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OPTIMAL VENTCEL GRAPHS, MINIMAL

COST SPANNING TREES AND ASYMPTOTIC

PROBABILITIES

Tzuu-Shuh Chiang, Yunshyong Chow

For each ε > 0, let {Xε
n} be an irreducible, time-homogeneous Markov chain

with a finite state space S and transition function pε(i, j) = pi,jε
U(i,j)(1 +

o(1)) where 0 ≤ U(i, j) ≤ ∞ is a cost function. (We assume pi,j = 0 iff
U(i, j) = ∞.) It has been shown [2] that independent of the initial distribu-
tion, there are constants h(i) ≥ 0 and βi > 0 such that lim

ε↓0
µε(i)/εh(i) = βi

for any i ∈ S, where µε is the invariant distribution of {Xε
n}. Let S = {i ∈

S : h(i) = 0}, which is called the global minimum set. Various asymptotic
probabilities related to S have been established in [3]. Among others, start-
ing with the uniform or invariant distribution, the expected hitting time EεT
of S is of order ε−δ and the constants δ and h(i) above can be expressed in
terms of a complicated hierarchy of “cycles” related to the cost function U .
In this paper, we shall express these constants in terms of Ventcel graphs
(minimum cost spanning trees) to simplify the concept and computation of
these constants. We also establish some new properties of optimal Ventcel
graphs.

1. INTRODUCTION

Let S be a finite set and U : S × S → [0,∞] be a cost function, where U(i, j)
is interpreted as the cost from the state i to a different state j. Consider a family
of irreducible, time-homogeneous Markov chains {Xε

n} defined on S with transition
probability

(1.1) pε(i, j) = pi,j · ε
U(i,j)(1 + o(1)) for all i 6= j, i, j ∈ S.
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Here we assume ε is a small parameter and pi,j = 0 iff U(i, j) = ∞. Note that U(i, i)
plays no role in (1.1) because

∑

j

pε(i, j) = 1. The purpose of running such Markov

chains is to find the smallest set S ⊆ S such that for small ε, P (Xε
n ∈ S) ≈ 1

as n → ∞ and the order estimates for the expected time of hitting S. The set S
is referred to as the global minimum set of the cost function U. In many physical
models, U(i, j) = (u(j)−u(i))+ if j is a neighbor of i and is ∞ otherwise, where u is a
potential function on S. It turns out that in this case, S = {i ∈ S : u(i) = minS u}
as expected. However, it takes some efforts to determine S for a general cost
function U .

Instead of running a family of Markov chains, one can have a single but
time-inhomogeneous Markov chain. This is called simulated annealing process and
readers are referred to [7, 8] for details.

Various properties related to {Xε
n} have been obtained in [3]. Let µε be

the invariant distribution of {Xε
n}. In this paper we shall be concerned with the

following issues :

(1) For any state i ∈ S, the invariant distribution µε satisfies µε(i) ≈ εh(i) for
ε small.

Hence, S = {i ∈ S : h(i) = 0}. Note that
∑

j∈S

µε(j) = 1.

(2) Starting from µε, EεT ≈ ε−δh for ε small, where T is the hitting time of
S.

(3) Furthermore, EεTi0 ≈ ε−δv where Ti0 is the hitting time of any fixed
i0 ∈ S.

The constants h(i), δh and δv are defined in [2] through a hierarchy of the so called
“cycles”. While conceptually it is easy to comprehend these constants, it is hard to
actually compute them even through computers. The quantity µε(i) in (1) already
appeared in [6,10] by solving linear equations. Related problems of (2) and (3)
have been studied in [4,5].

Our aim of this paper is first to define these constants h(i), δh and δv in
terms of optimal Ventcel graphs [6,10] and then simplify their computation by
using minimum cost spanning trees. Indeed, optimal Ventcel graphs will be viewed
as a kind of minimum cost spanning trees with pre-assigned roots.

