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NONLOCAL SYMMETRIES

PAST, PRESENT AND FUTURE

PGL Leach, K Andriopoulos

Nonlocal symmetries entered the literature in the Eighties of the last cen-
tury largely through the work of Peter Olver. It was observed that there
could be gain of symmetry in the reduction of order of an ordinary differen-
tial equation. Subsequently the reverse process was also observed. In each
case the source of the ‘new’ symmetry was a nonlocal symmetry, ie a sym-
metry with one or more of the coefficient functions containing an integral. A
considerable number of different examples and occurrences were reported by
Abraham-Shrauner and Guo in the early Nineties. The role of nonlocal
symmetries in the integration, indeed integrability, of differential equations
was excellently illustrated by Abraham-Shrauner, Govinder and Leach
with the equation yy′′ − y′2 + f ′(x)yp+2 + pf(x)y′yp+1 = 0 which had been
touted as a trivially integrable equation devoid of any point symmetry. Fur-
ther theoretical contributions were made by Govinder, Feix, Bouquet,
Géronimi and others in the second half of the Nineties. This included their
role in reduction of order using the nonnormal subgroup. The importance of
nonlocal symmetries was enhanced by the work of Krause on the Complete
Symmetry Group of the Kepler Problem. Krause’s work was furthered
by Nucci and there has been considerable development of the use of non-
local symmetries by Nucci, Andriopoulos, Cotsakis and Leach. The
determination of the Complete Symmetry Group for integrable systems such
as the simplest version of the Ermakov equation, y′′ = y−3, which pos-
sesses the algebra sl(2, R) has proven to be highly nontrivial and requires
some nonintuitive nonlocal symmetries. The determination of the nonlocal
symmetries required to specify completely the differential equations of non-
integrable and/or chaotic systems remains largely an open question.

1. INTRODUCTION

New ideas, concepts and objects tend to originate in esoteric contexts. The
commonplace does not invite deep thinking since the solution of problems there
proceeds via methods upon which the experienced practitioner need not dwell for
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their execution. This does not mean that new ideas, concepts and objects cannot
be found in the commonplace. One is sometimes pushed to think uncommonly in
the context of the commonplace to see that the new has been under our noses since
the beginnings of time if not earlier. In a pedagogical context the elimination of
the esoteric origin is essential to lead the neophyte to understanding. So it is with
nonlocal symmetries.

Barbara Abraham-Shrauner firstly heard of nonlocal symmetries from
Peter Olver around 1990. She found them of interest and produced a series of
papers with her student, Ann Guo, and some others [1, 2, 3, 4, 5, 23] chronicling
their occurrence and characteristics. The collaboration spread and a number of
papers [6, 7, 19, 20, 21, 22, 42, 55, 56, 57, 58, 39, 41] devoted to the subject
has appeared over the years. During that time there has been some change in the
relative importance of the elements of the subject of nonlocal symmetries. This has
been a simple consequence of the movement from the esoteric to the commonplace.

In this paper we give an indication of the evolution of the subject of nonlocal
symmetries. Firstly we look to an esoteric example and then to the removal of
‘esoteric’ with the presentation of some classic examples for which commonplace
is too grand a word. Next we consider a standard result of the Lie theory and
show that it is ill-based in its implication. Our third point is the necessity of
nonlocal symmetries in a relatively new area which is the complete specification of
a differential equation by means of symmetries.

That more or less covers the Past and the Present. What of the Future?
Perhaps it would be better to reveal a little so that together we may seek that
which is to come.

2. FROM ESOTERICA TO BANALITY

The differential equation

(1) 2yy′′′′ + 5y′y′′′ = 0

arises in the study of the symmetries of the Emden-Fowler equation [28, 30, 29,

44, 14] and is easily shown to possess only the three obvious Lie point symmetries

(2) Γ1 = ∂x, Γ2 = x∂x and Γ3 = y∂y.

We use a symmetry, Γ1 with invariants u = y and v = y′, to reduce the order by
one and obtain

(3) 2u
(

v2v′′′ + 4vv′v′′ + v′3
)

+ 5
(

v2v′′ + vv′2
)

= 0

which inherits

(4) Σ2 = v∂v and Σ3 = u∂u + v∂v

from Γ2 and Γ3, respectively. Note that the second term of Σ3 is redundant due to
Σ2. However, when we calculate the Lie point symmetries of (3), we find also

(5) Σ4 = 2u2∂u + uv∂v
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as an unexpected but very pleasant surprise. If we continue the process of reduction
using Σ2 and Σ3, the result is an Abel’s equation of the second kind of the most

hideous aspect. The invariants of Σ4 are r = vu−1/2 and s = 1
2

(

v′u3/2 − 1
2vu

1/2
)2

and the reduced equation,

(6) s′′ + 3s′ + 2s = 0,

is pleasingly linear [30].

