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ON THE NEWTON-LIKE METHOD FOR

THE INCLUSION OF A POLYNOMIAL ZERO∗

Ljiljana D. Petković, Miodrag S. Petković

One of the most important problems in solving nonlinear equations is the
construction of such initial conditions which provide both the guaranteed
and fast convergence of the considered numerical algorithms. In this paper
we study an iterative method of Newton’s type for the inclusion of isolated
complex zero of a given polynomial. We state computationally verifiable
initial condition for the convergence of the considered interval method, which
depends only on attainable data, and prove the quadratic convergence of this
method. A numerical example is given.

1. INTRODUCTION

During the last forty years various techniques for a posteriori error estimates
for the approximation of polynomial complex zeros were developed, see [6]. A quite
different and efficient approach to error estimates uses complex circular arithmetic,
as pointed out by Gargantini and Henrici [3]. Iterative methods realized in
circular interval arithmetic produce resulting disks that contain complex zeros of a
polynomial. In this manner, not only very close approximations to the zeros (given
by the centers of disks) but also the upper error bounds for the zeros (given by the
radii of disks) are provided. More details about interval methods for the inclusion
of polynomial zeros can be found in [1], [6], [7], [10] and references cited there.

The aim of this paper is to present an iterative method of Newton’s type
for the inclusion of an isolated complex zero of a polynomial. A special attention
will be paid to the construction of computationally verifiable initial condition that
provides the guaranteed convergence of the proposed method. Let us stress that
this subject, known in literature as a composite part of “point estimation theory”
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(Smale [11]), is one of the most important problems in the theory and practice of
iterative processes which attracts a great attention in recent time (for more details
see [8]).

To state the interval method for the inclusion of polynomial complex zeros,
we need the basic properties of circular interval arithmetic. A disk Z with center
mid Z = c and radius radZ = r, that is Z := {z : |z − c| ≤ r}, will be denoted
briefly by the parametric notation Z = {c; r}. The set of all complex circular
intervals (disks) is denoted by K(C). The basic circular arithmetic operations are
defined as follows:

α{c; r} = {αc; |α|r} (α ∈ C),

{c1; r1} ± {c2; r2} = {c1 ± c2; r1 + r2},

{c1; r1} · {c2; r2} = {c1c2; |c1|r2 + |c2|r1 + r1r2}.

The inversion of a disk Z = {c; r} which does not contain the origin (that is,
|c| > r holds) is defined by the Möbius transformation,

(1) Z−1 =
{1

z
: z ∈ {c; r}

}

=
{ c̄

|c|2 − r2
;

r

|c|2 − r2

}

.

Following the introduced inversion, division is defined as

Z1 : Z2 = Z1 · Z
−1
2 (0 /∈ Z2).

For two disks Z1 = {c1; r1} and Z2 = {c2; r2} the following is valid:

{c1; r1} ∩ {c2; r2} = ∅ ⇔ |c1 − c2| > r1 + r2,(2)

|c1 − c2| ≤ r1 − r2 ⇔ {c1; r1} ⊆ {c2; r2}.(3)

A fundamental property of interval computation is the inclusion isotonicity
which forms the basis for almost all applications of interval arithmetic. Let f be a
complex function over a given disk Z ∈ K(C). The complex-valued set {f(z)| z ∈
Z} is not a disk in general. To deal with disks, we introduce an circular extension
F of f, defined on a subset D ⊆ K(C) such that

F (Z) ⊇ {f(z)| z ∈ Z} for all Z ∈ D (inclusion),

F (z) = f(z) for all z ∈ Z (complex restriction).

We shall say that the complex interval extension F is inclusion isotone if the
implication

Z1 ⊆ Z2 ⇒ F (Z1) ⊆ F (Z2)

is satisfied for all Z1, Z2 ∈ D. In particular, we have

(4) z ∈ Z ⇒ f(z) = F (z) ∈ F (Z).

