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ON ITERATIVE COMBINATION OF

BERNSTEIN–DURRMEYER POLYNOMIALS

P. N. Agrawal, Asha Ram Gairola

The Bernstein–Durrmeyer polynomials

Mn(f ; t) = (n+ 1)
n∑

k=0

pn,k(t)
1∫

0

pn,k(u)f(u) du,

where pn,k(t) =
(n
k

)
tk(1− t)n−k, 0 ≤ t ≤ 1, defined on LB [0, 1], the space of

bounded and integrable functions on [0, 1] were introduced by Durrmeyer

and extensively studied by Derriennic and several other researchers . It
turns out that the order of approximation by these operators is, at best
O(n−1), however smooth the function may be. In order to improve this
rate of approximation we consider an iterative combination Tn,k(f ; t) of the
operators Mn(f ; t). This technique of improving the rate of convergence was
given by Micchelli who first used it to improve the order of approximation
by Bernstein polynomials Bn(f ; t). The object of this paper is to study
direct theorems in ordinary as well as in simultaneous approximation by
the operators Tn,k(f ; t). We prove that the order of approximation by these
operators is O(n−k) for sufficiently smooth functions.

1. INTRODUCTION

For f ∈ LB[0, 1] the operators Mn(f ; t) can be expressed as

(1.1) Mn(f ; t) =
1∫

0

Wn(u, t)f(u) du,
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where Wn(u, t) = (n+ 1)
n∑

k=0

pn,k(t)pn,k(u) is the kernel of the operators.

For m ∈ N0 (the set of non-negative integers), the m-th order moment for
the operators Mn is defined as

(1.2) µn,m(t) = Mn

(
(u − t)m; t

)
.

The iterative combination Tn,k : LB[0, 1] → C∞[0, 1] of the operatorsMn(f ; t)
is defined as

(1.3) Tn,k(f ; t) =
(
I − (I −Mn)k

)
(f ; t) =

k∑

r=1

(−1)r+1
(
k
r

)
M r

n(f ; t), k ∈ N,

where M0
n = I, and M r

n = Mn(M r−1
n ) for r ∈ N.

In Section 2 of this paper we give some definitions and auxiliary results
which will be needed to prove the main results. In Section 3 first we establish a
Voronovskaja type asymptotic formula and then find the degree of approxima-
tion for functions of a given smoothness in ordinary approximation. Subsequently
in Section 4 first we show that the operators Tn,k possess simultaneous approxima-
tion property i.e. the property that the derivatives of the operators Tn,k converge to
the corresponding order derivatives of f(x) and then extend the results of Section
3 to the case of simultaneous approximation.

2. PRELIMINARIES

In the sequel we shall require the following results:

Lemma 1 [2]. For the function µn,m(t), we have µn,0(t) = 1, µn,1(t) =
1 − 2t

n+ 2
,

and there holds the recurrence relation

(n+m+ 2)µn,m+1(t) = t(1 − t)
(
µ′

n,m(t) + 2mµn,m−1(t)
)

+ (m+ 1)(1 − 2t)µn,m(t), for m ≥ 1.

Consequently, we have

(i) µn,m(t) are polynomials in t of degree m;

(ii) for every t ∈ [0, 1], µn,m(t) = O
(
n−[(m+1)/2]

)
, where [β] is the integer

part of β.

The m-th order moment for the operator Mp
n is defined as

µ[p]
n,m(t) = Mp

n

(
(u − t)m; t

)
,

p ∈ N (the set of natural numbers). We denote µ
[1]
n,m(t) by µn,m(t).



On iterative combination of Bernstein–Durrmeyer polynomials 201

Lemma 2 [7]. For the function pn,k(t), there holds the result

(2.1) tr(1 − t)rDrpn,k(t) =
∑

2i + j ≤ r
i, j ≥ 0

ni(k − nt)jqi,j,r(t)pn,k(t),

where Dr stands for
dr

dtr
and qi,j,r(t) are certain polynomials in t independent of n

and k.

Lemma 3. There holds the recurrence relation

(2.2) µ[p+1]
n,m (t) =

m∑

j=0

m−j∑

i=0

(
m
j

) 1

i!
Di
(
µ

[p]
n,m−j(t)

)
µn,i+j(t).