Evidently Σ4 cannot have its origin in a point symmetry of (1) since Γ1 was
used for the reduction and Γ2 and Γ3 lead to Σ2 and Σ3. Under the reduction of
(1) a symmetry

Γ4 = ξ∂x + η∂y −→ Σ4 = η∂u + (η′ − y′ξ′) ∂v

so that
η = 2y2 and η′ − y′ξ′ = yy′

whence ξ = 3
∫

y dx and we have the nonlocal symmetry

(7) Γ4 = 3
(∫

y dx
)

∂x + 2y2∂y.

The symmetry, Γ4, is termed an ‘hidden symmetry of Type II’ since it appears as
a point symmetry on reduction of order. Likewise an ‘hidden symmetry of Type I’
arises when a point symmetry becomes nonlocal on increase of order [2, 3, 4, 23].

The nonlinear second-order ordinary differential equation

(8) y′′ =
y′2

y
+ f ′(x)yp+1 + pf(x)y′yp

is devoid of Lie point symmetries for general f and p and yet is trivially integrable.
As such it was presented as a counterexample to the need for the presence of Lie
symmetries for an equation to be integrable [18, 60]. However, on the nonlocal
changes of variable [6]

(9)
x = x y = − w′

pf(x)w

X = x W = logw′

the nonlinear (8) becomes

(10)
d2W

dX2
= 0

which is not only trivially integrable but also possesses eight Lie point symmetries
which translate to a collection of nonlocal symmetries of (8). Unfortunately these
nonlocal symmetries are complicated expressions and one could easily think it un-
likely that anyone would ever essay the solution of (8) using a suitable pair of them.
However, the unlikely was done recently by Nucci [52].

In the two examples presented the ordinary differential equations inspiring
the work were somewhat special. The large number of nonlocal symmetries found
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for (8) suggested that ‘hidden’ symmetries could be of common occurrence. Several
studies of both differential equations and associated first integrals/invariants [19,

15, 16, 31, 33] revealed that this indeed be the case. To give a flavour of the result
of the studies we list the connections between the Lie point symmetries of the two
equations Y ′′ = 0 and y′′′ = 0 which are related by the nonlocal transformation
X = x and Y = y′.

The standard symmetries of

y′′′ = 0 and Y ′′ = 0.

Γ1 = ∂y Σ1 = ∂Y

Γ2 = x∂y Σ2 = X∂Y

Γ3 = x2∂y

Γ4 = ∂x Σ3 = ∂X

Γ5 = x∂x + y∂y Σ4 = X∂X + 1
2Y ∂Y

Γ6 = x2∂x + 2xy∂y Σ5 = X2∂X +XY ∂Y

Γ7 = y∂y Σ6 = Y ∂Y

Γ8 = y′∂x + 1
2 y

′2∂y Σ7 = Y ∂X

Γ9 = 2(xy′ − y)∂x + xy′2∂y Σ8 = XY ∂X + Y 2∂Y

Γ10 = (x2y′ − 2xy)∂x

+ (1
2 x

2y′2 − 2y2)∂y

y′′′ =0 Fate Y ′′ = 0 Source

Γ1 annihilated Σ1 Γ2

Γ2 Σ1 Σ2 Γ3

Γ3 (2)Σ2 Σ3 (1
2 )Γ4

Γ4 Σ3 Σ4 Γ5 − 1
2 Γ7

Γ5 Σ4 − 1
2 Σ6 Σ5 x2∂x + 3(xy −

∫

ydx)∂y

Γ6 X2∂X + (2
∫

Y dX)∂Y Σ6 Γ7

Γ7 Σ6 Σ7 Γ8

Γ8 Σ7 Σ8 xy′∂x + 1
2 (xy′2 + 3

∫

y′2dx)∂y

Γ9 −2(
∫

Y dX −XY )∂X + Y 2∂Y

Γ10 −2(X
∫

Y dX −X2Y )∂X

−(2Y
∫

Y dX −XY 2)∂Y

Table 1: Fates of the symmetries of y′′′ = 0 and sources of the symmetries of Y ′′ = 0.

The numerical factors in parentheses indicate the precise relationship between each pair

of symmetries.
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Just because the two equations are simple and are simply connected, it does
not mean that their symmetries are equally so!

So far we had been looking at nonlocal symmetries in the sense of their
manifestation through hidden symmetries. Theo Pillay, a thoughtful student
given to Physics, made a nice job of unifying symmetry in a very direct fashion
[55].