Let us note that the four basic operations in circular complex arithmetic are inclu-
sion isotone ([1, Ch. 5]).
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2. NEWTON-LIKE INTERVAL METHOD

Let

P (z) = zn + an−1z
n−1 + · · · + a1z + a0 =

n
∏

j=1

(z − ζj) (ai ∈ C)

be a monic polynomial of degree n with simple complex zeros ζ1, . . . , ζn. Let us
assume that we have found a disk A := {z : |z − a| ≤ η}, shortly denoted by
parametric notation {a; η} (a = mid A, η = radA), that contains only one zero of
P. All other zeros are supposed to lie in the region W = {w : |w−a| > η} = extA,
that is, in the exterior of the disk A = {a; η} (see Fig. 1). There is a lot of
results for the localization of polynomial zeros (see, e.g., Marden [5], Henrici
[4]) and we will not discuss this subject in this paper. We also note that a useful
computational test for the existence of polynomial zero can be found in [9]. Without
loss of generality, we will adopt that the sought zero is denoted by ζ1; moreover,
we write ζ instead of ζ1. In our study we always assume that n ≥ 3.

*

*

*

*

*

*

*

* *

*

z

z
z

z

3

n

a

A

2
W = ext A

Figure 1.

Using the logarithmic derivative, we find

(5)
P ′(z)

P (z)
=

n
∑

j=1

1

z − ζj

=
1

z − ζ
+

n
∑

j=2

1

z − ζj

.

We single out the zero ζ1 = ζ from (5) and obtain the fixed point relation

(6) ζ = z −
1

P ′(z)

P (z)
−

n
∑

j=2

(z − ζj)
−1

.

According to the inclusion isotonicity property (4) we have (z − ζj)
−1 ∈

(z − W )−1 for any z ∈ {a; η} and j = 2, 3, . . . , n. Since z /∈ W, that is, |z − a| < η,
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the inversion of the open region z − W is a closed interior of a circle given by

H = (z − W )−1 =

{

w :
∣

∣

∣
w +

z̄ − ā

η2 − |z − a|2

∣

∣

∣
≤

η

η2 − |z − a|2

}

= {h; d},

where

h = mid H =
ā − z̄

η2 − |z − a|2
, d =

η

η2 − |z − a|2
.

(see Gargantini [2]). Taking into account that ζj ∈ W, we return to (6) and
obtain

(7) ζ ∈ z −
1

P ′(z)

P (z)
−

n
∑

j=2

(z − W )−1

= z −
1

P ′(z)

P (z)
− (n − 1){h; d}

.

The relation (7) suggests the construction of an iterative method for the
inclusion of isolated zero of the polynomial P. Let Z(m) =

{

z(m); r(m)
}

be a disk

with center z(m) = mid Z(m) and radius r(m) = radZ(m) (m = 0, 1, . . .). For an
initial inclusion disk we take Z(0) = {a; η} = A, that is, z(0) = a and r(0) = η. We
will use the following abbreviations:

H(m) =
{

h(m); d(m)
}

, h(m) =
ā − z̄(m)

η2 − |z(m) − a|2
, d(m) =

η

η2 − |z(m) − a|2
.

Starting from (7) we can construct the following iterative method for the inclusion
of one zero of the given polynomial P :

(8) Z(m+1) = z(m) −
1

P ′(z(m))

P (z(m))
− (n − 1)

{

h(m); d(m)
}

(m = 0, 1, . . .),

where z(m) = mid Z(m).

Remark 1. The iterative formula (8), written in the form,

Z(m+1) = z(m) −
P (z(m))

P ′(z(m))
·

1

1 −
P (z(m))

P ′(z(m))
(n − 1)

{

h(m); d(m)
}

(m = 0, 1, . . .),

obviously resembles the Newton method. For this reason, we will refer (8) to as
the Newton-like interval method.

Remark 2. Regarding the role of the disk H(m) in (8), we can conclude that it does
not have any influence to the convergence rate of the iterative method (8). However,
the main role of the interval H(m) =

{

h(m); d(m)
}

is to provide the inclusion of the

zero ζ within the disk Z(m+1).
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Remark 3. The interval method (8) is a modification of the Gargantini-Henrici
method [3] of the third order

Z
(m+1)
i = z

(m)
i −

1

P ′(z
(m)
i )

P ′(z
(m)
i )

−
n
∑

j=1

j 6=i

(

z
(m)
i − Z

(m)
j

)−1
(i = 1, . . . , n; m = 0, 1, . . .).

for the simultaneous inclusion of all simple zeros of the polynomial P.