One example is the potential case of the spin glass model. In this model,
S = {−1, 1}Dn, where Dn is the 2-dim lattice of size n× n. For each state i ∈ S,
its nearest-neighbor potential energy is defined as

u(i) = −
∑

|x−y|=1

Jx,y · i(x) · i(y),

where the real number Jx,y denotes the interaction strength between two neighbor-
ing sites x, y in Dn. Let N(i) = {j ∈ S : i(x) = j(x) for all sites x ∈ Dn except one
} be the neighborhood of state i. Then the transition probability in (1.1) is given by

pε(i, j) =
1

|N(i)|
εU(i,j), where U(i, j) =

(

u(j)−u(i)
)+

if j ∈ N(i) and ∞ otherwise.

The purpose of running the Markov chains with transition probability pε(i, j) is to
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find the states with the smallest potential energy in the spin-glass model.

Here is an example with non-potential cost U . In the well-known 2-person
prisoner’s dilemma game, each prisoner has to play a strategy from {C,N}. Here
C and N stand for “confess” and “not-confess” respectively. The unique Nash
equilibrium of the game requires each prisoner to play C. However, it is to both
prisoners’ favor if they both play N [9]. It is always interesting to see how one can
overcome such a dilemma. Recently, it was shown possible [1] in some evolutionary
prisoner’s dilemma games with local interaction, imitation and mutation. Instead
of two players, there are N players sitting around a circle in such a model. At
each time period, players first meet with each of their two neighbors once to play
the prisoner’s dilemma game, then imitate their neighbors or themselves whoever
have the highest payoffs and finally, can make mistake independently with a small
positive probability ε to choose the other strategy instead of the rational one. The
dynamical process can be described by the above Markov chain {Xε

n} with the
state space S = {C,N}N and the cost function U(i, j) in (1.1) counts the number
of player x who makes mistake at the final stage by adopting the non-rational
strategy j(x). Since |S| = 2N can be very huge, it will usually take a great effort
to get S by penetrating the hierarchy of cycles. Besides S, the order estimate like
EεT ≈ ε−δh is important in applications. In this model, using Ventcel graphs turns
out to be most efficient to get S, δh and so on.

We now review the concepts of cycles and Ventcel W-graphs. One example
is given at the end of this section to illustrate the process. For a subset W ⊆ S, a
W-graph is a function g from S \W to S with no cycles, i.e., for any i ∈ S \W ,
there exist i0 = i, i1, . . . , im in S \W such that g(ik) = ik+1 for 0 ≤ k < m, but
g(im) ∈W . For a Ventcel W-graph g, the cost of g is defined as follow :

V (g) =
∑

i∈S\W

U(i, g(i)).

A W-graph g is called W-optimal if

(1.2) V (g) = v(W )
def
= min{V (h) : h is a W-graph}.

Let G(k) be the set of all W-graphs with | W |= k. Define

(1.3) vk = min{V (g) : g ∈ G(k)} for k ≥ 1.

A W-graph g is said k-optimal if V (g) = vk and | W |= k. We shall characterize
optimal W-graphs, optimal k-graphs and vk in Sections 2, 3 and 4 respectively. We
next define cycles. For i ∈ S, let

V (i) = min{U(i, j) : j ∈ S and j 6= i}

be the minimum cost for reaching out from i. For any two states i, j ∈ S, we say
that i ≥ j if there exist i0 = i, i1, . . . , im = j such that U(ik, ik+1) = V (ik) for each
k. This simply means there is a path from i to j such that each intermediate step
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has its minimum cost. A state i is said minimal if i ≥ j implies j ≥ i for any other
j ∈ S. Two different states i, j are said equivalent (i ∼ j) if

(i) i is minimal, (ii) i ≥ j and j ≥ i.

We always assume i ∼ i and thus “∼” is an equivalence relation. The equivalent
classes under “∼” will be called cycles. A hierarchy of cycles can be established as
follows. First, let S0 = S,U0 = U and V 0 = V . Having defined Sn−1, Un−1 and
V n−1, let Sn = {cycles of Sn−1}. Hence if Cn ∈ Sn then Cn = {Cn−1

i }i where
Cn−1

i ∈ Sn−1 for each i and {Cn−1
i }i forms a cycle under Un−1. The depth of Cn

is defined as

dn−1(Cn) = max{V n−1(Cn−1
i ) : Cn−1

i ∈ Cn}.

