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NEW CONCEPTS AND RESULTS ON

THE AVERAGE DEGREE OF A GRAPH

Maximiliano Pinto Damas, Lilian Markenzon
Nair Maria Maia de Abreu

The idea of equilibrium of a graph G, initially applied to maximal outerplanar

graphs (mops), was conceived to observe how the vertex degree distribution

affects the average degree of the graph, d(G). In this work, we formally

extend the concept to graphs in general. From d(G), two new parameters are

introduced - the top and the gap of G, sustaining the definitions of tuner set,

balanced and non-balanced graphs. We show properties of the new concepts

when applied to particular families of graphs as trees and unicyclic graphs.

We also establish bounds to the top of non-balanced graphs with integer

average degree and we characterize their tuner sets.

1. INTRODUCTION

The idea of equilibrium of a graphG, initially applied to maximal outerplanar
graphs (mops) in Rodrigues, Abreu and Markenzon [3], was conceived to
observe how the vertex degree distribution affects the average degree of the graph,
d(G). In this work, we extend the concept to graphs in general.

We introduce two new parameters of a graph G – the top and the gap – both
given as a function of the number of vertices and the average degree of G. We
formalize balanced and non-balanced graphs and we show how particular families
behave when the new concepts are applied to them.

The definition of tuner sets, a subset of vertices of G with degree lower than
d(G) that are able to compensate the presence of vertices with degree greater than
d(G) is presented. We show that a graph can have distinct tuner sets. An important
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result is the characterization of tuner sets for graphs that have the average degree as
an integer. For these graphs, the following property holds: the tuner set is unique
and it is composed of all vertices with degree lower than d(G).

Throughout this paper, G is a simple and connected graph, V its vertex set
and E its edge set; |V | = n and |E| = m. In Section 2 basic concepts are reviewed
and we define the top, µ(G), and the gap, h(G), of G. In Section 3, properties con-
cerning the new parameters are shown, particularly of trees and unicyclic graphs.
We determine bounds to µ(G) and, for a given feasible value of µ(G), a graph G is
built. In Section 4, it is proved a characterization of graphs which have the average
degree as an integer number.

2. BASIC NOTIONS

In this section, basic concepts already known are reviewed (see, for instance,
Diestel [1] and Gross and Yellen [2]) and new definitions are presented. Two
new parameters are defined, both related to the average degree of the graph: µ(G),
the top, and h(G), the gap of a graph G.

Let d(vi) be the degree of vertex vi and ∆(G) = max
1≤i≤n

d(vi) be the maximal

degree of G. The average degree of G is

(1) d(G) =

∑
1≤i≤n

d(vi)

n
.

So, 0 ≤ d(G) ≤ n− 1, and it is not necessarily an integer. We define the top
of graph G, µ(G), as dd(G)e.

For all 1 ≤ i ≤ n, 0 ≤ d(vi) ≤ n − 1, there is j, 0 ≤ j ≤ n − 1, such
that d(vi) = j. Let Y ⊆ V (G). The frequency of the degree vi is the cardinality
of the set {v ∈ Y : d(v) = j}, denoted ωY (j). When Y = V (G), we simply use ω(j).

As the sum of the degrees of all vertices is twice the number of edges in G,
we have

(2)
∑

i=1,...,n

i ω(i) = 2m.

The gap of G is h(G) = n(µ(G) − d(G)). If the gap of G is zero, then
d(G) = µ(G) and we say that G is a graph with zero gap. Consequently, if d(G) ∈ N,
h(G) = 0.

For instance, if G is a k-regular graph,
d(G) = k and G is a graph with zero gap.
However, non-regular graphs can also have this
property. Figure 1 displays a non-regular graph
with zero gap.
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Figure 1. A non-regular graph

G with d(G) = µ(G) = 2.
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From (1) and (2), we get

(3) h(G) = µ(G)n− ∑
i=1,...,n

i ω(i).

According to (3), h(G) ∈ N.

Figure 2 displays a graph G with d(G) ≈ 2.571.
Then, µ(G) = 3 and, from (3), we have h(G) = 3.

We call BG = {v ∈ V (G) : d(v) = µ(G)} the ba-
lanced vertex set ; UG = {v ∈ V (G) : d(v) > µ(G)}, the
upper vertex set and LG = {v ∈ V (G) : d(v) < µ(G)}
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Figure 2. A graph G

with d(G) ≈ 2.571

and µ(G) = h(G) = 3

the lower vertex set of G. Consequently, |BG|+ |UG|+ |LG| = n and if the subsets
are different from the empty set, they determine a partition of V (G). We simply
use B, U and L, when it is not necessary to specify which graph we refer to. If
U = ∅, G is said to be a balanced graph. If not, G is a non-balanced graph. For
example, the graph G in Figure 2 is a non-balanced graph because U = {v5}. It
also has B = {v6} and L = {v1, v2, v3, v4, v7} as balanced and lower vertex sets,
respectively.

