≡
(

D +
1

4
x−1 ±

√
b x−1/2

)(

D − 1

4
x−1 ∓

√
b x−1/2

)

y = 0, b > 0,

and has solutions

y = x1/4
(

c1 exp(2
√
bx ) + c2 exp(−2

√
bx )
)

.

2.14. Analogues of Vieta’s formulæ and LODE-2 solutions

Suppose we have linear ordinary differential equation of the second order
(LODE-2)

(2.9) Ly ≡ y′′ + a1y
′ + a0y = 0,

where the operator L admits the factorization

(2.10) L ≡ (D − α2)(D − α1).

From formulæ (2.9) and (2.10) the analogues of Viète’s formulæ follow

a1 = −(α1 + α2), a0 = α2α1 − α′
1,

where α1 and α2 satisfy the Riccati equations 1

α′
1 + α 2

1 + a1α1 + a0 = 0, α′
2 − α 2

2 − a1α2 − a0 = 0.

Linearly independent solutions of equations (2.9) and (2.10) have the form

y1 = e
∫

α1 dx, y2 = e
∫

α1 dx
∫

e
∫

(α2−α1) dxdx.

The linear nonhomogeneous equation, Ly = f(x), where L admits the factorization
(2.10), has the particular solution

y = e
∫

α1 dx
∫

(

e
∫

(α2−α1) dx
∫

e−
∫

α2 dxf(x) dx
)

dx.

2.15. Factorization of Lamé’s operator

Suppose we have Lamé’s equation,

(2.11) Ly ≡ y′′ − (2℘(x) + λ)y = 0, λ = ℘(ε),

1We remark that criteria of an integrability of Riccati’s equation were considered, in particular,
in the papers (Mitrinović and Vasić [49, 50]).
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where ℘(x) is the Weierstrass elliptic function. Lamé’s operator admits the
factorization

L =
(

D + ζ(x ± ε) − ζ(X) ∓ ζ(ε)
)(

D − ζ(x ± ε) + ζ(x) ± ζ(ε)
)

and equation (2.11) the has general solution

y(x) = c1
σ(x + ε)

σ(x)
e−ζ(ε)x + c2

σ(x− ε)

σ(x)
eζ(ε)x,

where the Weierstrass functions ℘(x), σ(x) and ζ(x) are connected by the rela-
tions

℘(x) = −ζ′(x), ζ(x) =
σ′(x)

σ(x)
, ζ(x+ ε) − ζ(x) − ζ(ε) =

℘′(x) − ℘′(ε)

℘(x) − ℘(ε)
.

Example 7. The degenerate case: ℘(x) =
1

x2
.

Equation (2.11) takes the form

Ly ≡ y′′ −
(

2

x2
+

1

α2

)

y = 0,

where L admits the factorization

L =

(

D +
1

x+ α
− 1

x
∓ 1

α

)(

D − 1

x+ α
+

1

x
± 1

α

)

,

has the general solution

y = c1
x+ α

x
e−x/α + c2

x− α

x
ex/α.

Example 8. Degenerate case. Suppose that

℘(x) =
1

sin2 x
− 1

3
.

Lamé’s equation has the form

(2.12) Ly ≡ y′′ −
(

2

sin2 x
+ ctg 2ε

)

y = 0,

where the operator L admits the factorization

L =
(

D + ctg (x± ε) − ctg x± ctg ε
)(

D − ctg (x ± ε) + ctg x∓ ctg ε
)

.

Equation (2.12) has general solution

y = c1
sin(x+ ε)

sinx
e−x ctg ε + c2

sin(x − ε)

sinx
ex ctg ε.
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2.16. Factorization of the third-order Halphen’s 0perator

Halphen’s equation of the third order is

(2.13) Ly ≡ y′′′ − 3℘(x)y′ −
(

3

2
℘′(x) +

1

2
℘′(α)

)

y = 0,

where the operator L admits the factorization

L =
(

D + ζ(x + α+ β) − ζ(x) − ζ(α) − ζ(β)
)

×
×
(

D − ζ(x + α+ β) + ζ(x+ α) + ζ(β)
)(

D − ζ(x + α) + ζ(x) + ζ(α)
)

.