For any two different states Cn = {Cn−1
i } and C̄n = {C̄n−1

j } in Sn, we now define

(1.4) Un(Cn, C̄n) = dn−1(Cn) + min
i,j

{Un−1(Cn−1
i , C̄n−1

j ) − V n−1(Cn−1
i )}

and

V n(Cn) = min{Un(Cn, C̄n) : C̄n ∈ Sn and C̄n 6= Cn}.

This process will terminate first at some N, i.e., | SN+1 |= 1. For each state i ∈ S
we can find a unique sequence of cycles i = C0 ∈ C1 ∈ · · · ∈ Cn−1 ∈ Cn ∈ · · · ∈
CN ∈ CN+1 = SN+1. Such a sequence will be referred to as the family tree of i.
We shall abuse the notation a bit by saying that Ck ∈ Cn if there are Cj ∈ Sj for
k < j < n such that Ck ∈ Ck+1 ∈ · · · ∈ Cn is part of some family tree. Finally, for
a W-graph g, let

(1.5) V (g;Cn) =
∑

i∈Cn\W

U(i, g(i))

be the cost of g restricted to the cycle Cn. If i has the family tree i = C0 ∈ C1 ∈
· · · ∈ Cn ∈ · · · ∈ CN+1 = SN+1, then the global minimum set S, the constants
h(i), δh and δv are characterized in [2] as follows:

(1.6)



















S = {i ∈ S : h(i) = 0} where h(i) =
N
∑

n=0
(dn(Cn+1) − V n(Cn)),

δh = max{V k(Ck) : all cycles Ck ∈ Sk with Ck ∩ S = ∅},

δv = max{V k(Ck) : all cycles Ck ∈ Sk with i0 6∈ Ck},

where i0 ∈ S is fixed.

Note that δv above is in fact independent of the choice of state i0 ∈ S.

The main purpose of this paper is to represent the above constants in terms
of Ventcel W-graphs. The following will be proved in Section 4.

Main Theorem. For any i ∈ S, we have h(i) = v({i}) − v1, δv = v1 − v2 and
δh = vk0−1 − vk0

, where k0 = inf{k ≥ 2 : ∃ an optimal k-graph W with W 6⊆ S}.
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Example. Let S = S0 = {1, 2, 3} with the cost function U = U0 on S × S given
by U(1, 2) = U(3, 1) = 4, U(1, 3) = U(2, 1) = 3, U(2, 3) = 1 and U(3, 2) = 0. Note

that the value of U(i, i) is unimportant, but serves to make
3
∑

j=1

pε(i, j) = 1 in (1.1).

States 2 and 3 form a cycle and state 1 is itself a cycle in S1. Thus S1 =
{{1}, {2, 3}}. A simple computation via (1.4) shows U1({1}, {2, 3}) = U1({2, 3},
{1}) = 3. Naturally, {1} and {2, 3} form a cycle in S2 and the process terminates.

Based on (1.2), one can easily compute that

v({1}) = 3 and the {1}-optimal graph is g(3) = 2 and g(2) = 1,

v({2}) = 3 and the {2}-optimal graph is g(1) = 3 and g(3) = 2.

Similarly, v({2}) = 4 and the {2}-optimal graph is g(1) = 3 and g(3) = 2. Thus,
v1 = v({1}) = v({2}) = 3 by (1.3). From the Main Theorem we have h(1) = h(2) =
0 and h(3) = 1. By (1.6), the global minimum set S = {1, 2}. Obviously, v2 = 0
and the 2-optimal graph is a {1, 2}-graph with g(3) = 2. Since |S| = 3 and |S| = 2,
k0 = 3 in the Main Theorem and thus δv = v1−v2 = 3 and δh = v2−v3 = 0−0 = 0.

2. CONSTRUCTION OF OPTIMAL W-GRAPHS.

In this section, we shall identify the optimal Ventcel graphs for a fixed subset
W ∈ S.

Definition 2.1. Let Ck, C̄k ∈ Sk. For a W-graph h we say h ∈ (Ck → C̄k)
if there exist i ∈ Ck, j ∈ C̄k such that h(i) = j. In the case that C̄k satisfies
Uk(Ck, C̄k) = V k(Ck), we simply write h ∈ (Ck →).