Proof. We can write

(2.3) µ[p+1]
n,m (t) = Mp+1

n

(
(u− t)m; t

)

= Mn

(
Mp

n

(
(u − t)m;x

)
; t
)

= Mn

(
Mp

n

(
(u− x+ x− t)m;x

)
; t
)

=
m∑

j=0

(
m
j

)
Mn

(
(x− t)jMp

n

(
(u− x)m−j ;x

)
; t
)
.

Since Mp
n

(
(u−x)m−j ;x

)
is a polynomial in x of degree m− j, by Taylor’s expan-

sion, we can write as

(2.4) Mp
n

(
(u− x)m−j ;x

)
=

m−j∑

i=0

(x− t)i

i!
Di
(
µ

[p]
n,m−j(t)

)
.

From (2.3) and (2.4) we get the required result.

Lemma 4. For k, ` ∈ N, there holds Tn,k

(
(u− t)`; t

)
= O(n−k).

Proof. We apply induction on k. For k = 1, the result follows from Lemma 1.
Assume that it is true for a certain k, then by the definition of Tn,k we get

Tn,k+1

(
(u− t)`; t

)
=

k+1∑

r=1

(−1)r+1
(
k + 1
r

)
M r

n

(
(u − t)`; t

)

=
k∑

r=1

(−1)r+1
(
k
r

)
M r

n

(
(u− t)`; t

)

+
k+1∑

r=1

(−1)r+1
(

k
r − 1

)
M r

n

(
(u− t)`; t

)

= I1 + I2, say.
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We can write I1 as

(2.5) I1 = Tn,k

(
(u− t)`; t

)
.

Next, by Lemma 3

I2 =

k∑

r=0

(−1)r
(k
r

)
µ

[r+1]
n,` (t)

= µn,`(t) −
∑̀

j=1

`−j∑

i=0

( `
j

) 1

i!

(
DiTn,k

(
(u − t)`−j; t

))
µn,i+j(t)

−
∑̀

i=0

1

i!

(
DiTn,k

(
(u− t)`; t

))
µn,i(t)

= µn,`(t) −
∑̀

j=1

`−j∑

i=0

( `
j

) 1

i!

(
DiTn,k

(
(u − t)`−j; t

))
µn,i+j(t)

−
∑̀

i=1

1

i!

(
DiTn,k

(
(u− t)`; t

))
µn,i(t) − Tn,k

(
(u − t)`; t

)
,

(2.6) I2 = −

`−1∑

j=1

`−j∑

i=0

( `
j

) 1

i!

(
DiTn,k

(
(u − t)`−j; t

))
µn,i+j(t)

−
∑̀

i=1

1

i!

(
DiTn,k

(
(u− t)`; t

))
µn,i(t) − Tn,k

(
(u − t)`; t

)

From Lemma 1, (2.5) and (2.6) we get Tn,k+1

(
(u− t)`; t

)
= O

(
n−(k+1)

)
.

Thus, the result is proved for all k ∈ N.

Lemma 5. For p ∈ N, m ∈ N0 and t ∈ [0, 1], we have

(2.7). µ[p]
n,m(t) = O

(
n−[(m+1)/2]

)
.

Proof. For p = 1, the result follows from Lemma 1. Suppose (2.7) is true for a

certain p. Then µ
[p]
n,m−j(t) = O

(
n−[(m−j+1)/2]

)
, 0 ≤ j ≤ m. Also µ

[p]
n,m−j(t) is a

polynomial in t of degree m− j, therefore, we have

Di
(
µ

[p]
n,m−j(t)

)
= O

(
n−[(m−j+1)/2]

)
∀ 0 ≤ i ≤ m− j.

Now, applying Lemma 3,

µ[p+1]
n,m (t) =

m∑

j=0

m−j∑

i=0

O
(
n−[(m−j+1)/2]

)
·O
(
n−[(i+j+1)/2]

)
= O

(
n−[(m+1)/2]

)
.