The general solution of Halphen’s equation, (2.13), has the form

y(x) = c1
σ(x+ α)

σ(x)
e−xζ(α) + c2

σ(x+ β)

σ(x)
e−xζ(β) + c3

σ(x + γ)

σ(x)
e−xζ(γ),

where
℘′2(x) − ℘′2(α) = 0, ℘(α) + ℘(β) + ℘(γ) = 0.

Example 9. The degenerate case: ℘ =
1

x2
.

The equation

Ly ≡ y′′′ − 3

x2
y′ +

(

3

x3
+

1

α3

)

y = 0,

where the operator L admits the factorization

L =

(

D +
1

x+ α+ β
+

1

x
− 1

α
− 1

β

)

×

×
(

D − 1

x+ α+ β
+

1

x+ α
+

1

β

)(

D − 1

x+ α
+

1

x
+

1

α

)

,

has the general solution

y = c1
x+ α

x
e−x/α + c2

x+ β

x
e−x/β + c3

x+ γ

x
e−x/γ .

Note. Lamé’s operator and Halphen’s operator are commutative. The Korteweg-
de Vries’s equation, well-known in the theory of solitons, ut = 6uux + uxxx is
generated by commutative condition of the corresponding pair of operators of the
second and third orders.

2.17. Operational identities

Differential operators of higher orders may admits a factorization not only
through operators of the first order but also operators of other orders. Operational
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identities in this case are useful. In the paper, (Berkovich, Kval’wasser [3]),
such identities are constructed, for example

(2.14) (xD2 + aD)m =

m
∑

k=0

(

m
k

) Γ(a+m)

Γ(a+m− k)
xm−kD2m−k,

where Γ(a+m) = (a+m− 1) · · · (a+ 1)aΓ(a);

(

xD2 +

(

m− 2n+ 1

2

)

D

)

2n+1
2

= ±
m−1
∑

k=0

(

m− 1
k

) Γ
(

2n + 1

2
+ 1
)

Γ
(

2n + 1

2
− k + 1

) x
2n+1

2 −kD2n+1−k.

The identity (2.14) was generalized in the paper of (Klamkin and Newman [37]).

3. TRANSFORMATION OF LODE

3.1. Statement of Kummer’s problem

Suppose that we have the equations

(3.1) y′′ + a1(x)y
′ + a0(x)y = 0, ak ∈ C

k(I), I = {x|a < x < b}, k = 0, 1,

(3.2) z̈ + b1(t) ż + b0 (t)z = 0, bk ∈ C
k(J), J = {t|α < t < β},

and the Kummer-Liouville transformation

(3.3) y = v(x)z, dt = u(x)dx, v, u ∈ C
2(I), uv 6= 0.

It is an invertible transformation, that is, the Jacobian

J =

(

∂(y, x)
∂(z, t)

)

=

∣

∣

∣

∣

∣

∣

∂y

∂t

∂y

∂z
∂x

∂t

∂x

∂z

∣

∣

∣

∣

∣

∣

6= 0.

Is it possible to transform (3.1) to (3.2) with the help of KL-transformation
(3.3)?

3.2. Solution of Kummer’s problem

Theorem 9 (see Berkovich [10], Berkovich and Rozov [15]). Equation (3.1)
can be transformed to (3.2) with transformation (3.3) if and only if the following
conditions for the KL-transformation are satisfied :

v(x) = |u(x)|−1/2 exp

(

−1

2

∫

a1 dx+
1

2

∫

b1(t) dt

)

,
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(3.4)
1

2

t′′′

t′
− 3

4

(

t′′

t′

)2

+B0(t) t
′2 = A0(x),

where (3.4) is the Kummer-Schwartz equation of the third order (KS-3), and

A0(x) = a0 −
1

4
a 2
1 − 1

2
a′1, B0(t) = b0 −

1

4
b 2
1 − 1

2
ḃ1

are semiinvariants of equations (3.1) and (3.2) respectively (see Pejović [51]), and
v and u also satisfy the equation

(3.5) v′′ + a1v
′ + a0v − b0u

2v = 0.