Everyone knows that the Lie point symmetries of

(11) y′′ = 0

are eight in number and possess the Lie algebra sl(3, R). How do we find them?
We assume that a symmetry of (11) has the form

(12) Γ = ξ(x, y)∂x + η(x, y)∂y,

apply the second extension,

(13) Γ[2] = ξ∂x + η∂y + (η′ − y′ξ′) ∂y′ + (η′′ − 2y′′ξ′ − y′ξ′′) ∂y′′ ,

to (11) and determine ξ and η by separating

(14) Γ[2]y′′|y′′=0
= 0

by powers of y′. If instead of (12) one writes [54] [24ff]

(15) Γ = ξ∂x + η∂y

without any specification of the variable dependence in ξ and η, (13) and (14) still
apply, but we can no longer apply the simple rules that ξ′ = ∂ξ/∂x+ y′∂η/∂y etc.
The application of (13) to (14) gives

(16) η′′ = y′ξ′′

which we may integrate by parts to obtain

(17) η′ = B + y′ξ′,

(18) η = A+Bx+

∫

y′ξ′dx = A+Bx+ y′ξ

after we take (11) into account for both integrations by parts. Alternately we could
write ξ′′ = η′′/y′ which leads to

(19) ξ = C +Dx+

∫

η′

y′
dx.
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Relations (18) and (19) yield point symmetries only for quite specific choices of ξ
and η. Obviously, if we put ξ = 0 in (18) and η = 0 in (19), we obtain

Λ1 = ∂y Λ3 = ∂x

Λ2 = x∂y Λ4 = x∂x,

but that is just four of the required eight. Bear in mind that in (18) ξ must be just
a function of x and y (resp (19) and η).

Two more symmetries follow easily. If in (16) we put ξ = 0, respectively
η = 0, we obtain an equation of the same appearance as (11) for which y is a
solution. Thus we have

Λ5 = y∂y and Λ6 = y∂x.

The two remaining symmetries are

Λ7 = x2∂x + xy∂y and Λ8 = xy∂x + y2∂y.

That these symmetries fit into the general form (18) is not obvious. We examine
Λ8; Λ7 is treated in the same way. If ξ and η are given by

ξ = xy and η = y2,

then (16) is automatically satisfied. In the case of (17) we obtain

2yy′ = y′ (xy′ + y) +B ⇔ B = y′ (y − xy′) .

We recall that I1 = y′ and I2 = y − xy′ are first integrals of y′′ = 0. Hence (17) is
satisfied. In the case of (18) the substitution of ξ and η gives

y2 = y′xy +Bx+A

which, when we take the integrals into account, becomes

y =
1

I2
(Bx+A)

which is the solution of (11).

We see that, once the integration procedure is commenced, the first integrals
and solutions of the equation, which are consequences of integration of the original
equation, need to be taken into account. This is a case of integral consequences, as
opposed to the more familiar differential consequences.

We observe that a little hoop-jumping has to be done to obtain the Lie point
symmetries of (11) using (18/19). In general, given a function ξ (resp η), (18) (resp
(19)) gives a nonlocal symmetry of (11). From a casual point of view the celebrated
eight Lie point symmetries are lost in a sea of nonlocal symmetries.

It takes little to realise that every differential equation, indeed every differen-
tial function, possesses an infinite number of nonlocal symmetries of which a subset
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may be related to hidden symmetries by some nonlocal transformation. It is an
interesting prospect, although scarcely conceivable of realisation, to determine the
coordinate system in which the maximal number of hidden symmetries is revealed.

However, there is a subset of ordinary differential equations for which the
question may be realistic. Equation (8) belongs to the Painlevé 50 for p = 1
and is integrable in terms of analytic functions apart from polelike singularities.
We saw that it could be ‘easily’ transformed to a second-order differential equation
of maximal point symmetry. If one examines the Painlevé 50 for symmetry, the
results are somewhat mixed in that the number of Lie point symmetries ranges from
eight – the ‘beloved’ equation2, y′′+3yy′+y3 = 0 – to zero as for the six Painlevé
transcendents. Yet they are all integrable. This suggests that somewhere there is
an ordinary differential equation related one by one with a nonlocal transformation
to the Painlevé 50 and that this ordinary differential equation has the requisite
number of Lie point symmetries, if not more, for solution by quadrature. The
resolution of this question presents something of a challenge!