Hence, the lemma is proved by induction on p.
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3. ORDINARY APPROXIMATION

Theorem 1. (Voronovskaja type asymptotic formula). Let f ∈ LB[0, 1] admit-

ting a derivative of order 2k at a point t ∈ [0, 1]. Then

(3.1) lim
n→∞

nk
(
Tn,k(f ; t) − f(t)

)
=

2k∑

v=1

f (v)(t)

v!
Q(v, k, t)

and

(3.2) lim
n→∞

nk
(
Tn,k+1(f ; t) − f(t)

)
= 0,

where Q(v, k, t) are certain polynomials in t of degree v. Further, the limits in (3.1)
and (3.2) hold uniformly in [0, 1] if f (2k)(t) is continuous in [0, 1].

Proof. Since f (2k)(t) exists, we can write an expansion of f as:

(3.3) f(u) =

2k∑

v=0

f (v)(t)

v!
(u− t)v + ε(u, t)(u− t)2k,

where ε(u, t) → 0 as u→ t and is bounded and integrable in [0, 1]. The proof is as
follows:

Let ε(u, t) =
f(u) −

2k∑
i=0

f (i)(t)

i!
(u− t)i

(u− t)2k
. Then,

lim
u→t

ε(u, t) = lim
u→t

f(u) −

(
f(t) + (u− t)f ′(t) + · · · +

(u− t)2k

(2k)!
f (2k)(t)

)

(u− t)2k

= lim
u→t

f (2k−1)(u) −
(
f (2k−1)(t) + (u − t)f (2k)(t)

)

2k!(u− t)

(applying L’Hospital’s rule successively (2k − 1) times)

=
1

2k!
lim
u→t

f (2k−1)(u) − f (2k−1)(t)

u− t
−
f (2k)(t)

2k!

= 0.

Operating by Tn,k on both sides of (3.3) we get

nk
(
Tn,k(f ; t) − f(t)

)
= nk

2k∑

v=1

f (v)(t)

v!
Tn,k

(
(u − t)v; t

)
+ nkTn,k

(
ε(u, t)(u− t)2k; t

)
.

= I1 + I2, say.
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Making use of Lemma 4, we obtain

I1 =

2k∑

v=1

f (v)(t)

v!
Q(v, k, t) + o(1),

where Q(v, k, t) is the coefficient of n−k in Tn,k

(
(u − t)v; t

)
.

Since ε(u, t) → 0 as u → t, for a given ε′ > 0 we can find a δ > 0 such that
|ε(u, t)| < ε′ whenever 0 < |u − t| < δ and for |u − t| ≥ δ, |ε(u, t)| ≤ K for some
K > 0. Suppose χ(u) is the characteristic function of the interval (t− δ, t+ δ), then

|I2| = nk
k∑

r=1

(k
r

)
M r

n

(
|ε(u, t)|(u− t)2kχ(u); t

)

+ nk
k∑

r=1

(k
r

)
M r

n

(
|ε(u, t)|(u− t)2k

(
1 − χ(u)

)
; t
)

= I3 + I4, say.

In view of Lemma 5,
I3 = ε′O(1).

Now, applying Lemma 5, we have for any integer s > k,

I4 ≤ nk
k∑

r=1

(
k
r

)
M r

n

(
K(u− t)2s/δ2s−2k; t

)
= O(nk−s) for any integer s > k.

= o(1).

Due to arbitrariness of ε′ it follows that |I2| = o(1).

Combining the estimates of I1 and I2, we obtain (3.1). Similarly, the assertion
(3.2) follows from the fact Tn,k+1

(
(u− t)`; t

)
= O(n−k−1) for all ` ∈ N.

The uniformity assertion follows du to the uniform continuity of f (2k) on [0, 1]
which enables δ to become independent of t and the uniformness of the term o(1)
in the estimate of I1.

In our next result we obtain an estimate of the degree of approximation of a
function with specified smoothness.

Theorem 2. Let 1 ≤ p ≤ 2k be an integer and f (p) ∈ C[0, 1]. Then, for sufficiently

large n there holds

(3.4)
∥∥Tn,k(f ; t) − f(t)

∥∥ ≤ max
{
C1n

−p/2ω(f (p);n−1/2), C2n
−k
}
,

where C1 = C1(k, p), C2 = C2(k, p, f), ‖ · ‖ is sup-norm on [0, 1] and ω(f (p); δ) is

the modulus of continuity of f (p) on [0, 1].