Example 10 (see Šapkarev [55], Vasić [57]):

y′′ +

(

ff ′

f2 + b2
− f ′′

f ′

)

y′ − a2f ′2

f2 + b2
y = 0, f = f(x).

By the transformation

dt =
f ′

√

f2 + b2
dx

this equation is reduced to the equation ÿ − a2

b2
y = 0.

3.3. Kummer-Schwartz and Ermakov equations

Suppose a1 = b1 = 0. The equation (Ermakov [26], see Berkovich and
Rozov [8])

(3.5′) v′′ + a0v − b0v
−3 = 0

has the general solution (see also Pinney [53])

(3.6) v(x) =
√

AY 2
2 +BY1Y2 + CY 2

1 , B2 − 4AC = −4b0,

where Y1, Y2 = Y1

∫

Y −2
1 dx forms a basis of the second-order equation

(3.7) Y ′′ + a0Y = 0.

The Kummer-Schwarz equation of the second order (KS-2),

(3.8)
1

2

u′′

u
− 3

4

(

u′

u

)2

+ b0u
2 = a0,

has general solution of the form

(3.9) u(x) = (AY 2
2 +BY1Y2 + CY 2

1 )−1, B2 − 4AC = −4b0.
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3.4. LODE-2 Related by KL transformation

Equation (2.5) with a “carrier”, a0, generates the next sequence of related
equations [12, 25]

y′′k + akyk = 0,

where

ak = a0 −
k
∑

s=1
b0su

2
s , ak = ak−1 − b0ku

2
k ,

1

2

u′′s
us

− 3

4

(

u′s
us

)2

− 1

4
δsu

2
s = as−1, δs = b 2

1s − 4b0s,

y
(1,2)
k = |uk|−1/2 exp

(

±1

2
b1k

∫

uk dx

)

, b1k 6= 0.

3.5. Examples of related equations

The following equations are related to the equation y′′ = 0 [12, 25].

Example 11. y′′ −
(

m(m+ 1)x−2 + T 4
)

y = 0, T = αx−m + βxm+1, m 6= 1

2
.

General solution: y(x) = T

(

M ch

(

x−m

γT

)

+N sh

(

x−m

γT

))

, γ = (2m+ 1)β.

Example 12. y′′ +

(

1

4x2
+

1

x2S4

)

y = 0, S = α log x+ β.

General solution: y =
√
xS
(

M cos
1

αS
+N sin

1

αS

)

.

3.6. Halphen’s problem for LODE-n

Suppose the equations (Halphen [30], Berkovich [11, 22])

(3.10) Lny ≡ y(n) +

n
∑

k=0

(n
k

)

aky
(n−k) = 0, ak ∈ C

n−k(I),

(3.11) MnZ ≡ z(n)(t) +
∑

k=1

(

n
k

)

bkz
(n−k)(t) bk ∈ C

n−k(J),

and the KL-transformation

(3.12) y = v(x)z, dt = u(x) dx, vu 6= 0, v, u ∈ C
n(I).

Problem 1: Find necessary and sufficient conditions of equivalence of (3.10)
and (3.11) under the KL transformation (3.12).

Problem 2: Classify equations (3.10) with the help of canonical forms.
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3.7. Lemmas of LODE-n equivalence

Lemma 2. Equations (3.10) and (3.11) are equivalent if and only if the following
system is compatible

{t, x} +
3

n+ 1
B2t

′2 =
3

n+ 1
A2(x),

tIV

t′
− 6

t′′′ t′′

t′2
+ 6

(

t′′

t′

)3

+
12

n+ 1
A2

t′′

t′
+

4

n+ 1
B3t

′3 =
4

n+ 1
A3, . . . ,

(

(t′)
1−n

2

)(n)

+

n
∑

k=2

(n
k

)

Ak

(

(t′)
1−n

2

)(n−k)

−Bn(t′)
n+1

2 = 0,

where Ak, Bk are semiinvariants of equations (3.8) and (3.9) respectively :

A2 = a2 − a 2
1 − a′1, A3 = a3 + 2a 3

1 − 3a1a2 − a′′1 , . . .