3. PROPERTIES CONCERNING THE NEW PARAMETERS

In this section we present some properties of graphs concerning the new con-
cepts and parameters presented in Section 2. Their proofs come straightforward
from the definitions.

Basic Properties:

(1) For every graph with zero gap, m =
d(G)

2
n =

µ(G)

2
n. Since d(G) = µ(G), if

n is odd, µ(G) must be even.

(2) Every regular graph is balanced and it is a graph with zero gap. Of course
U = L = ∅.

(3) There are balanced and non-regular graphs for which L 6= ∅. As an example,
the graph G = Cn + {e} has µ(G) = 3 and L is constituted by all vertices of
degree 2, being Cn a cycle with length n.

(4) Let G be a connected graph with µ(G) ≤ n−2. If G has at least one universal
vertex v, d(v) = n− 1, then G is a non-balanced graph. This property gives
enough condition for the existence of non-balanced graphs with zero gap. A
necessary condition is given by Proposition (5).

(5) Every graph G such that µ(G) = n− 1 is a balanced graph.

The new concepts turn out to be particularly interesting when dealing with
well known families such as trees and unicyclic graphs. The following three simple
results are stated here without proof.
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Proposition 1. For every tree T 6= K2, T is not a graph with zero gap. Moreover,
µ(T ) = h(T ) = 2.

Proposition 2. For n > 2, Pn is a non-regular balanced graph.

Proposition 3. Let T be a tree with n > 2. T is a non-balanced graph if and only
if T 6= Pn.

Let G be a unicyclic graph. As d(G) = 2, G is a graph with zero gap.
Proposition 4 gives a more general property for members of this family.

Proposition 4. Let G be an unicyclic graph with n vertices. Then, G is a non-
balanced graph with zero gap if and only if G 6= Cn.

Proof. Suppose that G is an unicyclic non-balanced graph with n vertices. So,
m = n, d(G) = 2 and G is a graph with zero gap. Since G is a non-balanced graph,
U 6= ∅. Then, there is a vertex u in G such that d(u) > 2. Consequently, G 6= Cn.
The reciprocal proof is equivalent.

Proposition 5. Let G with n vertices be a connected non-balanced graph. Then,
2 ≤ µ(G) ≤ n− 2. Moreover, the upper bound is achieved if and only if n is even.

Proof. From Propositions 1 and 3, if G is a tree T 6= Pn, T satisfies all the
hypotheses above and µ(T ) = 2.

Let G be a graph with µ(G) = n − 1. From Basic Property (5), U = ∅ and
G is a balanced graph. Consequently, if G is a non-balanced graph, µ(G) ≤ n− 2.
If n is odd, µ(G) = n− 2 is odd too. This disagrees with Basic Property (1).

We are particularly interested in the behavior of the top of graphs with zero
gap. The next result characterizes non-balanced graphs for which the top attains
the upper bound given by Proposition 5.

Proposition 6. Let n be even. G with n vertices is a connected non-balanced graph

with zero gap and µ(G) = n − 2 if and only if G has
n(n − 2)

2
edges and it has at

least one universal vertex.

Proof. Let n be even and G be a graph with n vertices. G is a graph with zero

gap and µ(G) = n − 2 if and only if d(G) = µ(G) = n − 2. Besides, d(G) =
2m

n
.

So, m =
n(n − 2)

2
.

The following sentences are equivalent:

1. G is a non-balanced graph ⇔

2. UG 6= ∅ ⇔

3. There is a vertex u such that d(u) > n− 2 ⇔

4. d(u) = n− 1.
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Therefore u is an universal vertex.

Now, the following question can be raised: For every q ∈ N, 2 ≤ q ≤ n− 2, is
there a non-balanced graph with zero gap G such that µ(G) = q? For n even, the
answer is affirmative and the proof is presented in the next theorem. For n odd,
the subject will be handled later.

Theorem 1. Let n > 2 be even. For every q ∈ N, 2 ≤ q ≤ n − 2, there is a
connected non-balanced graph with zero gap G of order n such that µ(G) = q.

Proof. The lower bound µ(G) = 2 is achieved by unicyclic graphs, excluding Cn.
The upper bound is proved in Proposition 6.