Proof. By Taylor’s expansion, we can write

(3.5) f(u) − f(t) =

p∑

i=1

f (i)(t)

i!
(u− t)i +

f (p)(ξ) − f (p)(t)

p!
(u− t)p,
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where ξ lies between u and t.

Operating by Tn,k on both sides of (3.5) and breaking the right hand side
into two parts I1 and I2 say, corresponding to two terms on the right hand side of
(3.5), we get

Tn,k(f ; t) − f(t) = I1 + I2, say.

In view of Lemma 4,

I1 =

p∑

i=1

f (i)(t)

i!
Tn,k

(
(u− t)i; t

)
= O(n−k), uniformly for every t ∈ [0, 1].

Since f (p) ∈ C[0, 1], we have

∣∣f (p)(ξ) − f (p)(t)
∣∣ ≤ ω

(
f (p); |ξ − t|

)
≤
(
1 + |u − t|/δ

)
ω(f (p); δ), for any δ > 0.

Hence, using Schwarz inequality and Lemma 5,

|I2| ≤
ω(f (p); δ)

p!

k∑

r=1

(k
r

)
M r

n

(∣∣(u− t)
∣∣p(1 + |u− t|/δ

)
; t
)
.

Choosing δ = n−1/2, we get

|I2| ≤ ω(f (p);n−1/2)O(n−p/2), uniformly in [0, 1].

Combining the estimates of I1 and I2, the theorem follows.

4. SIMULTANEOUS APPROXIMATION

In this section we discuss simultaneous approximation property of the ope-

rators Tn,k. First we prove that T
(p)
n,k is an approximation process for f (p), p =

1, 2, 3, . . . .

Theorem 3. Let f ∈ LB[0, 1] admitting a derivative of order p at a fixed point

t ∈ (0, 1). Then

(4.1) lim
n→∞

T
(p)
n,k(f ; t) = f (p)(t).

Further, if f (p) exists and is continuous on (a− η, b+ η) ⊂ (0, 1), η > 0, then (4.1)
holds uniformly in t ∈ [a, b].

Proof. We can expand f(u) as

f(u) =

p∑

i=0

f (i)(t)

i!
(u − t)i + ε(u, t)(u− t)p,

where ε(u, t) → 0 as u→ t and is bounded and integrable on [0, 1].
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In order to prove (4.1), it is sufficient to show that lim
n→∞

Dp
(
M r

n(f ; t)
)

=

f (p)(t). Therefore, from the above expansion of f and the definition of M r
n

DpM r
n(f ; t) =

p∑

i=0

f (i)(t)

i!

1∫

0

W (p)
n (s, t)M r−1

n

(
(u− t)i; s

)
ds

+

1∫

0

W (p)
n (s, t)M r−1

n

(
ε(u, t)(u− t)p; s

)
ds

= I1 + I2, say.

Now

I1 =

p∑

i=0

f (i)(t)

i!

i∑

j=0

(
i
j

)
(−t)i−j

1∫

0

W (p)
n (s, t)M r−1

n (uj; s) ds

=

p∑

i=0

f (i)(t)

i!

i∑

j=0

(
i
j

)
(−t)i−jDpM r

n(uj; t).

Since M r
n(uj ; t) is a polynomial in t of degree j and the coefficient of tj is equal to

j∏
i=1

(
(n−i+1)/(n+i+1)

)r
, which tends to 1 as n→ ∞, it follows that I1 → f (p)(t)

as n → ∞. Since ε(u, t) → 0 as u → t, for a given ε′ > 0 we can find a δ > 0 such
that |ε(u, t)| < ε′ whenever 0 < |u− t| < δ, ε(u, t) is bounded by some K > 0, say.
Suppose χ(u) is the characteristic function of the interval (t− δ, t+ δ), then in view
of Lemma 2

I2 = (n+ 1)

n∑

k=0

1∫

0

(
Dp
(
pn,k(t)

))
pn,k(s)M r−1

n

(
ε(u, t)(u− t)p; s

)
ds

= (n+ 1)

n∑

k=0

∑

2i + j ≤ p
i, j ≥ 0

ni(k − nt)j

tp(1 − t)p
qi,j,p(t)pn,k(t) ×

×

(
1∫

0

pn,k(s)M r−1
n

(
ε(u, t)(u− t)pχ(u); s

)
ds

+
1∫

0

pn,k(s)M r−1
n

(
ε(u, t)(u− t)p(1 − χ(u)); s

)
ds

)

= I3 + I4, say.