Lemma 3. Equations (3.10) and (3.11) are equivalent if the following conditions
are satisfied

v′′ − n− 2

n− 1

v′2

v
+ 3

n− 1

n+ 1
A2v − 3

n− 1

n+ 1
B2v

n−5
n−1 = 0,

v′′′ − 3
n− 3

n− 1

v′v′′

v
+ 2

(n− 2)(n− 3)

(n− 1)2
v′3

v2

12

n+ 1
A2v

′ + 2
n− 1

n+ 1
A3v

− 2
n− 1

n+ 1
B3v

n−7
n−1 = 0,...

v(n) +

n
∑

k=2

(n
k

)

Akv
(n−k) −Bnv

−n+1
n−1 = 0.

3.8. Theorem of LODE-n equivalence

Theorem 10. Equations (3.10) and (3.11) are equivallent if and only if the follow-
ing relations between their invariants are satisfied : I0(A) = u3I0(B), Jn,1(A) =
u4Jn,1(B), Jn,2(A) = u5Jn,2(B), . . . , Jn,n−3(A) = unJn,n−3(B), where

∫

u(x) dx
= t(x) satisfies the equation (KS-3)

{t, x} +
3

n+ 1
B2t

′2 =
3

n+ 1
A2, {t, x} =

1

2

t′′′

t′
− 3

4

(

t′′

t′

)2

,

and I0(A) is Laguerre’s invariant (Laguerre [42])

I0(A) = A3 −
3

2
A′

2 = a3 − 3a1a2 + 2a 3
1 + 3a1a

′
1 +

1

2
a′′1 − 3

2
a′2,

and

Jn,1(A) = A1 − 2A3 +
6

5
A′′

2 − 3(5n+ 7)

5(n+ 1)
A 2

2 ,

Jn,2(A), . . . , Jn,n−3(A)

are Halphen’s invariants.



136 Lev M. Berkovich

3.9. Halphen’s canonical forms

Class Invariants Transformation Halphen’s Canonical

y = u
−

n−1
2

k z, dt = uk dx forms

Principal (Hn0),
Y0 I0 6= 0 u0 = 3

√
I0 depends on n − 2

parameters

Yk, I0 = In,1 = · · · = In,k−1 Degenerate (Hnk),

k = 1, n − 3 = 0, In,k = Jn,k 6= 0 uk = k+3
√

In,k depends of n − k − 2
parameters

Yn−2 I0 = In,1 = · · · 1

2

u′′

n−2

un−2
− 3

4

(

u′

n−2

un−2

)2

Elementary

denegerate

= In,n−3 = 0 =
3

n + 1
A2 (Hnn−2) : z(n)(t) = 0

3.10. Forsythe’s canonical forms

Class Invariants Transformation Forsythe’s

y = u−
n−1

2 z, dt = u dx canonical forms

Principal (Fn0),
Y0 I0 6= 0 depends on n − 2

parameters

Yk, I0 = In,1 = · · · = In,k−1
1

2

u′′

u
− 3

4

(

u′

u

)2

Degenerate (Fnk),

k = 1, n − 3 =0, In,k = Jn,k 6= 0 depends on n − k − 2

=
3

n + 1
A2 parameters

Yn−2 I0 = In,1 = · · · Elementary
degenerate

= In,n−3 = 0 (Fnn−2) : z(n)(t) = 0

Note. Halphen [30] found canonical forms for the equations of orders n = 3 and
n = 4.

Forsyth [28] found the canonical form Fn0.
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3.11. Criteria of LODE-n reducibility

Equation (3.10) is locally reducible (by Halphen) if it can be transformed
to the following form

(3.13) Mnz ≡ z(z) +

n
∑

k=1

(

n
k

)

bkz
(n−k)(t) = 0, bk = const

by the KL-transformation, (3.12).