For two cycles Ck and C̄k in Sk, we define the minimal cost on Ck of W-
graphs in (Ck → C̄k) as follows. For k = 1, C1 ∩W = ∅ and any C̄1 6= C1, let

(2.1) VW (C1 → C̄1) =
∑

i∈C1

V (i) + U1(C1, C̄1) − d0(C1).

Note that VW (C1 → C̄1) is undefined if C1 ∩W 6= ∅. For C1 ∩W 6= ∅ we let

(2.2) VW (C1 → C1) =
∑

i∈C1\W

V (i)

and VW (C1 → C1) remains undefined if C1 ∩ W = ∅. We write VW (C1 →)
for VW (C1 → C̄1) in (2.1) if U1(C1, C̄1) = V 1(C1). Suppose we have defined
VW (Ck−1 → C̄k−1) for any Ck−1, C̄k−1 ∈ Sk−1 as in (2.1) and (2.2). Then for any
Ck = {Ck−1

i } 6= C̄k in Sk, let

(2.3) VW (Ck → C̄k) =
∑

i

VW (Ck−1
i →)+Uk(Ck, C̄k)−dk−1(Ck) if Ck∩W = ∅.

Note that VW (Ck → C̄k) is undefined if Ck ∩W 6= ∅. For Ck ∩W 6= ∅ we let

(2.4) VW (Ck → Ck) =
∑

C
k−1

i
∩W=∅

VW (Ck−1
i →) +

∑

C
k−1

i
∩W 6=∅

VW (Ck−1
i → Ck−1

i )
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and VW (Ck → Ck) remains undefined if Ck ∩W = ∅. Similarly, we shall write
VW (Ck →) for VW (Ck → C̄k) if Uk(Ck, C̄k) = V k(Ck) and Ck ∩W = ∅. Then by
definition (2.3),

(2.5) VW (Ck → C̄k)−VW (Ck →) = Uk(Ck, C̄k)−V k(Ck) ≥ 0 for C̄k 6= Ck ∈ Sk.

Theorem 2.2. Let W ⊆ S and Ck, C̄k ∈ Sk be different. Then for any W-graph
h,

V (h;Ck) ≥

{

VW (Ck → Ck) if Ck ∩W 6= ∅,
VW (Ck → C̄k) if Ck ∩W = ∅ and h ∈ (Ck → C̄k).

Proof. We first consider k = 1. Let C1, C̄1 ∈ S1. If C1 ∩W 6= ∅ then by (2.2),

V (h;C1) =
∑

i∈C1\W

U(i, h(i)) ≥
∑

i∈C1\W

V (i) = VW (C1 → C1).

If C1 ∩W = ∅ and h ∈ (C1 → C̄1), then there are i0 ∈ C1 and j ∈ C̄1 such that
h(i0) = j. By definition (1.4) for U1(C1, C̄1) and (2.1), we have

V (h;C1) =
∑

i∈C1

U
(

i, h(i)
)

≥
∑

i∈C1\{i0}

V (i) + U(i0, j)

≥
∑

i∈C1\{i0}

V (i) + U1(C1, C̄1) − d0(C1) + V (i0)

=
∑

i∈C1

V (i) + U1(C1, C̄1) − d0(C1) = VW (C1 → C̄1)

and the equalities hold iff U
(

i, h(i)
)

= V (i) for all i 6= i0 and U
(

i0, h(i0)
)

=
U(C1, C̄1) − d0(C1) + V (i0). Suppose we have proved the theorem up to k. Let
Ck+1 = {Ck

i }. If Ck+1 ∩W 6= ∅ then by (1.5), (2.5) and the induction hypothesis,

V (h;Ck+1) =
∑

Ck
i
∩W 6=∅

V (h;Ck
i ) +

∑

Ck
i
∩W=∅

V (h;Ck
i )

≥
∑

Ck
i
∩W 6=∅

VW (Ck
i → Ck

i ) +
∑

Ck
i
∩W=∅

VW (Ck
i →) = VW (Ck+1 → Ck+1).