Let C1 = sup
2i + j ≤ p

i, j ≥ 0

∣∣qi,j,p(t)/(tp(1 − t)p)
∣∣, applying Schwarz inequality three
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times we get

|I3| ≤ ε′C1

∑

2i + j ≤ p
i, j ≥ 0

ni

(
n∑

k=0

pn,k(t)(k − nt)2j

)1/2

×

×

(
(n+ 1)

n∑

k=0

pn,k(t)
1∫

0

pn,k(s)M r−1
n

(
(u− t)2p; s

)
ds

)1/2

.

Now, it is known [3] that for 0 ≤ t ≤ 1 and m ∈ N0,

(4.2)

n∑

k=0

pn,k(t)(k − nt)2j = O(nj).

Therefore, using Lemma 5 we get

(4.3) I3 = ε′O(1).

Again,

|I4| ≤

n∑

k=0

(n+ 1)
(
k
r

) ∑

2i + j ≤ p
i, j ≥ 0

C1n
ipn,k(t)

∣∣(k − nt)
∣∣j ×

×

1∫

0

pn,k(s)M r−1
n

(
|ε(u, t)| |(u− t)|p

(
1 − χ(u)

)
; s
)

ds.

Using Schwarz inequality, (4.2) and Lemma 5, for any integer s > p we
obtain

|I4| ≤ C1O(np/2)Kδ−s+p ×

×

(
(n+ 1)

n∑

k=0

pn,k(t)

1∫

0

pn,k(s)M r−1
n

(
(u− t)2s

(
1 − χ(u)

)
; s
)
ds

)1/2

≤ K ′(n(p−s)/2).

Therefore we have

(4.4) I4 = o(1).

As ε′ > 0 is arbitrary, from (4.3) and (4.4) we see that I2 = o(1). Hence (4.1)
follows from the estimates of I1 and I2. The second assertion follows due to the
fact that δ(ε′) can be chosen independent of t ∈ [a, b] and all the other estimates
hold uniformly in [a, b].
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In our next theorem we study an asymptotic result for Tn,k in simultaneous
approximation.

Theorem 4. Let f ∈ LB[0, 1]. If f (2k+p)(t) exists at the point t ∈ (0, 1), then we

have

(4.5) lim
n→∞

nk
(
T

(p)
n,k(f ; t) − f (p)(t)

)
=

2k+p∑

j=p

Q1(j, k, p, t)f
(j)(t),

where Q1(j, k, p, t) are certain polynomials in t. Further, if f (2k+p) is continuous in

(a− η, b+ η) ⊂ (0, 1), η > 0, then (4.5) holds uniformly in [a, b].

Proof. By our hypothesis we can write

T
(p)
n,k(f ; t) =

k∑

r=1

(−1)r+1
(
k
r

) 1∫

0

W (p)
n (s, t)M r−1

n

(
2k+p∑

i=0

f (i)(t)

i!
(u− t)i

+ ε(u, t)(u− t)2k+p; s

)
ds

= I1 + I2, say,

where ε(u, t) → 0 as u→ t and is bounded and integrable on [0, 1].

On an application of Lemma 1 and Theorem 1 we obtain

I1 =

2k+p∑

i=p

f (i)(t)

i!

i∑

`=0

(
i
`

)
(−t)i−`T

(p)
n,k(u`; t)

=

2k+p∑

i=p

f (i)(t)

i!

i∑

`=0

(i
`

)
(−t)i−`

(
Dpt` + n−k

2k∑

j=1

Dp
(
Q(j, k, t)

j!
Djt`

)
+ o(n−k)

)

= f (p)(t) +

2k+p∑

i=p

n−k
i∑

`=0

(i
`

)
(−t)i−` f

(i)(t)

i!

( 2k∑

j=1

Dp
(
Q(j, k, t)

j!
Djt`

))
+ o(n−k)

= f (p)(t) + n−k

2k+p∑

j=p

Q1(j, k, p, t)f
(j)(t) + o(n−k),

where we used the identities

i∑

`=0

(−1)`
(i
`

)(`
p

)
=

{
0, i > p
(−1)p, i = p.