3. GOING DOWN THE WRONG WAY

One of the purposes for determining the Lie point symmetries of the differ-
ential equation is to use the symmetries to reduce the order of the equation with
the ultimate aim to achieve a performable quadrature. Given a set of Lie point
symmetries, Γi, i = 1, n, the algebra is determined by the Lie Brackets

(20) [Γi, Γj ]LB = Cij
k Γk, i, j, k = 1, n,

where the Cij
k are the structure constants. To reduce the order of the equation for

which the Γi are the set of Lie point symmetries one selects some symmetry, deter-
mines its zeroth- and first-order invariants and expresses the differential equation
in terms of these invariants. The result is a differential equation of order one lower.
The symmetry used for the reduction is obviously not relevant to the reduced equa-
tion. The fates of the other symmetries depend upon their Lie Brackets with the
reducing symmetry. If Γr is the reducing symmetry and Γa some symmetry, one
has that, if

(21) [Γa, Γr]LB = λΓr,

λ a constant which may be zero, Γa becomes a point symmetry of the reduced
equation. Otherwise Γa becomes a nonlocal symmetry of the reduced equation.

Conventional wisdom is that one wants to keep the symmetries as point sym-
metries and the choice for Γr should be such that the number of symmetries of
which (21) applies is optimal. However, a closer look [25, 17] at the unfavoured

2So termed by the unfortunately late Marc Feix who grew to appreciate the fascinating
properties of this equation.
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option reveals a greater delicacy in the situation3. Suppose that

(22) [Γa, Γr]LB = Γa

(any constant multiplier is absorbed into Γr). Without loss of generality we may
write Γr in the canonical form, ∂x. If we take Γa = ξ(x, y)∂x + η(x, y)∂y, it follows
from (22) that

(23) ξ = exf(y) and η = exg(y),

where f and g are arbitrary functions. Under the reduction of order using Γr the
invariants are y and y′ so that Γa becomes

(24) Σa = ex
{

g(u)∂u +
[

g(u) + v (g′(u) − f(u)) − v2f ′(u)
]

∂v

}

and it becomes necessary to express x in terms of u and v as x =
∫

du/v so that
we have the nonlocal symmetry

(25) Σa = exp

[
∫

du

v

]

{

g(u)∂u +
[

g(u) + v(g′(u) − f(u)) − v2f ′(u)
]

∂v

}

.

The nonlocality in Σa occurs in the common exponential multiplier and so it is
called an exponential nonlocal symmetry.

If instead of (22) one has

(26) [Γa, Γr]LB = Γb,

where Γb is anything but Γa or Γr, reduction by Γr produces a nonlocal symmetry
in which the nonlocality is not conveniently separated as in the exponential nonlocal
symmetry of (25)4. Despite the conventional wisdom of reduction by the normal
subgroup, reduction using Γr when (22) applies is still feasible since, for the second
reduction using Σa in the associated Lagrange’s system for the invariants of Σa,
the exponential terms cancel and one is left with

(27)
du

g(u)
=

dv

g(u) + v (g′(u) − f(u)) − v2f ′(u)

=
dv′

g′(u) + v (g′′(u) − f ′(u)) − v2f ′′(u) − v′f ′ − 2vv′f ′

3One notes that in the related matter of the existence of an integrating factor nonlocal sym-
metries often play a pivotal role [35].

4One must emphasise that the discussion here relates to scalar ordinary differential equations.
In the case of systems of ordinary differential equations a nonlocal symmetry not of exponential
form may not present a hindrance to reduction of order. An example of this occurs in one of
the three integrable cases of the Hénon-Heilles Hamiltonian. The nonlocal component of the
symmetry does not play a role in the reduction. This phenomenon has been observed in studies
using the last multiplier of Jacobi. In general a system of ordinary differential equations invariant
under time translation can have symmetries with the time-coefficient nonlocal without any adverse
effect upon reducibility.
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and this gives a properly defined pair of equations for the zeroth-order and first-
order invariants of Σa.

We conclude this Section with an example which illustrates the irony of doing
the wrong thing thrice.

The Chazy equation

(28) y′′′ + yy′′ − 3
2 y

′2 = 0

has the three Lie point symmetries [17]

(29) Γ1 = ∂x, Γ2 = x∂x − y∂y and Γ3 = x2∂x + (12 − 2xy)∂y

which constitute a representation of the nonsolvable algebra sl(2, R). Since

(30) [Γ1, Γ2]LB = Γ1, [Γ1, Γ3]LB = 2Γ2 and [Γ2, Γ3]LB = Γ3,

the conventional approach would have us reduce the order of the equation by either
Γ1 or Γ3 and certainly not Γ2.