3. CONVERGENCE ANALYSIS

In this section we will study the convergence behavior of the Newton-like
method (8). Our main goal is to state computationally verifiable initial condition
that enables the guaranteed convergence of this method. As a consequence, we
prove that the Newton-like method (8) has the quadratic convergence.

Assume that we have found an initial disk Z(0) = {a; η} that contains one
and only one zero ζ of P and let the inequality

(9)
∣

∣

∣

P (a)

P ′(a)

∣

∣

∣
<

η

3(n − 1)

hold. We note that this inequality involves only known data: the center and radius
of the initial inclusion disk Z(0) = A = {a; η} and the polynomial degree n. We
will show later that, if the inequality (9) is valid, then the iterative method (8) is
convergent with the quadratic convergence. Let us stress that the initial condition
of the form (9) is of great practical importance since it depends only on attainable
data.

Let us introduce the quantity

ρ(m) = η − |z(m) − a| (m = 0, 1, . . .).

Lemma 1. The following implication is valid:

∣

∣

∣

P (a)

P ′(a)

∣

∣

∣
<

η

3(n − 1)
⇒ ρ(1) > 5(n − 1)r(1).

Proof. The inversion of the open region T = {z : |z − t| > R}, when 0 /∈ T (that
is, |t| < R), is given by

(10) T−1 =

{

−t̄

R2 − |q|2
;

R

R2 − |q|2

}

.

By using (10) we obtain

n − 1

z(0) − W
= (n − 1)

{

0;
1

η

}

=
{

0;
n − 1

η

}

(z(0) = a).
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The iterative formula (8) for m = 0 has a simple form

Z(1) = a −
1

{

P ′(a)

P (a)
;
n − 1

η

} .

Having in mind the inequality (9) we find

∣

∣

∣

P ′(z(0))

P (z(0))

∣

∣

∣
=
∣

∣

∣

P ′(a)

P (a)

∣

∣

∣
>

3(n − 1)

η
>

n − 1

η
= rad

n − 1

z(0) − W
.

Therefore, according to (2), the disk in the denominator of (8) does not contain 0
when m = 1, which means that Z(1) is also a disk.

We apply (1) and (9) and estimate

r(1) = radZ(1) = rad
1

{

P ′(a)

P (a)
;
n − 1

η

} =

n − 1

η
∣

∣

∣

∣

∣

P ′(a)

P (a)

∣

∣

∣

∣

∣

2

−
(n − 1)2

η2

(11)

<

n − 1

η
[3(n − 1)

η

]2

−
(n − 1)2

η2

=
η

8(n − 1)
≤

η

16
.

In the similar way, using (9) we find

|z(1) − z(0)| = |z(1) − a| =

∣

∣

∣

P ′(a)

P (a)

∣

∣

∣

∣

∣

∣

∣

∣

P ′(a)

P (a)

∣

∣

∣

∣

∣

2

−
(n − 1)2

η2

(12)

<

3(n − 1)

η
[3(n − 1)

η

]2

−
(n − 1)2

η2

=
3η

8(n − 1)
.

Using (11) and (12) we obtain

(13) ρ(1) = η − |z(1) − a| > η −
3η

8(n − 1)
=

8n − 11

8(n − 1)
η ≥

13

16
η > 5(n − 1)r(1).

In this way we have proved that the initial condition (9) implies the inequality

(14) ρ(1) > 5(n − 1)r(1),

which has the important role in the convergence analysis. �
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Let us note that ζ ∈ Z(1) according to the inclusion isotonicity property. We
will now consider the iterative method (8) for m ≥ 1 starting with the inclusion
disk Z(1) and the condition (14). This condition holds if (9) is valid, which will
not be further particularly cited. Using circular arithmetic operations, the iterative
formula (8) can be rewritten in the form

(15) Z(m+1) = z(m) −
{

c(m); d(m)
}−1

(m = 0, 1, . . .),

where

c(m) =
P ′(z(m))

P (z(m))
+

(n − 1)(z̄(m) − ā)

η2 − |z(m) − a|2
, d(m) =

(n − 1)η

η2 − |z(m) − a|2
.