Let n > 4 and q ∈ N, 2 < q < n − 2. Let us build a non-balanced graph G
with zero gap and µ(G) = q. Let T be a tree with n vertices. In order to obtain
the desired graph, we must add t new edges to T such that

1. T is a spanning tree of G (V (T ) = V (G));

2. µ(G) = d(G) = q;

3. there is v ∈ V (G) such that d(v) > µ(G).

We know that, for a graph with zero gap, µ(G) = d(G) =
2m

n
. So, q =

2m

n
and m =

nq

2
. As t = m− (n− 1), being m the number of edges of G, we have

t =
(q

2
− 1
)
n+ 1.

As n is even and q > 2, t ∈ N and t > 1. G will have n − 1 + t edges; by
construction it is a graph with zero gap.

If ∆(T ) > q, the t edges can be inserted randomly, and G, the resultant
graph, is non-balanced. If ∆(T ) ≤ q, we need to make sure that at least one
vertex v of G attains d(v) > q. Let v be a vertex of T with d(v) = ∆(T ). Adding
q − ∆(T ) + 1 edges {v, w} such that w ∈ V (T ), w 6= v and {v, w} /∈ E(T ) the
degree of v becomes exactly q + 1; this ensures that G is a non-balanced graph.
The remaining t− q + ∆(T ) − 1 edges can be inserted randomly.

Corollary 1. Let G and G′ be non-balanced graphs with zero gap of order n with
m and m′ edges, respectively. If n is even and µ(G′) = µ(G)+1 then m′ = m+

n

2
.

Proof. Let n be even. From Theorem 1, in order to obtain G and G′ such

that µ(G) = q and µ(G′) = q + 1, we must add t =
(

q

2
− 1
)
n + 1 and t′ =

(
q + 1

2
− 1
)
n+1, respectively, to a tree T . So, m′−m = t′−t =

n

2
andm′ = m+

n

2
.

Theorem 1 and Corollary 1 establish the theoretical foundation for the sys-
tematic generation of graphs with zero gap. The proof of Theorem 1 even provides
the outline of an efficient algorithm to perform this task.
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Actually, for a fixed even n, the algorithm presented below produces a whole
sequence of graphsG2, G3, . . . , Gn−2, being µ(Gi) = i and such that Gi−1 ⊂ Gi, 3 ≤
i ≤ n− 2.

Algorithm GEN.

Input: n, even.

Initial Step: Generate a random tree T 6= Pn; compute T + {e}, obtaining G2,
an unicyclic graph. G2 is a graph with zero gap and µ(G2) = 2.

The following steps are repeated n− 4 times, generating G3, G4, . . .Gn−2.

Step 1: Let Gi be the last graph generated (for the first time, i = 2). Find a vertex
v such that d(v) is maximum in Gi. If d(v) ≤ i + 1 then add m′ = i + 2 − d(v)
edges adjacent to vertex v; else m′ is equal to zero.

Step2: Add (n/2 −m′) edges to Gi obtaining Gi+1.

For n even, Algorithm GEN generates n − 3 graphs. From Basic Property (1),
when n is odd, µ(G) must be even. So, for n odd, Theorem 1 holds if and only if
q = 2k, k ∈ N. The proof for this affirmative is similar to the one of Theorem 1.
Algorithm GEN can also be slightly modified to obey the convenient conditions.

Therefore, it will be possible to obtain a sequence of
n − 3

2
graphs G2, G4, . . . , Gn−3

with n vertices, zero gap and µ(Gi) = i.

4. TUNER SETS FOR GRAPHS

In this section, we introduce the concept of tuner set for a graph G, a subset
of vertices of G with degree lower than d(G) that are able to compensate the
presence of vertices with degree greater than d(G). We show that a graph can have
distinct tuner sets. Finally, we characterize tuner sets for graphs with zero gap (see
Theorem 2).

Let L be the lower vertex set and U be the upper vertex set of G such that
U 6= ∅. If there is Ψ ⊆ L for which the following equality holds:

(4) µ(G) =

∑
t∈Ψ

d(t) +
∑

u∈U

d(u)

|Ψ| + |U | ,

we say that G has a tuner set Ψ determined by U or that U determines a tuner set
Ψ in G. If |Ψ| = k, k ≤ |L|. When |L| = k, Ψ = L is unique and it is called the full
tuner set of G determined by U . When k < |L|, Ψ is strictly contained in L and
Ψ is called a proper tuner set of G. In general, proper tuner sets are not unique of
G. Moreover, G can have more than one proper tuner set of the same order k or G
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cannot have any tuner sets. For instance, there are not any tuner sets for regular
graphs.