Theorem 11 [13, 22]. The followiing conditions are equivalent :

1. Equation (3.10) is reducible;

2. The operator Ln admits noncommutative factorization

Ln =

1
∏

k=n

(

D − v′

v
− (k − 1)

u′

u
− rku

)

,

where

v = |u|−
n−1

2 exp
(

−
∫

α1 dx+ b1
∫

u dx
)

,

1

2

u′′

u
− 3

4

(

u′

u

)2

+
3

n+ 1
B2u

2 =
3

n+ 1
A2,

rk are roots of the characteristic equation

(3.14) Mn(r) ≡ rn +

n
∑

k=1

(n
k

)

bk r
n−k = 0;

3. The operator u−nLn admits the commutative factorization

u−nLn =

n
∏

k=1

(

1

u
D − v′

vu
− rk

)

;

4. there exist four functions, ω, w, λ and µ, namely

ω = v−1u1−n, w = v−1u−n, λ = u−1, µ = −v′v−1u−1, (see Fayet [27])

such that
ωLn(λD + µ)y = D (ωLny) ;

5. Y (x) is solution of (3.10) if y(x) is solution of (3.10) : (see Kakeya [31])

Y (x) =
1

u
y′ − v′

vu
y;
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6. I0 and Jn,k are connected in a special way, namely in Theorem 10 I0(B),
Jn,1(B), . . . , Jn,n−3(B) are constants;

7. Absolute Halphen’s invariants hk = const (Halphen [30]);

8. Equation (3.10) admits a point symmetry with a generator

X =
1

u

∂

∂x
+
v′

uv
y
∂

∂y
.

4. AUTONOMIZATION OF NODE

We consider nonautonomous nonlinear ordinary differential equations (NODE)
[5,6].

4.1. Nonlinear equations with reducible linear part

(4.1) y(n) +

n
∑

k=1

(

n
k

)

ak y
(n−k) + F (x, y, y′, . . . , y(m)) = 0.

Theorem 12. Equation (4.1) can be reduced to an autonomous form

z(n)(t) +

n
∑

k=1

(n
k

)

bk z
(n−k)(t) + aΦ

(

z, z′(t), . . . , zm(t)
)

= 0

by the KL-transformation (3.12) if and only if the nonlinear part F can be repre-
sented as

F = aunvΦ

(

y

v
,
1

v

(

1

u
D − v′

vu

)

y, . . . ,
1

v

(

1

u
D − v′

vu

)m

y

)

.

Bandić (see for example [2]) transformed nonlinear equations by applying
the so-called relative derivatives ∆k = y(k)/y (Petrovich [52]).

4.2. Test for autonomization

1. Using the criteria for reducibility, verify whether Lny = 0 is reducible.

2. If Lny = 0 is reducible (it always is for n = 2), represent the general solution
in the form:

y = v
n
∑

k=1

ck exp(rkU), U =
∫

u dx,

where rk are distinct roots of the characteristic equation (3.14), or in the form

y = v

m
∑

k=1

`k
∑

s=1

1

(s− 1)!
Us−1 exp(rkU),

m
∑

k=1

`k = n,
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where rk are multiple roots of characteristic equation (3.14),

u(x) = (AY 2
2 +BY2Y1 + CY 2

1 )−1, B2 − 4AC = − 12

n+ 1
B2,

and Y1, Y2 = Y1

∫

dx/Y 2
1 are linearly independent solutions of

(4.2) Y ′′ +
3

n+ 1
A2Y = 0.

4.3. Principles of nonlinear superposition

Let there be given the equation

(4.3) f(x, y, y′, . . . , y(n)) = 0.

A system of functions

(4.4) {Y1(x), . . . , Ym(x)}

(see Lie [45]) forms a fundamental system of solutions (FSS) of equation (4.3) if
its general solution can be represented in the form

(4.5) y = F (Y1, Y2, . . . , Ym; c1, . . . , cn),

where (4.4) are particular solutions of (4.3), particular solutions of the adjoint
nonlinear equation

ϕ(X,Y, Y ′, . . . , Y (m)) = 0

or they (4.4) are FSS of the adjoint linear equation

Y (m) +

m
∑

k=1

(m
k

)

ak(x)Y (m−k) = 0.