However, we take the unconventional approach. The invariants of Γ2 are
u = xy and v = x2y′ and Γ1 and Γ3 become, respectively,

(31)

Σ1 = exp

[

−
∫

du

u+ v

]

{u∂u + 2v∂v}

Σ3 = exp

[
∫

du

u+ v

]

{

(12 − u)∂u − 2(u+ v)∂v

}

.

As both Σ1 and Σ3 are exponential nonlocal, both are available for reduction of
order. If we take Σ1, its invariants are

(32) p =
v

u2
and q =

(u+ v′)v′ − 2v

u3

and Σ3 becomes

(33) ∆3 = −2 exp

[
∫

p dp

q − 2p2

]

[

(12p+ 1)∂p + 3(6q + p)∂q

]

.

Since ∆3 is also exponential nonlocal, we may use it for a final reduction of order.
The invariants are

(34) r =
72q + 3p+ 2

72ζ
and s =

[

q′(ζ2 − 72ζr + 1) − 18rζ3 − 54rζ + 1
]

/ζ2,

where ζ = 12p+ 1.

Under these successive reductions of order the Chazy equation becomes the
simple algebraic equation

(35) 4s+ 3 = 0.

Perhaps this is a rare instance of three wrongs making a right!
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4. COMPLETE SYMMETRY GROUPS

The concept of a Complete Symmetry Group was introduced by Jorge
Krause in 1994 [26, 27] in the context of the Kepler Problem. Essentially
he sought the minimum number of symmetries, Γi, i = 1, N , such that

(36) Γ
[2]
i {ẍ− f(x, ẋ, t)}|ẍ=f

= 0

required that f be the Newtonian force. In the case of the Kepler Problem it was
necessary to introduce nonlocal symmetries of the form

(37) Γ =
(

2
∫

rdt
)

∂t + rr.∂r

to complete the specification. Curiously the symmetries reflecting the conservation
of angular momentum were not part of the Complete Symmetry Group of the
Kepler Problem. Subsequently Nucci [47] showed that the nonlocal symmetries
in (37) were a natural consequence of the Lie point symmetries of a related system.
The story was completed by systematic account of the method of reduction of order
[48] which is a group theoretic approach to the classical method [61] [p 78] to reduce
the Kepler Problem to an harmonic oscillator with a forcing term. A similar line
of thinking showed that many integrable orbit problems related to the Kepler
Problem were essentially the same problem as far as the underlying algebraic basis
is concerned [49]. A number of other problems [36, 40, 50, 43, 51, 53] also
yielded to the same procedure.

In this sense the Kepler Problem belongs to the class of problems we men-
tioned above. The task is to find the coordinate system in which its essential
symmetries are point. One must observe that invariance under time translation
makes the transition to the new coordinate system possible. Time is not a variable
in the new coordinate system which means that in the reversion from the trans-
formed system to the original Kepler Problem the symmetry of invariance under
time translation must be included as an element of the Complete Symmetry Group.
Although one may hesitate to term the Kepler Problem as an esoteric problem
since it has been with us for some four centuries and its natural resolution in terms
of the Ermanno-Bernoulli constants is about to celebrate its tercentenary [13,

24, 11, 36, 37, 38, 49, 51], nevertheless its defining differential equation is non-
linear and we all know the pitfalls associated with nonlinear ordinary differential
equations.

In a manner of speaking Complete Symmetry Groups were the province of ex-
otic differential equations which needed nonlocal symmetries to provide a complete
specification. Fortunately the simple-minded came to provide some basic theory
about complete symmetry groups which did not involve nonlocal symmetries [9].
The investigation of the Kepler Problem led to the simple harmonic oscillator.
The simple harmonic oscillator is related to the free particle by an easy point trans-
formation and so the completeness of our celestial Kosmos could be explained by
the analysis of a particle moving in its own universe.
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These theoretical studies tended to exchange nonlocal symmetries for point
symmetries by showing that the system considered could be transformed to sys-
tems possessing the appropriate number of Lie point symmetries for reduction to
quadrature.

In the case of nonintegrable systems the evidence is somewhat thinner5.
Leach et al [34] considered the third-order differential equation

(38) y′′′ + y′′ + yy′ = 0

which arises in general relativity and showed that it was completely specified by
the nonlocal symmetries

(39)

Λ1 = ∂x

Λ2 =

{
∫

dx

y′2ex

}

∂x

Λ3 =

{
∫

dx

y′2

(

y − e−x

∫

yexdx

)}

∂x

Λ4 =

{
∫

1

y′2ex

[
∫

yy′exdx

]

dx

}

∂x + ∂y.

