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ON THE MATRIX EQUATION

XA − AX = τ (X)

Milica And-elić

We study the matrix equation XA − AX = τ (X) in Mn(K), where τ is an
automorphism of a field K of finite order k. A criterion under which this
equation has a nontrivial solution is given. In case when k = 1 that criterion
boils down to an already known result.

1. INTRODUCTION

The main purpose of this paper is to develop the connection between the
eigenvalues of a class of pseudo-linear transformation over a field K and the eigen-
values of a certain linear transformation. The use of linear transformations enables
us to use Cayley- Hamilton theorem which in pseudo-linear setting does not
hold.

This work was directly inspired by the paper [2] for p = 1. In this case we get
linear matrix equation XA − AX = X . We went one step further by introducing
an automorphism τ of a field K of finite order k, XA − AX = τ(X). Since it
does not remain linear matrix equation anymore, the classical methods can not
be used. By equivalent transformations this equation can be viewed in another
form τ−1(X)τ−1(A) − τ−1(X)τ−1(A) = X. The left hand side of the equation is a
pseudo-linear transformation of Mn(K), T (X) = τ−1(X)τ−1(A)− τ−1(A)τ−1(X).
In fact, in order to find out if the equation has nontrivial solutions we will investigate
whether λ = 1 is the eigenvalue of T or, equivalently, of linear transformation T k.
In case k = 1 we get an already known criterion.
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2. RECAPITULATION

Let K be a field and σ ∈ Aut (K). A skew polynomial ring (also called Ore

extension) K[t;σ] consists of polynomials
n
∑

i=0

ait
i, ai ∈ K which are added in the

usual way but are multiplied according to the following rule

ta = σ(a)t, a ∈ K.

The evaluation f(a) of a polynomial f(t) ∈ K[t;σ] at some element a ∈ K is

the remainder one gets when f(t) =
n
∑

i=0

ait
i is divided on the right by t− a. It is

easy to show by induction that

f(a) =
n
∑

i=0

aiNi(a)

where the maps Ni are defined by induction in the following way. For any a ∈ K

N0(a) = 1 and Ni+1(a) = σ
(

Ni(a)
)

a,

which leads to

Nk(a) = σk−1(a)σk−2(a) · · ·σ(a)a (k ∈ N).

We define f(A) for A ∈Mn(K) similarly:

f(A) =
n
∑

i=0

aiNi(A)

where σ has been extended to Mn(K) in the natural way.

Let V be a vector space over K. A σ−pseudo-linear transformation of V is
an additive map T : V → V such that

T (αv) = σ(α)T (v), α ∈ K.

We will use the abbreviation σ-PLT for a pseudo-linear transformation with respect
to the automorphism σ. A vector v ∈ V \ {0} is an eigenvector of the σ − PLT T
with the corresponding eigenvalue λ ∈ K if and only if

T (v) = λv.

An important feature of σ-PLT is the absence of a Cayley-Hamilton theorem. In
addition to that, unlike the classical linear transformations of a finite dimensional
vector space over a commutative field, a pseudo-linear transformation need not be
algebraic.
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If V is finite-dimensional and e = [e1, . . . , en] is a basis of V , let us write

T (ei) =
n
∑

j=1

aijej, aij ∈ K or, in the matrix notation Te = Ae, where A = [aij ] ∈

Mn(K). The matrix A will be denoted by [T ]e. The equality

[f(T )]e = f([T ]e)

holds for any polynomial f(t) ∈ K[t, σ] as well. If v is an eigenvector of the σ-PLT
T with an eigenvalue λ ∈ K then

σ(ve)[T ]e = λve

where ve denotes coordinates of the vector v with respect to the basis e ([6]).

If T is an algebraic σ-PLT on V and µT ∈ K[t;σ] is its minimal polynomial
than λ ∈ K is an eigenvalue for T if and only if t−λ divides on the right (left) the
polynomial µT in K[t;σ] (Proposition 4.5. [6]).

We will also use the notion of a Wedderburn polynomial. For f ∈ K[t;σ],
let

V (f) := {a ∈ K | f(a) = 0}.

A (monic) polynomial is said to be Wedderburn if f = µV (f) i.e. f is equal to
the minimal polynomial of V (f)-set of its roots ([5]).

3. GENERAL RESULTS

Let K be a field, σ ∈ Aut (K) of order k, i.e. σ 6= idK and k is the least
nonnegative integer such that σk = idK . If T is σ-PLT on a vector space V over
K then T k is a linear transformation of V since it is additive and

T k(αv) = σk(α)T k(v) = αT k(v), α ∈ K.