If Ck+1∩W = ∅ and h ∈ (Ck+1, C̄k+1), then there exist Ck
i0
∈ Ck+1 and C̄k ∈ C̄k+1

such that h ∈ (Ck
i0

→ C̄k). Using (2.5), (2.3) and the induction hypothesis again,

V (h;Ck+1) =
∑

i6=i0

V (h;Ck
i ) + V (h;Ck

i0
) ≥

∑

i6=i0

VW (Ck
i →) + VW (Ck

i0
→ C̄k)

≥
∑

i6=i0

VW (Ck
i →) + VW (Ck

i0
→) + Uk(Ck

i0
, C̄k) − V k(Ck

i0
)

≥
∑

i

VW (Ck
i →) + Uk+1(Ck+1, C̄k+1) − dk(Ck+1)

= VW (Ck+1 → C̄k+1),
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where (1.4) is used in the last inequality. This completes the proof by induction.

Remark 2.3. Theorem 2.2 actually describes all the possible ways to construct
optimal W-graphs. Indeed, if Ck ∩W = ∅ and h is a W-graph, then it is obvious
that h ∈ (Ck → C̄k) for some other C̄k ∈ Sk and thus h ∈ (Ck−1

i → C̄k−1
j ) for

some Ck−1
i ∈ Ck−1 and C̄k−1

j ∈ C̄k−1. Theorem 2.2 then dictates that Ck−1
i and

C̄k−1
j must satisfy

(2.6) Uk(Ck, C̄k) = Uk−1(Ck−1
i , C̄k−1

j ) + dk−1(Ck) − Uk−1(Ck−1
i )

in order for h to be optimal, which simply means that the minimum in (1.4) is
attained at the pair (Ck−1

i , C̄k−1
j ). For the other Ck−1

r ∈ Ck, Theorem 2.2 forces h

to be in (Ck−1
r →). Different pairs (Ck−1

i , C̄k−1
j ) satisfying (2.6) provide different

W-graphs but they all have the same cost on Ck and thus are optimal. Obviously
this is the only option we have in constructing optimal W-graphs h on Ck. If
Ck∩W 6= ∅ then Theorem 2.2 implies that h ∈ (Ck → Ck) and for each Ck−1

i ∈ Ck,
h ∈ (Ck−1

i →) or h ∈ (Ck−1
i → Ck−1

i ) depending on Ck−1
i ∩W = ∅ or not. Since

obviously CN+1 ∩W 6= ∅, an induction procedure can be initiated to construct all
optimal W-graphs.

3. CONSTRUCTION OF r-OPTIMAL GRAPHS.

In this section we shall construct r-optimal graphs for any 1 ≤ r ≤ |S|. We
first make some notations. Recall that N ≥ 0 is the first number that |SN+1| =
|{CN+1}| = 1. For any r ≥ 1 and Ck ∈ Sk with k ≤ N + 1, let

(3.1) Vr(C
k → Ck) = inf{VW (Ck → Ck) : |W ∩Ck| = r}.

For k ≤ N and Ck 6= C̄k, let

(3.2) V0(C
k → C̄k) = VW (Ck → C̄k) for any W with W ∩Ck = ∅.

Note that the right hand side of (3.2) is independent ofW as long asW∩Ck = ∅. We
use V0(C

k →) for V0(C
k → C̄k) if Uk(Ck, C̄k) = V k(Ck). Finally, for Ck = {Ck−1

i }
we define V0(C

k → Ck) for 1 ≤ k ≤ N + 1 as follows :

(3.3) V0(C
k → Ck) = ΣiV0(C

k−1
i →).

In particular, (3.3) for k = 1 can be written as V0(C
1 → C1) =

∑

i∈C1

V (i).