For general values of the initial conditions (38) is nonintegrable. Indeed a
study [59] of its Lyapunov exponents suggested that it exhibited chaotic behaviour
away from the surface in its three-dimensional space of initial conditions on which
it is demonstrably integrable in terms of analytic functions, but subsequent advice
was that the solution was simply very badly behaved. The distinction between
chaotic behaviour and nonintegrability can at times be visually difficult to discern.
The time-dependent oscillator

(40) q̈ + ω2(t)q = 0

is a case in point.

It has been established that the number of symmetries necessary to specify
an ordinary differential equation completely is n + 1, where n is the order of the
equation [10].

5. THE FUTURE

We mention three recent developments.

5.1. PARTIAL DIFFERENTIAL EQUATIONS (A)

A partial differential equation with a sufficient number of Lie point sym-
metries can be specified completely by these symmetries [45]. The heat equation

5Although we have not detailed the results, one can expect to find the Complete Symmetry
Group for an integrable equation rather more easily than for a nonintegrable equation.
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and a number of equations arising in Financial Mathematics, such as the Black-
Scholes equation, are so specified. In the absence of a sufficient number of suitable
Lie point symmetries one must look to nonlocal symmetries to complete the speci-
fication. Senzo Myeni [6] has recently devised a method to deal with the problem
of determining the nonlocal symmetries required. The class of partial differential
equations we consider comprise the general second-order evolution partial differen-
tial equation,

(41) F (x, u, ux, ut, uxx) = 0.

The most important step in this type of analysis for the symmetry group is
to identify at what point in the analysis a nonlocal symmetry is required. The
guideline is at a point where the arbitrary function found after the application of
a particular point symmetry still depends on the variable that one is trying to
remove. We illustrate this by an example drawn from the Mathematics of Finance.
The equation we consider is a nonlinear partial differential equation for volatility
[12]

(42) u2uxx + (r − q)xux + ut − (r − q)u = 0.

The economic model assumes frictionless markets, no arbitrage and that the un-
derlying stock price process is a one-dimensional diffusion starting from a positive
value. It also assumes a proportional risk-neutral drift of r − q, where r ≥ 0 is
the constant risk-free rate and q ≥ 0 is the constant dividend yield. The absolute
volatility rate is a positive C2,1 function u(x, t) of the stock price x ∈ (0,∞) and
time t ∈ (0, T ), where T is some distant horizon exceeding the longest maturity of
the option to be priced.

We rescale the variables to achieve an equation simpler in appearance, videlicet

(43) u2uxx + xux + ut − u = 0,

and it is for this equation that we find the complete symmetry group.

The Lie point symmetries of (43) are

(44)

Σ1 = ∂t

Σ2 = et ∂x

Σ3 = ∂t + x∂x + u ∂u

Σ4 = t ∂t + tx ∂x +
(

t− 1
2

)

u ∂u.

We write (41) as

(45) ut = f(x, t, u, ux, uxx).

Application of Σ1 = ∂t gives

(46) ut = f(x, u, ux, uxx).
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The second extension of Σ2 = et∂x is

Σ
[2]
2 = et∂x + (0)∂ux

− etux ∂ut
+ (0)∂uxx

and its application to (16) yields

−ux =
∂f

∂x
⇒ f = −xux + h(ux, uxx, u).

This is not good since h still depends explicitly upon ux. Before applying Σ2 we
become proactive and require that

ut = f(u, xux, uxx).

Obviously there is a nonlocal symmetry which allows the above constraint.
We find it as follows.

The characteristics would be

ut, u, uxx, xux

which come from the associated Lagrange’s system

dux

−ux
=

du

0
=

duxx

0
=

dut

0
=

dx

x
.

This suggests that the second extension of the nonlocal symmetry, say Σ5 = ξ∂x +
τ∂t + η∂u, is

Σ
[2]
5 = ξ ∂x + τ ∂t + η ∂u + ζx ∂ux

+ ζt ∂ut
+ ζxx ∂uxx

,

where
ξ = x, η = 0,

ζx, ζt and ζxx are the extensions of the operator Σ5 relevant to the derivatives
indicated. Specifically they are given by

(47) ζx =
∂η

∂x
+

[

∂η

∂u
− ∂ξ

∂x

]

ux − ∂τ

∂x
ut

(48) ζt =
∂η

∂t
+

[

∂η

∂u
− ∂τ

∂t

]

ut −
∂ξ

∂t
ux

(49) ζxx =
∂2η

∂x2
+

[

2
∂2η

∂x∂u
− ∂2ξ

∂x2

]

ux − ∂2τ

∂x2
ut − 2

∂ξ

∂x
uxx.

The symmetry-generating system is

ζxx = 0, ζt = 0, ζx = −ux
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with solution

(50) τ(x, t) = 2

∫ ∫

uxx

ut
dxdt,

where arbitrary functions and constants of integration have been omitted.