Therefore, if V is a finite-dimensional vector space, there exist m ∈ N, a0, . . . , am

∈ K, am 6= 0, such that

am(T k)m + · · · + a1T
k + a0I = 0,

which means that σ-PLT T is algebraic. We will denote its minimal polynomial
by µT . This polynomial is invariant in K[t;σ] and it is also the right factor of the
polynomial ϕT k(tk), where ϕT k denotes the characteristic polynomial of T k. What
we want is to find relations between eigenvalues of the linear transformation T k

and σ-PLT T .

Theorem 1. Let T be σ-PLT on a finite dimensional vector space V over a field
K and σ ∈ Aut (K) of order k. An element λ ∈ K is the eigenvalue of T if and
only if Nk(λ) is an eigenvalue of T k.
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Proof. Let v ∈ V \ {0} be such that T (v) = λv. Then

T k(v) = T k−1(λv) = σk−1(λ)T k−1(v)

...

= σk−1(λ) · · ·σ(λ)λv = Nk(λ)v.

The polynomial h(t) = tk −Nk(λ) is a Wedderburn polynomial, since it is
the minimal polynomial of the set

Γ = {σ(c)λc−1 | c ∈ K∗}.

For any c ∈ K∗, we have

Nk(σ(c)λc−1) = σk(c)Nk(λ)c−1 = Nk(λ).

The above shows that h vanishes on Γ. Let f(t) =
m
∑

i=1

ait
i be the monic minimal

polynomial of Γ. Then m = deg f 6 k, and the constant term a0 6= 0. Let

d ∈ K∗. For any e ∈ Γ, we have 0 =
m
∑

i=0

aiσ
i(d)Ni(e)d

−1. Thus, Γ satisfies the

polynomial
m
∑

i=0

aiσ
i(d)ti. By the uniqueness of the minimal polynomial, we must

have σm(d)ai = aiσ
i(d) for every i. Since a0 6= 0, this implies that σm = idK .

Therefore, we have m = k and f(t) = tk −Nk(λ).

We can write tk −Nk(λ) = (t−λk)(t−λk−1) · · · (t−λ1) where λ1, . . . , λk are
σ−conjugated to λ (Theorem 5.1. [5]). This gives us

T k −Nk(λ)idK = (T − λkidK)(T − λk−1idK) · · · (T − λ1idK).

Now it is easy to conclude that if there exists 0 6= v ∈ V such that (T k −
Nk(λ)idK)(v) = 0, then there exist l ∈ {1, . . . , k} and 0 6= u ∈ V such that
(T − λlidK)(u) = 0. Since λl is σ−conjugated to λ, there exists a ∈ K∗ such that
λl = σ(a)λa−1. Then for u0 = a−1u we obtain

T (u0) = T (a−1u) = σ(a−1)T (u) = σ(a−1)σ(a)λa−1u = λu0

i.e. λ is an eigenvalue for T , as desired. �

4. APPLICATIONS

Let K be a field, τ ∈ Aut (K) of order k and A ∈ Mn(K). What we want is
to find all solutions of the matrix equation

(4.1) XA−AX = τ(X).
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Instead of this equation we will consider the equivalent equation

(4.2) σ(X)B −Bσ(X) = X

where σ = τ−1 and B = τ−1(A). This equation always has a solution, for any
given B, namely X = 0. The mapping T : Mn(K) →Mn(K),

T (X) = σ(X)B −Bσ(X)

is σ-PLT. Relative to the basis e = [Eij , 1 6 i, j 6 n] of Mn(K) T has the matrix:

B = [T ]e = E ×B −BT × E

where × denotes Kronecker product of the matrices. The matrix equation (4.2)
has a nontrivial solution if and only if σ-PLT T has the eigenvalue λ = 1. By
Theorem 1 this is equivalent to the fact that linear transformation T k also has the
eigenvalueNk(1) = 1. Since [T k]e = Nk(B), in order to find out if the equation (4.2)
has nontrivial solutions or not we will examine if 1 is a zero of the characteristic
polynomial ϕT k of linear operator T k or not.

We will assume in the majority of cases that k > 2. If k = 1 we obtain the
linear matrix equation XA − AX = X which is a special case of the Sylvester

matrix equation AX+XB = C. Let L : Mn(K) →Mn(K), with L(X) = AX+XB
be the Sylvester operator. It is well known that when K is an algebraically closed
field the linear operator L is singular if and only if A and −B have a common
eigenvalue. For B = E −A we obtain the following result.

Proposition 2. The matrix equation XA − AX = X has a nonzero solution if
and only if A and A− E have a common eigenvalue.

This proposition is equivalent to the fact that the matrix equationXA−AX =
X has nonzero solutions if and only if 1 is an eigenvalue of the matrix E×A−AT×E.
Since the eigenvalues of C × E + E ×D are all of the form λ + µ where λ and µ
are eigenvalues of C and D respectively, 1 is the eigenvalue of E × A− AT × E if
and only if 1 = λ − µ for some eigenvalues λ and µ of A. This means that λ and
λ− 1 are two different eigenvalues of A which is equivalent to the fact that A and
A− E have a common eigenvalue.