For any Ck ∈ Sk, let P(Ck) = {all cycles Ci ∈ Ck}. A sequence C0 ∈ C1 ∈
· · · ∈ Ci ∈ · · · ∈ Ck is called a principal sequence of Ck if it has the property that
V i(Ci) = di(Ci+1) for each i ≤ k − 1. We use the notation PS(Ck) to denote such
a sequence. Principal sequences of Ck may not be unique. Finally, let

m1(C
k) = max{V i(Ci) : Ci ∈ P(Ck)\PS(Ck)}.
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Here P(Ck) \ PS(Ck) denote the collection of cycles in Ck except one and any
principal sequence of Ck. It is easy to see that m1(C

k) is independent of the choice
of such a principal sequence. If m1(C

k) is attained at some Ci1 ∈ P(Ck) \PS(Ck),
i.e., m1(C

k) = V i1(Ci1 ), let

m2(C
k) = max{V i(Ci) : Ci ∈ P(Ck) \ PS(Ck) ∪ PS(Ci1 )}.

Similarly, we can definemr(C
k) until P(Ck)\PS(Ck)∪PS(Ci1 )∪· · ·∪PS(Cir−1 ) = ∅.

We now prove the main result of this section.

Theorem 3.1. For any different Ck, C̄k ∈ Sk and r ≥ 1, we have

(3.4) V0(C
k → C̄k) − Vr(C

k → Ck) = Uk(Ck, C̄k) +
r−1
∑

i=1

mi(C
k) for 1 ≤ k ≤ N

and

(3.5) V0(C
k → Ck) − Vr(C

k → Ck) = dk−1(Ck) +
r−1
∑

i=1

mi(C
k) for 1 ≤ k ≤ N + 1.

Proof. We first prove (3.4) by induction on k. Let k = 1 and C1 6= C̄1 ∈ S1. By
(3.2) and (2.1), V0(C

1 → C̄1) =
∑

i∈C1

V (i) + U1(C1, C̄1) − d0(C1). By using (3.1),

(2.2) and the definitions ofmi(C
1), Vr(C

1 → C1) =
∑

i∈C1

V (i)−
r−1
∑

i=1

mi(C
1)−d0(C1).

A simple arithmetic verifies (3.6) for k = 1. Suppose (3.6) holds true up to k− 1 ≤
N − 1. For k ≤ N and any different Ck = {Ck−1

i }, C̄k ∈ Sk, (3.2) and (2.5) imply
that for any W ∩ Ck = ∅,

V0(C
k → C̄k) =

∑

i

VW (Ck−1
i →) + Uk(Ck, C̄k) − dk−1(Ck)

=
∑

i

V0(C
k−1
i →) + Uk(Ck, C̄k) − dk−1(Ck).

For some W fulfilling (3.1) with |W ∩ Ck| = r, (2.4) and the induction hypothesis
imply that

Vr(C
k → Ck) =

∑

Ck
i
∩W=∅

VW (Ck−1
i →) +

∑

Ck
i
∩W 6=∅

VW (Ck−1
i → Ck−1

i )

=
∑

Ck
i
∩W=∅

V0(C
k−1
i →) +

∑

|Ck
i
∩W |=ri

Vri
(Ck−1

i → Ck−1
i ) where

∑

i

ri = r

=
∑

Ck
i
∩W=∅

V0(C
k−1
i →) +

∑

|Ck
i ∩W |=ri

(

V0(C
k−1
i →) − V k−1(Ck−1

i ) −
ri−1
∑

j=1

mj(C
k−1
i )

)

=
∑

i

V0(C
k−1
i →) −

∑

|Ck−1

i
∩W |=ri

(

V k−1(Ck−1
i ) +

ri−1
∑

j=1

mj(C
k−1
i )

)

.
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Taking the difference of the two equations above, (3.4) follows as

Uk(Ck, C̄k) − dk−1(Ck) +
∑

|Ck−1

i
∩W |=ri

(

V k−1(Ck−1
i ) +

ri−1
∑

j=1

mj(C
k−1
i )

)

= Uk(Ck, C̄k) +
r−1
∑

i=1

mi(C
k)

by the definitions of of mi(C
k). The proof of (3.5) is similar and thus omitted.

4. PROOF OF THE MAIN THEOREM

The proof is done in three parts. We first consider δv.

Part (i). δv = v1 − v2.