Function (4.5) is called a nonlinear superposition principle for equation (4.3)
(see Winternitz [58], Berkovich [13]).

Note. Formulas (3.6) and (3.9) are nonlinear superposition principles for the Er-
makov equation, (3.5’), and for the Kummer-Schwartz equation (KS-2), (3.8),
respectively.

4.4. Generalized Emden-Fowler equation of the second order

Theorem 13. In order that the equation

y′′ + f(x) yn = 0, n 6= 0, n 6= 1,

lead to
z̈ ± b1ż + b0z + czn = 0,
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it is necessary and sufficient that

f1(x) = (α1x+ β1)
−

3+n
2 ± b1(1−n)

2
√

δ1 (α2x+ β2)
−

3+n
2 ∓ b1(1−n)

2
√

δ1 δ1 > 0,

f2(x) = (Ax2 +Bx+ C)−
3+n

2 exp

(

± (1 − n) b1√
δ2

arctan
2AX +B√

−δ2

)

δ2 < 0,

f3(x) = (αx + β)−(n+3) exp

(

± (1 − n)b1
2α(αx + β)

)

, δ3 = 0, α 6= 0,

f4(x) = (αx + β)−
n+3

2 + b1
1−n
2α , δ4 = α2 > 0,

f5(x) = C exp

(

± 1 − n

2
b1x

)

, δ5 = 0.

(see also Kečkić [35], Kocić [38], Berkovich [7, 16], Leach [44]).

4.5. Ermakov systems

The system (Ermakov [26])

{

ẍ+ a0(t)x = 0

ÿ + a0y = b0y
−3

havs the integral (invariant):

1

2
(ẋy − ẏx)2 +

1

2
b0

(

x

y

)2

= C.

The generalized Ermakov system (Berkovich [22]) is

(4.5)

{

ẍ+ a1(t)ẋ + a0(t)x = af(t)xmynF (x, y)

ÿ + a1(t)ẏ + a0(t)y = bf(t)xnymG(x, y),
a, b = const.

If the left part of system (4.5) is reduced to constant coefficients by the KL-transfor-
mation

x = v(t)X, y = v(t)Y, dT = u(t) dt

and thus

F = F (y/x), G = G(x/y), f(t) = v1−m−nu2, m = −(n+ 3)

, system (4.5) possesses the first integral (invariant)

I =
1

2
ϕ2(xẏ − yẋ)2 + a

x/y
∫

un+1F (u) du+ b
y/x
∫

un+1G(u) du,

ϕ = exp

(

x
∫

a1(t) dt

)

.
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4.6. Generalized Ermakov’s equation of the n-order

Theorem 14. Equation

y(n) +

n
∑

k=2

(n
k

)

any
(n−k) + bny

1+n
2−n = 0,

where Lny = 0 is reducible, has the two-parameter solution

y = p
(

AY 2
1 +BY1Y2 + CY 2

2

)

n−1
2 , B2 − 4AC = q,

where Y1 and Y2 are linearly independent solutions of equation

Y ′′ +
3

n+ 1
a2Y = 0

and admits three-dimensional Lie algebra with generators

X1 = Y 2
1

∂

∂x
+ (n− 1)Y1Y

′
1 y

∂

∂y
,

X2 = Y1Y2
∂

∂x
+
n− 1

2
(Y1Y

′
2 + Y2Y

′
1) y

∂

∂y
,

X3 = Y 2
2

∂

∂x
+ (n− 1)Y2Y

′
2 y

∂

∂y

and commutators

[X1, X2] = X1, [X2, X3] = X3, [X3, X1] = −2X2.

5. LINEARIZATION OF NODE

In the papers [17-21, 23] and in the book [22] we have already investigated
autonomous nonlinear ordinary differential equations (NODE)

(5.1) y(n) = F (y, y′, . . . , y(n−1)).