As an example, the graphG showed in Figure 2 (Section 2) has µ(G) = 3, U =
{v5}, B = {v6} and L = {v1, v2, v3, v4, v7}. From (4), Ψ1 = {v1, v3} is a tuner set of
G determined by U . Observe that Ψ2 = {v6} is ano-
ther tuner set of G determined by U . However, there
are subsets of L which are not tuner sets. In this
example, {v1, v3, v7} is a subset of L but it is not a
tuner set of G. Figure 3 displays a graph which does
not have any tuner set. If we enumerate all subsets
of L we can verify that none of them satisfies the
equality (4).
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Figure 3. G does not have

any tuner set.

The next theorem characterizes all graphs with zero gap as a function of their
respective tuner sets. Observe that a graph with zero gap has an unique tuner set.

Theorem. Let G be a graph and L 6= ∅ its lower vertex set. G has the full tuner
set Ψ = L if and only if h(G) = 0.

Proof. (⇐) Let h(G) = 0. From (3) we have

µ(G) =

∑
i=1,...,n

i ω(i)

n
.

First of all, it is necessary to know if G has a tuner set Ψ. For this, we need
to find a subset of L satisfying the equality (4). From the definitions of the subsets
U , B and L which determine a partition of V (G), we obtain

∑
i=1,...,n

i ω(i) =
∑

u∈U

d(u) +
∑
b∈B

d(b) +
∑
`∈L

d(`).

If B = ∅, from (4), Ψ = L. Suppose B 6= ∅. As B is the balanced set, the
equality below holds.

(5) µ(G) =

∑
b∈B

d(b)

|B| .

From (5), we get

(6)

∑
b∈B

d(b)

|B| =

∑
u∈U

d(u) +
∑

b∈B

d(b) +
∑
`∈L

d(`)

|U | + |B| + |L| .

Since h(G) = 0, from (5) and using some algebraic manipulation on (6), we
find

(7) µ(G) =

∑
u∈U

d(u) +
∑
`∈L

d(`)

|U | + |L| .
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The equality (7) shows that Ψ = L. So, the full tuner set is the only subset
of L that satisfies (4).

(⇒) Let us suppose that G has the full tuner set Ψ = L. From (4),

(8) µ(G) =

∑
u∈U

d(u) +
∑
`∈L

d(`)

|U | + |L| .

If B is an empty set, |B| = 0 and from (8), µ(G) = d(G). So, h(G) = 0.

Now, suppose B 6= ∅. Then, |B| 6= 0. Let us consider h(G) 6= 0. So,

µ(G) − d(G) > 0. As B is the balanced set, µ(G) =

∑
b∈B

d(b)

|B|
and

(9)

∑
b∈B

d(b)

|B| − d(G) > 0.

We know that
∑

u∈U

d(u) +
∑
b∈B

d(b) +
∑
`∈L

d(`) = 2m. From (9), we have

(10)

∑
b∈B

d(b)

|B| −

∑
u∈U

d(u) +
∑

b∈B

d(b) +
∑
`∈L

d(`)

n
> 0.

From (10), we have
∑
b∈B

d(b)

|B| −

∑
u∈U

d(u) +
∑
`∈L

d(`)

n
−

∑
b∈B

d(b)

n
> 0.

After some algebraic manipulations we get

(n− |B|) ∑
b∈B

d(b)

|B| >
∑

u∈U

d(u) +
∑
`∈L

d(`)

and so,

(11)

∑
b∈B

d(b)

|B| >

∑
u∈U

d(u) +
∑
`∈L

d(`)

n− |B| .

Applying (5) to inequality (11) we have

µ(G) >

∑
u∈U

d(u) +
∑
`∈L

d(`)

n− |B| .

But, n− |B| = |U | + |L|. So,

(12) µ(G) >

∑
u∈U

d(u) +
∑
`∈L

d(`)

|U | + |L| .
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Since the inequality (12) is incompatible with the equality (7), our admission
h(G) 6= 0 does not hold. Consequently, for every graph G such that Ψ = L, G is a
graph with zero gap.

Corollary 2. Let G be a graph with zero gap. If G is a non-balanced graph then
the lower vertex set L 6= ∅.
Proof. Let G be a graph with zero gap. Suppose that G is a non-balanced graph.
So, U 6= ∅ and from Theorem 2, Ψ = L. Besides, from (4) we have

µ(G) =

∑
u∈U

d(u) +
∑
t∈Ψ

d(t)

|U | + |Ψ| .

If L = ∅ and as Ψ ⊆ L, the equality above becomes µ(G) =

∑
u∈U

d(u)

|U |
. But it

is impossible, since each vertex u ∈ U has d(u) > µ(u). Then, L 6= ∅.
Finally, it is interesting to observe that Algorithm GEN presented in Section

3 can also be applied to generate graphs with full tuner sets.
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