The nonlocal symmetry is

Σ5 = x∂x + τ ∂t,

where τ(x, t) is given by (50).

Hence we have the desired result that

ut = f(u, x ux, uxx).

We further proceed with the application of the remaining Lie point symmetries.
The application of the second extension of Σ2 = et∂x gives

(51) ut + xux = h(u, uxx).

The application of the second extension of Σ4 is

(52) Σ
[2]
4 = t ∂t + tx ∂x +

(

t− 1
2

)

u ∂u − 1
2 ux ∂ux

+
[

u+
(

t− 3
2

)

ut − xux

]

∂ut
−
(

t+ 1
2

)

uxx ∂uxx

which leads to

ut + xux = u+ γu2uxx,

where γ is an arbitrary constant. The use of the nonlocal symmetry6

Σ6 = τ ∂t

with τ given by

(53) τ(x, t) = 2

∫ ∫

uxx

utux
dxdt

requires γ to be −1.

The implicit and quasi-implicit complete symmetry group approach not only
provides us with the sufficient number of symmetries to form a complete symmetry
group but also provides a more direct way to find nonlocal symmetries.

6The calculation of which parallels the calculation given in detail above.
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5.2. PARTIAL DIFFERENTIAL EQUATIONS (B)

Abraham-Shrauner and Govinder [8] have recently shown a new poten-
tial source of hidden symmetries for partial differential equations. The symmetries
do not come from nonlocal symmetries, but are a result of the possibility that several
partial differential equations could lead to the same partial differential equation on
reduction of order. We illustrate their method with a simple example ([8], equation
(2.1)),

(54) uxxx + u (ut + cux) = 0,

which possesses the Lie point symmetries

(55)

Γ1 = ∂t

Γ2 = ∂x

Γ3 = 3t∂t + (x+ 2ct)∂x

Γ4 = t∂t + ct∂x + u∂u.

We reduce (54) to an ordinary differential equation using the symmetry cΓ2+
Γ1 for which the invariants are w = u and y = x − ct, ie we seek a travelling-
wave solution. Note that this is not an invertible point transformation and so
preservation of point symmetries is not guaranteed. The reduced equation is simply

(56) wyyy = 0

which has the seven Lie point symmetries

Υ1 = ∂y Υ5 = y∂w

Υ2 = ∂w Υ6 = w∂w

Υ3 = y2∂w Υ7 = 1
2 y

2∂y + yw∂w .

Υ4 = y∂y

Equation (54) is not the only source of (56) under reduction. Equally it can
be obtained from

(57) uxxx = 0, uttt = 0, uxxt = 0 and uxtt = 0,

where u is still a function of t and x, by means of the same invariants. For example
the first of (57) has an eightfold infinity of Lie point symmetries. They are

∆1 = F1(t)∂x ∆5 = F5(t)x∂x

∆2 = F2(t)∂u ∆6 = F1(t)x∂u

∆3 = F3(t)∂t ∆7 = F7(t)u∂u

∆4 = F4(t)x
2∂u ∆8 = F8(t)

(

1
2 x

2∂x + xu∂u

)

,
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where the Fi(t), i = 1, 8, are arbitrary functions. A subset of these symmetries
is obtained by making specific choices for the arbitrary functions and in suitable
combinations we have

Σ1 = ∂x Σ5 = (x − ct)∂x

Σ2 = ∂u Σ6 = (x − ct)∂u

Σ3 = ∂t Σ7 = u∂u

Σ4 = (x − ct)2∂u Σ8 = 1
2 (x − ct)2∂x + (x − ct)u∂u

which reduce to the seven Lie point symmetries of (56).

A similar result applies for the second equation in (57). However, for the
third and fourth members of (57) the symmetry Υ7 is not obtained.

In this example the invariants used for the reduction of order were the same.
There is no requirement for this to be the case and Abraham-Shrauner and
Govinder discuss the procedure to be used in this more general case.

5.3. WILL IT WORK FOR ORDINARY DIFFERENTIAL EQUATIONS?

We conclude with a very underdeveloped example of the application of the
idea of Abraham-Shrauner and Govinder to the area of ordinary differential
equations. The third-order equations

(58) y′′′ = 0

(59) 2y′y′′′ − 3y′′2 = 0

are reduced to the second-order equation

(60) Y ′′ = 0

(now the prime denotes differentiation with respect to the transformed independent
variable, X , which happens to be the same as the original independent variable in
this case) by means of the transformations

(61) X = x Y = y′ and

(62) X = x Y = y′−1/2,

respectively.