To estimate I2 =
k∑

r=1

(−1)r+1
(
k
r

) 1∫

0

W (p)
n (s, t)M r−1

n

(
ε(u, t)(u− t)2k+p; s

)
ds,

proceeding as in the estimate of I4 in Theorem 3, it follows that nkI2 → 0 as
n → ∞. Hence, combining the estimates of I1 and I2, (4.5) is established. The
uniformity assertion follows as in Theorem 3.
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Theorem 5. Let p, q ∈ N, p ≤ q ≤ 2k + p and f ∈ LB[0, 1]. If f (q) exists and is

continuous on (a− η, b+ η) ⊂ (0, 1), for some η > 0 then

(4.6)
∥∥T (p)

n,k(f ; t) − f (p)(t)
∥∥ ≤ max

{
C1n

−(q−p)/2ω(f (q);n−1/2), C2n
−k
}
,

where C1 = C1(k, p), C2 = C2(k, p, f), ‖ · ‖ is the sup-norm on [a, b] and the

modulus of continuity of f (q) on (a− η, b+ η) is ω(f (q);n−1/2).

Proof. By our hypothesis, we may write for all u ∈ [0, 1] and t ∈ [a, b]

(4.7) f(u) =

q∑

i=0

f (i)(t)

i!
(u−t)i +

f (q)(ξ) − f (q)(t)

q!
(u−t)qχ(u)+F (u, t)

(
1−χ(u)

)
,

where χ(u) is the characteristic function of (a−η, b+η), ξ lies between u and t and

F (u, t) is defined as F (u, t) = f(u) −

q∑

i=0

f (i)(t)

i!
(u− t)i, ∀u ∈ [0, 1] and t ∈ [a, b].

The function F (u, t) is bounded by M |u − t|q for t ∈ [a, b] and M is some

positive number. Now operating by T
(p)
n,k on both sides of (4.7) and breaking the

right hand side into three parts I1, I2 and I3 say, corresponding to the three terms
on the right hand side of (4.7), we get

T
(p)
n,k(f ; t) − f (p)(t) = I1 + I2 + I3, say.

Now,

I1 =

q∑

i=1

i∑

j=0

(−t)i−j
(
i
j

) f (i)(t)

i!
T

(p)
n,k(uj ; t).

Proceeding as in the estimate of I1 of Theorem 4

I1 =

q∑

i=1

i∑

j=0

(−t)i−j
(
i
j

) f (i)(t)

i!
Dp

(
tj + n−k

( 2k∑

r=1

Dp
(
Q(r, k, t)

r!
Drtj

)
+ o(n−k)

))

= O(n−k), uniformly in t ∈ [a, b].

Next, applying Lemma 2,

|I2| ≤
ω(f (q); δ)

q!

k∑

r=1

(
k
r

)
(n+ 1)

n∑

v=0

∑

2i + j ≤ p
i, j ≥ 0

nipn,v(t)
|qi,j,p(t)|

tp(1 − t)p
|v − nt|j ×

×

1∫

0

pn,v(s)M
r−1
n

(
|u− t|q

(
1 + |u− t|/δ

)
; s
)

ds.

Let C′ = sup
2i + j ≤ p

i, j ≥ 0, t ∈ [a, b]

∣∣qi,j,p(t)/
(
tp(1 − t)p

)∣∣. Using Schwarz inequality,

(4.2) and Lemma 5 we obtain |I2| ≤ C′ω(f (q); δ)
(
O(n−(q−p)/2) +O(n−(q+1−p)/2)

)
,

uniformly in t ∈ [a, b].
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Choosing δ = n−1/2, it follows that I2 = ω(f (q);n−1/2)O(n−(q−p)/2) uni-

formly in t ∈ [a, b]. Lastly, to estimate I3 = T
(p)
n,k

(
F (u, t)(1 − χ(u)); t

)
, proceed-

ing in a manner similar to the estimate of I4 in Theorem 3, it follows that I3 =
O(n(p−s)/2), where s is an integer greater than 2k + p + 2. Thus I3 = o(n−(k+1)),
uniformly in t ∈ [a, b].

Combining the estimates of I1, I2 and I3, (4.6) is established. This completes
the proof.
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