Lemma 4. In order that equation (5.1) can be linearized by the nonlinear trans-
formation

(5.2) y = v(y)z, dt = u(y) dx

to equation (3.13), it is necessary and sufficient that equation (5.1) admit the non-
commutative factorization

1
∏

k=n

(

D −
(

v∗

v
− (k − 1)

u∗

u

)

y′ − rku

)

y = 0
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or the commutative factorization

n
∏

k=1

(

1

u
D − v∗

uv
y′ − rk

)

y = 0,

where rk are roots of the characteristic equation (3.14).

5.1. Linearization of second-order equations

The equation

(5.3) y′′ + f(y)y′2 + b1ϕ(y)y′ + ψ(y) = 0, b1 = const

can be linearized by the transformation (5.2) to the equation

(5.4) z̈ + b1ż + b0z + c = 0, a, b, c = const,

if and only if

(5.5) ψ(y) = ϕ exp
(

−
∫

f dy
)

(

b0
∫

ϕe
∫

f dy dy +
c

β

)

.

Here the transformation (5.2) is

z = β
∫

ϕ exp
(∫

f dy
)

dy, dt = ϕ(y) dx,

where β = const is a normalizing factor. One-parameter solutions of the equations
(5.3) and (5.5), where c = 0, are

rkx+ Ck =

∫

exp
(∫

f dy
)

dy
∫

ϕ exp
(∫

f dy
)

dy
,

where distinct rk, (k = 1, 2), satisfy the equation

r2 + b1r + b0 = 0.

5.2. Nonlinear Oscillator

The equation

(5.6) y′′ + f(y)y2 ± a2ψ(y) = 0

by transformation

z =
√

2
∫

ψ exp
(

2
∫

f dy
)

dy, dt = z−1ψ exp
(∫

f dy
)

dx

is reduced to the form
z̈ ± a2z = 0.
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Equation (5.6) has the first integrals:

y′2 = a2
(

C ∓ 2
∫

ψ exp
(

2
∫

f dy
)

dy
)

exp
(

−2
∫

f dy
)

and also the one-parameter solutions:

∫

exp
(

2
∫

f dy
)

dy

z
= ±

√

∓ a2 x+ C.

5.3. Linearization of third-order equations

We find conditions for linearization of the equation

(5.7) y′′′ + f5(y)y
′y′′ + f4(y)y

′′ + f3(y)y
′3 + f2(y)y

′2 + f1(y)y
′ + f0(y) = 0

to the equation

(5.8)
...
z + b2z̈ + b1ż + b0z + c = 0

by a transformation of the form (5.2).

Theorem 15. Equation (5.7) can be linearized if and only if it can be represented
in the form

(5.9) y′′′ + f(y)y′y′′ +
1

9

(

3
ϕ∗∗

ϕ
− 5

ϕ∗2

ϕ2
− f

ϕ∗

ϕ
+ f2 + 3f∗

)

y′3

+b2ϕy
′′ +

1

3
b2ϕ

(

f +
ϕ∗

ϕ

)

y′2 + b1ϕ
2y′

+ϕ5/3

(

b0
∫

ϕ4/3 exp
(

1

3

∫

f dy
)

dy +
c

β

)

exp
(

−1

3

∫

f dy
)

= 0.

Equation (5.9) by the transformation

z = βϕ4/3 exp
(

1

3

∫

f dy
)

dy, dt = ϕ(y) dx

is reduced to the linear form (5.8) and, if c = 0, has the distinct one-parameter
solutions

rkx+ ck =

∫ ϕ4/3 exp
(

1

3

∫

f dy
)

dy
∫

ϕ4/3 exp
(

1

3

∫

f dy
)

dy
,

where rk satisfy the equation

r3 + b2r
2 + b1r + b0 = 0.