The proof is almost obvious. Let i0 be a state in S and i0 = C0(i0) ∈
C1(i0) ∈ · · · ∈ CN (i0) ∈ CN+1 be the family tree of i0. It is a principal sequence
of CN+1 because i0 ∈ S. By (1.3), (3.1) and (3.5), v1 − v2 = V1(C

N+1 → CN+1)−
V2(C

N+1 → CN+1) = m1(C
N+1) = max{V k(Ck) : Ck ∈ Sk but Ck 6= Ck(i0)} =

δv in view of its definition in (1.6).

Part (ii). δh = vk0−1 − vk0
, where

k0 = inf{k ≥ 2 : ∃ an optimal k-graph W with W 6⊆ S}.

By (1.3), (3.1) and (3.5) again,

vk0−1 − vk0
= mk0−1(C

N+1)

= max{V k(Ck) : Ck ∈ P(CN+1) \ PS(Ci1 ) \ PS(Ci2 ) \ · · · \ PS(Cik0−1)}.

Since every PS(Cir ) is a part of the family tree of a state in S, we obviously have

{Ck : Ck ∈ P(CN+1) \ PS(Ci1) \ PS(Ci2) \ · · · \ PS(Cik0−1)} ⊇ {Ck : Ck ∩ S = ∅}.

Thus vk0−1−vk0
≥ δh by its definition in (1.6). On the other hand, if vk0−1−vk0

=
mk0−1(C

N+1) > max{V k(Ck) : Ck ∩ S = ∅} then mk0−1 = V k(Ck) for some Ck

with Ck ∩ S 6= ∅. This implies that for any W -optimal graph with |W | = k0, we
must have W ⊆ S which contradicts the definition of k0. The proof of Part (ii) is
completed.

Part (iii). For any i ∈ S, h(i) = v({i}) − v1.

For i ∈ S, let i = C0 ∈ C1(i) ∈ · · · ∈ Ck(i) ∈ · · · ∈ CN (i) ∈ CN+1 be the
family tree of i. Suppose temporarily that the following holds.
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Lemma 4.1. Let W = {i}. Then for 1 ≤ k ≤ N + 1,

(3.6) VW

(

Ck(i) → Ck(i)
)

− V1

(

Ck(i) → Ck(i)
)

=

k
∑

r=1

(

dr−1
(

Cr(i)
)

− V r−1
(

Cr−1(i)
)

)

.

The conclusion follows then from (1.6) and the lemma with k = N + 1 as shown
below :

h(i) =
N+1
∑

r=1
dr−1

(

Cr(i)
)

− V r−1
(

Cr−1(i)
)

= VW

(

CN+1(i) → CN+1(i)
)

− V1

(

CN+1(i) → CN+1(i)
)

= v({i}) − v1.

It remains to verify Lemma 4.1, which is done by induction on k.

Proof of Lemma 4.1. For k = 1, we have from (2.2), (3.5) and (3.3) that

VW

(

C1(i) → C1(i)
)

=
∑

j∈C1(i)\{i}

V (j) and V1

(

C1(i) → C1(i)
)

=
∑

j∈C1(i)

V (j) − d0
(

C1(i)
)

.

By taking the difference, (3.6) for k = 1 is verified. Suppose the lemma is proved
up to k − 1. Let Ck(i) = {Ck−1

j }. By (2.4), the induction hypothesis and (3.5),

(3.7) VW

(

Ck(i) → Ck(i)
)

=
∑

Ck−1

j
6=Ck−1(i)

V0(C
k−1
j →) + VW

(

Ck−1(i) → Ck−1(i)
)

=
∑

j

V0(C
k−1
j →) − V0

(

Ck−1(i) →
)

+ V1

(

Ck−1(i) → Ck−1(i)
)

+
k−1
∑

r=1
dr−1

(

Cr(i)
)

− V r−1
(

Cr−1(i)
)

=
∑

j

V0(C
k−1
j →) − V k−1

(

Ck−1(i)
)

+
k−1
∑

r=1
dr−1

(

Cr(i)
)

− V r−1
(

Cr−1(i)
)

.

But V1

(

Ck(i) → Ck(i)
)

=
∑

j

V0(C
k−1
j →) − dk−1

(

Ck(i)
)

by (3.5) and (3.3). By

subtracting it from (3.7), the proof of (3.6) is completed by induction and thus so
does Part (iii).
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