Example 1. Let

A =

[

−i+ 1 1
−1 i

]

∈M2(C)

and σ ∈ Aut (C), τ(x) = x̄, the complex conjugation. We are looking for all nonzero
solutions of the equation

(4.3) XA−AX = X̄,

or the equivalent equation

(4.4) X̄Ā− ĀX̄ = X.
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In this case, τ is the automorphism of C of order k = 2. Therefore τ−1 = τ .

First, for B = Ā, we determine the matrix P = E ×B −BT × E,

P =









0 1 1 0
−1 −2i− 1 0 1
−1 0 2i+ 1 1

0 −1 −1 0









,

then the matrix

N2(P ) = P̄P =









−2 −2i− 1 2i+ 1 2
−2i+ 1 3 −2 2i− 1
2i− 1 −2 3 −2i+ 1

2 2i+ 1 −2i− 1 −2









.

The matrix N2(P ) can be calculated using the following formula as well:

N2(P ) = E ×N2(Ā) −AT × Ā− ĀT ×A+N2(Ā
T ) × E.

Next, we calculate the characteristic polynomial ϕN2(P ) and check whether 1 is its
root or not. In this case we have

ϕN2(P )(t) = t2(t− 1)2.

Since ϕN2(P )(1) = 0, we can conclude that the our matrix equation has nonzero
solutions.

In this case, we go one step further. We are going to determine all non zero
solutions of the equation (4.3). Since µN2(P )(t) = t(t− 1),

M2(C) = kerT 2 ⊕ ker(T 2 − idK),

where T : M2(C) → M2(C), T (X) = X̄Ā− ĀX̄.

All solutions of the equation (4.3) belong to the set U = ker(T 2− idK) which
has the basis [C,D], where

C =

[

−1 −1 − 2i
0 1

]

, D =

[

0 1
1 0

]

.

System [D,T (D)] is one basis of U as well, since T (D) 6= 0. So, if X ∈ M2(C)
satisfies (4.4), then X = αD + βT (D) for uniquely determined α, β ∈ C. From
T (X) = X it follows

ᾱT (D) + β̄D = αD + βT (D),

which is valid for any α ∈ C and β = ᾱ. Finally,

X = αD + ᾱT (D) = α

[

0 1
1 0

]

+ ᾱ

[

−2 −1 − 2i
1 + 2i 2

]
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i.e.

X =

[

−2ᾱ α− ᾱ(1 + 2i)
α+ ᾱ(1 + 2i) 2ᾱ

]

, α ∈ C.

So, the set of solutions is

{[

−2ᾱ α− ᾱ(1 + 2i)
α+ ᾱ(1 + 2i) 2ᾱ

]

| α ∈ C

}

.

In general for

A =

[

a b
c d

]

∈M2(C)

the characteristic polynomial of the matrix N2(P ) is

ϕN2(P ) = t2
(

t− (|a− d|2 + 2(b̄c+ bc̄)
)2
.

So, the equation XA−AX = X̄ has a nontrivial solution if and only if

|a− d|2 + 2(b̄c+ bc̄) = 1.

Example 2. Let

A = J(n, λ) =















λ 1 · · · 0 0
0 λ · · · 0 0
...

...
. . .

...
...

0 0 · · · λ 1
0 0 · · · 0 λ















∈Mn(C)

and take τ ∈ Aut (C), τ(x) = x̄ to be the complex conjugation. The equation

XA−AX = X̄,

has only the trivial solution X = 0, since in this case

rank
(

N2(P ) − E
)

= n2.

In the end, we state some basic properties of the solutions of (4.1).

1. If X is a solution then trX = 0.

2. If X is a solution then so is cX for any c ∈ K0, where

K0 = {a ∈ K | τ(a) = a}

i.e. the set of all solutions is one K0 vector subspace of Mn(K).
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3. Let A,X ∈Mn(K) and A1 = SAS−1, X1 = SXS−1, S ∈ Gln(K0). Then

XA−AX = τ(X) ⇔ X1A1 −A1X1 = τ(X1).

Proof. The equation τ(X) = XA−AX is equivalent to

τ(X1) = τ(SXS−1) = Sτ(X)S−1 = S(XA−AX)S−1

= (SXS−1)(SAS−1) − (SAS−1)(SXS−1)

= X1A1 −A1X1. �

Having applied the previous property with A1 = SAS−1 = A where S ∈
Gln(K0) we obtain the following.

4. If X0 is a matrix solution of XA−AX = τ(X) then so is X = SX0S
−1, for any

S ∈ C(A) ∩Gln(K0), where C(A) = {S ∈Mn(K) | SA = AS} is the centralizer of
A. �
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