We remark that Kečkić [34–36] and Kocić [38, 39] investigated nonlinear
equations of the second and third orders in another way.
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5.4. Euler-Poinsot case in the problem of the gyroscope

Suppose we have the coupled system

(5.10)











Aṗ− (B − C)qr = 0,

Bq̇ − (C −A)rp = 0,

Cṙ − (A−B)pq = 0,

where p, q and r are the components of the angular velocity in the directions of its
principal axes of inertia, A, B and C are its principal moments of inertia. Elimi-
nating the variables we get a noncoupled system of nonlinear third-order equations:

(5.11) y′′′i − 1

yi
y′iy

′′
i + biy

′
iy

2
i = 0, (′) = d/dxi,

where bi is expressed through A, B and C. By the transformations

zi = y 2
i , dsi = yi dxi.

equations (5.11) are reduced to the linear equations

z′′′i (si) + biz(si)
′ = 0.

As a result equations (5.11) have the parametrical solutions:

yi =

(

2
(

A1i cos
(

√

bisi+θ
)

+A2i

)

)1/2

, xi =

∫

dsi
(

2
(

A1i cos(
√
bisi + θ) +A2i

)

)1/2
.

6. SIMULTANEOUS USING OF DIFFERENT METHODS

6.1. Generalized Emden-Fowler equations of the third order

The equation
y′′′ + bxsyn = 0, n 6= 0, n 6= 1

can be reduced by the transformation

y = v1(x)v2
(

y/v1(x)
)

z, dt = u1(x)u2

(

y/v1(x)
)

dx

to a linear equarion if and only if n = −5/2, s = 1 or n = −7/2, s = 3 respectively.
The equations

y′′′ + bxy−5/2 = 0,

y′′′ + bx3y−7/2 = 0

by the transformation
z = x2y−1, dt = xy−3/2 dx
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are reduced to the linear forms

z′′′t − b = 0,

z′′′t − bz = 0

respectively.

6.2. Factorization of Lienard’s equation

The equation

(6.1) y′′ + a1(y)y
′ + a0(y)y = 0

admits factorization of the form
(

D − α2(y)
)(

D − α1(y)
)

y = 0, D = d/dx,

a1 = −(α1 + α2 + α∗
1y), α0 = α1α2, (∗) = d/dy,

where α1 satisfies the Abel equation of the second kind

yα1
dα1

dy
+ α 2

1 + a1α1 + a0 = 0,

and α2 satisfies the Abel equation of the first kind

a0y
dα2

dy
= α 3

2 + a1α
2
2 + α2(a0 + a∗0y).

Equation (6.1) was considered by Bandić [1] in a different way.

6.3. Anharmonic oscillator

If
(n+ 3)2b0 = 2(n+ 1)b 2

1 ,

the equation
y′′ + b1y

′ + b0y + byn = 0

admits the factorization
(

D − r2 − k2y
n−1

2

)(

D − r2 − k2y
n−1

2

)

y = 0, D = d/dx,

where

r1 = − 2b1
n+ 3

, r2 = −n+ 1

n+ 3
b1 , k1 = ±

√

− 2b

n+ 1
, k2 = ∓

√

−b(n+ 1)

2
,

and has the one-parameter system of solutions

y =

(

± n+ 3

b1

√

− b

2(n+ 1)
+ C exp

(

b1(n+ 1)

n+ 3
x

)

)

2
1−n

.
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7. CONCLUSION

The methods, discussed in the present work, do not minimize the impor-
tance of the other analytical methods, nor the methods of numerical analysis, nor
the qualitative theory of differential equations. Only by simultaneously using all
of them shall we get the best effect, but the construction of algorithms for solv-
ing ordinary differential equations in closed form is the most important goal for
any effective theory of ordinary differential equations. Explicit formulas concen-
trate all the information about the given ordinary differential equation. In this
connection we mention the following works: L. Berkovich and F. Berkovich
[14], Berkovich and Evlakhov [24], in which some algorithms of LODE-2 fac-
torization and variables transformation were implemented in REDUCE. Further
implementation of such algorithms for nonlinear equations and linear high-order
equations is an actual problem. It is the author’s opinion that further elaboration
of factorization and variable transformation can cast new light on many solved and
unsolved questions of natural science.
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Tošić for the help in the preparation of this manuscript.
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