For (58) the symmetry generating the transformation (61) is Γ1 = ∂y. The
remaining six Lie point symmetries are transformed as

Γ2 = x∂y Λ2 = ∂Y

Γ3 = 1
2 x

2∂y Λ3 = X∂Y

Γ4 = y∂y Λ4 = Y ∂Y

Γ5 = ∂x Λ5 = ∂X

Γ6 = x∂x + y∂y Λ6 = ∂X

Γ7 = x2∂x + 2xy∂y Λ7 = X2∂X +
(

2
∫

Y dX
)

∂Y
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from which it is evident that we are missing three of the Lie point symmetries of
(60). The missing three are

Σ1 = X2∂X +XY ∂Y

Σ2 = Y ∂X

Σ3 = XY ∂X + Y 2∂Y

and it is a simple calculation to show that they have their origins from the symme-
tries

∆1 = x2∂x + 3
[

1
2 x

2y′ − 1
6 x

3y′′
]

∂y

∆2 = y′∂x + 1
2 y

′2∂y

∆3 = xy′∂x +
[

2xy′2 − 3
2 x

2y′y′′ + 1
2 x

3y′′2
]

∂y

of (58). The symmetry ∆2 is one of the contact symmetries of (58). The other two
are generalised symmetries and have been written as such instead of the nonlocal
version since the integration of (58) is trivial.

In the case of (59) and the reduction (62) the Lie point symmetries of the
former and their expression as symmetries of (60) are

Γ1 = ∂x Λ1 = ∂X

Γ2 = x∂x Λ2 = X∂X + 1
2 Y ∂Y

Γ3 = x2∂x Λ3 = X2∂X +XY ∂Y

Γ5 = y∂y Λ5 = Y ∂Y

Γ6 = y2∂y Λ6 = Y
∫

Y 2dX∂Y .

The symmetry Γ4 = ∂y is the symmetry used for the transformation (62).

The missing Lie point symmetries are

Σ1 = ∂Y

Σ2 = X∂Y

Σ3 = Y ∂X

Σ4 = XY ∂X + Y 2∂Y .

We note that in both cases the noncartan symmetries of (60) are absent in
the reduction of the point symmetries of the third-order equations.

What we do wish to emphasise is that the two reductions gave us a different
selection of the Lie point symmetries of (60) which is precisely the same effect
reported by Abraham-Shrauner and Govinder for partial differential equations.
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et Physiques, (1710), 519–521.

25. Ibragimov NH, Nucci MC: Integration of third order ordinary differential equations

by Lie’s method: equations admitting three-dimensional Lie algebras. Lie Groups and

Their Applications, 1 (1994), 49–64.

26. Krause J: On the complete symmetry group of the classical Kepler system. Journal of

Mathematical Physics, 35 (1994), 5734–5748.



Nonlocal symmetries: Past, present and future 169

27. Krause J: On the complete symmetry group of the Kepler problem. In Arima A.

Proceedings of the XXth International Colloquium on Group Theoretical Methods in

Physics (World Scientific, Singapore), (1995), 286–290.

28. Leach PGL: First integrals for the modified Emden equation q̈ + α(t)q̇ + qn = 0.

Journal of Mathematical Physics, 26 (1985), 2510–2514.

29. Leach PGL, Maartens R, Maharaj SD: Self-similar solutions of the generalized

Emden-Fowler equation. International Journal of Nonlinear Mechanics, 27 (1992),

575–582.

30. Leach PGL, Govinder KS: Hidden symmetries and integration of the generalized

Emden-Fowler equation of index two. Proceedings 14th IMACS World Congress on

Computational and Applied Mathematics. Ames WF ed (Georgia Institute of Tech-

nology, Atlanta), (1994), 300–303.

31. Leach PGL, Govinder KS, Abraham-Shrauner B: Symmetries of first integrals

and their associated differential equations. Journal of Mathematical Analysis and Ap-

plications, 235 (1999), 58–83.

32. Leach PGL, Govinder KS: On the uniqueness of the Schwarzian and linearisation by

nonlocal contact transformation. Journal of Mathematical Analysis and Application,

235 (1999), 84–107.

33. Leach PGL, Moyo S: Exceptional properties of second and third order ordinary dif-

ferential equations of maximal symmetry. Journal of Mathematical Analysis and Ap-

plication, 252 (2000), 840–863.

34. Leach PGL, Nucci MC, Cotsakis S: Symmetry, singularities and integrability in

complex dynamics V: Complete symmetry groups of nonintegrable ordinary differential

equations. Journal of Nonlinear Mathematical Physics, 8 (2001), 475–490.
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