For simplicity, in what follows we will omit the iteration index always when
there is no possibility of a confusion.

Lemma 2. If the inequality

(16) ρ > 5(n − 1)r

is valid, then 0 /∈ {c; d} and

(17)
|c|

|c|2 − d2
<

15

8
r.

Proof. Using (5) and (16) we find for m ≥ 2

|c| >
1

|z − ζ|
−

n
∑

j=2

1

|z − ζj |
−

(n − 1)|z − a|

η2 − |z − a|2
(18)

>
1

r
−

n − 1

ρ
−

(n − 1)(η − ρ)

η2 − (η − ρ)2
>

3

5r
,

and

(19) d =
(n − 1)η

η2 − |z − a|
=

(n − 1)η

η2 − (η − ρ)2
<

n − 1

ρ
.

Since

|c| >
3

5r
>

3

5
·
5(n − 1)

ρ
>

n − 1

ρ
> d,

according to (2) it follows that 0 /∈ {c; d}.

To prove the second assertion of the lemma, we use (16), (18) and (19) to
find

|c|

|c|2 − d2
<

3

5r
( 3

5r

)2

−
(n − 1)2

ρ2

<

3

5r
( 3

5r

)2

−
1

5r2

<
15

8
r.

�
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Theorem 1. Let the sequence of disks {Z(m)} be defined by the iterative method
(8), assuming that the initial disk Z(0) = {a; η} is chosen so that the condition (9)
is satisfied. Then, the Newton-like method (8) is convergent, and the following is
true in each iterative step:

1◦ ζ ∈ Z(m);

2◦ r(m+1) <
25(n − 1)

4η

[

r(m)
]2

.

Proof. The proof of the assertion 1◦ follows from the construction of the method
(8), based on the inclusion isotonicity and the relation (7), and the fact that z(m) ∈
{a; η} for each m = 0, 1, . . . , which is obvious because of η − |z(m) − a| = ρ(m) >
5(n − 1)r(m) > 0.

We recall that the initial condition (9) implies the inequality (14), which will
be used in the convergence analysis. From (15) we obtain

r(2) = radZ(2) =
d(1)

|c(1)|2 −
[

d(1)
]2 .

Hence, using (14), (18) and (19), we find

r(2) <
n − 1

ρ(1)
[( 3

5r(1)

)2

−
(n − 1

ρ(1)

)2] <
n − 1

ρ(1)
[( 3

5r(1)

)2

−
( 1

5r(1)

)2](20)

<
25(n− 1)

[

r(1)
]2

8ρ(1)
.

Starting from (20), we find by (14)

(21) r(2) <
25(n − 1)r(1)

8ρ(1)/r(1)
<

5

8
r(1),

which means that the disk Z(2) is contracted compared to Z(1). Using Lemma 2 we
obtain

ρ(2) > η − |z(2) − a| = η −

∣

∣

∣

∣

∣

z(1) − a −
c̄(1)

|c(1)|2 −
[

d(1)
]2

∣

∣

∣

∣

∣

> ρ(1) −
|c̄(1)|

|c(1)|2 −
[

d(1)
]2 ,

that is,

(22) ρ(2) > ρ(1) −
15

8
r(1).

Taking into account (14), (21) and (22), we find

ρ(2) > ρ(1) −
15

8
r(1) > 5(n − 1)r(1) −

15

8
r(1) >

8

5
r(2)
[

5(n − 1) −
15

8

]

,



On the Newton-like method for the inclusion of a polynomial zero 225

and whence, for n ≥ 3,

(23) ρ(2) > 5(n − 1)r(2).

Therefore, we have proved the implications

∣

∣

∣

P (a)

P ′(a)

∣

∣

∣
<

η

3(n − 1)
⇒ ρ(1) > 5(n − 1)r(1) ⇒ ρ(2) > 5(n − 1)r(2).

This chain of implications has the key role in the proof by induction. Besides, since
(23) holds, then it follows 0 /∈ {c(2); d(2)} and the inclusion method (15) is well
defined for m = 2.

Assume that for m ≥ 2 the following is true:

r(m) <
25(n − 1)

[

r(m−1)
]2

8ρ(m−1)
,(24)

r(m) <
5

8
r(m−1),(25)

ρ(m) > 5(n − 1)r(m),(26)

ρ(m) > ρ(m−1) −
8

5
r(m−1).(27)

These inequalities have already been proved for m = 2. We will prove that they are
valid for the index m + 1.

Applying the above consideration for m = 2 and (26), we obtain

(28) r(m+1) <
25(n − 1)

[

r(m)
]2

8ρ(m)
<

5

8
r(m).

In the similar way as for m = 1, it is easy to show that

ρ(m+1) > 5(n − 1)r(m+1) and ρ(m+1) > ρ(m) −
8

5
r(m).

By the successive application of (25) and (27), we find

ρ(m) > ρ(m−1) −
8

5
r(m−1) > ρ(m−2) −

8

5
r(m−2) −

8

5
r(m−1)

> ρ(m−2) −
8

5
r(m−2) −

8

5
·
5

8
r(m−2) = ρ(m−2) −

8

5
r(m−2)

(

1 +
5

8

)

...

> ρ(1) −
8

5
r(1)
(

1 +
5

8
+
(5

8

)2

+ · · ·
)

> ρ(1) −
8

5
·

1

1 −
5

8

r(1) > ρ(1) − 5r(1).

Using (11) and (13) we estimate

ρ(m) > ρ(1) − 5r(1) >
13

16
η − 5 ·

η

16
=

η

2
.
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Substituting this bound in (28) we obtain

r(m+1) <
25(n − 1)

[

r(m)
]2

8ρ(m)
<

25(n− 1)
[

r(m)
]2

8(η/2)
=

25(n− 1)

4η

[

r(m)
]2

,

and the assertion 2◦ is proved. The last relations point to the quadratic convergence
of the Newton-like method (8).

The interval method (15) is well defined in each iterative step since 0 /∈
{

c(m); d(m)
}

(according to Lemma 2). The convergence of the Newton-like method

(8) follows according to (25); indeed, the sequence of radii {r(m)} converges to 0.

Finally, let us note that Z(m) ⊂ A = {a; η} for each m, thus, there is no
possibility that any disk Z(m) includes zeros lying outside the initial disk A (see
Fig. 1). Indeed, since ρ(m) > 5(n − 1)r(m) > r(m), we have

ρ(m) = η − |z(m) − a| > r(m), that is, |z(m) − a| < η − r(m).

Hence, according to (3), it follows Z(m) =
{

z(m); r(m)
}

⊂ {a; η} = A. �

4. NUMERICAL EXAMPLE

We have applied the Newton-like method (8) to the algebraic polynomial

P (z) = z7 + z5 − 10z4 − z3 − z + 10

with the zeros 2, ±1, ±i, −1±2 i. Applying methods for the existence of zeros and
their localization, and the proximity test for detecting zeros, we have found that
the disk A = {0.1 + 0.9 i; 1.5} contains only one zero of P. Inclusion disks obtained
by (8) are given below:

Z(1) = {0.14083 + 1.07444 i; 0.1976},

Z(2) = {0.010327 + 0.974089 i; 0.08369},

Z(3) = {−0.001419 + 1.001066 i; 0.00344},

Z(4) = {−4.88× 10−6 + 0.99999699 i; 1.27× 10−5},

Z(5) = {5.88 × 10−11 + 0.999999999987 i; 1.32× 10−10},

Z(6) = {−1.04× 10−21 + 0.9999999999999999999934 i; 1.46× 10−20}.

All presented disks contain the exact zero ζ = i.
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Serbia

E–mail: ljiljana@masfak.ni.ac.yu

Miodrag S. Petković,
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