APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, **1** (2007), 293–298. Available electronically at http://pefmath.etf.bg.ac.yu

Presented at the conference: *Topics in Mathematical Analysis and Graph Theory*, Belgrade, September 1–4, 2006.

SOME RESULTS ON STARLIKE AND CONVEX FUNCTIONS

Nikola Tuneski

Let \mathcal{A} be the class of analytic functions in the unit disk that are normalized with f(0) = f'(0) - 1 = 0. In this paper we give sharp sufficient conditions on the expression

$$\frac{1-\alpha+\alpha z f''(z)/f'(z)}{z f'(z)/f(z)}$$

that implies starlikeness and convexity of function f.

1. INTRODUCTION AND PRELIMINARIES

Let \mathcal{A} denotes the class of functions f(z) that are analytic in the unit disk $\mathcal{U} = \{z : |z| < 1\}$ and normalized by f(0) = f'(0) - 1 = 0.

Further, let $f, g \in \mathcal{A}$. Then we say that f(z) is *subordinate* to g(z), and we write $f(z) \prec g(z)$, if there exists a function $\omega(z)$, analytic in the unit disk \mathcal{U} , such that $\omega(0) = 0$, $|\omega(z)| < 1$ and $f(z) = g(\omega(z))$ for all $z \in \mathcal{U}$. Specially, if g(z) is univalent in \mathcal{U} then $f(z) \prec g(z)$ if and only if f(0) = g(0) and $f(\mathcal{U}) \subseteq g(\mathcal{U})$.

If $-1 \leq B < A \leq 1$ then an important class is defined by

$$S^*[A,B] = \left\{ f \in \mathcal{A} : \frac{zf'(z)}{f(z)} \prec \frac{1+Az}{1+Bz} \right\}.$$

Geometrically, this means that the image of \mathcal{U} by zf'(z)/f(z) is inside the open disk centered on the real axis with diameter end points (1 - A)/(1 - B) and (1 + A)/(1 + B). Special selection of A and B lead us to the following classes:

- $S^*[1, -1] \equiv S^*$ is the class of starlike functions;

²⁰⁰⁰ Mathematics Subject Classification. 30C45.

Key Words and Phrases. Analytic function, subordination, starlikeness, convexity.

- $S^*[1-2\alpha, -1] \equiv S^*(\alpha), 0 \le \alpha < 1$, is the class of starlike functions of order α .

Also, $K^*(\alpha)$, $0 \leq \alpha < 1$, is the class of convex functions of order α , defined by $f(z) \in K(\alpha)$ if and only if $zf'(z) \in S^*(\alpha)$, i.e., Re $\left(1 + \frac{zf''(z)}{f'(z)}\right) > \alpha, z \in \mathcal{U}$.

In this paper we will study the class

$$G_{\lambda,\alpha} = \left\{ f \in \mathcal{A} : \left| \frac{1 - \alpha + \alpha z f''(z) / f'(z)}{z f'(z) / f(z)} - (1 - \alpha) \right| < \lambda, z \in \mathcal{U} \right\},\$$

 $0 < \alpha \leq 1, \lambda > 0$, and give sufficient conditions that embed it into the classes $S^*[A, B]$ and $K(\delta), 0 \leq \delta < 1$. Comparison with previous known results will be done.

In that purpose from the theory of first-order differential subordinations we will make use of the following lemma.

Lema 1 ([1]). Let q(z) be univalent in the unit disk \mathcal{U} , and let $\theta(\omega)$ and $\phi(\omega)$ be analytic in a domain D containing $q(\mathcal{U})$, with $\phi(\omega) \neq 0$ when $\omega \in q(\mathcal{U})$. Set $Q(z) = zq'(z)\phi(q(z)), h(z) = \theta(q(z)) + Q(z)$, and suppose that

i)
$$Q(z) \in S^*$$
; and

ii) Re
$$\frac{zh'(z)}{Q(z)}$$
 = Re $\left\{\frac{\theta'(q(z))}{\phi(q(z))} + \frac{zQ'(z)}{Q(z)}\right\} > 0, z \in \mathcal{U}.$

If p(z) is analytic in \mathcal{U} , with p(0) = q(0), $p(\mathcal{U}) \subseteq D$ and

(1)
$$\theta(p(z)) + zp'(z)\phi(p(z)) \prec \theta(q(z)) + zq'(z)\phi(q(z)) = h(z),$$

then $p(z) \prec q(z)$, and q(z) is the best dominant of (1)

2. MAIN RESULTS AND CONSEQUENCES

In the beginning, using Lemma 1 we will prove the following result.

Theorem 1. Let $f \in A$, $-1 \leq B < A \leq 1$ and $\frac{1+|A|}{3+|A|} \leq \alpha \leq 1$. If

$$\frac{1-\alpha+\alpha z f''(z)/f'(z)}{z f'(z)/f(z)} \prec \alpha + (1-2\alpha)\frac{1+Bz}{1+Az} + \frac{\alpha z (A-B)}{(1+Az)^2} \equiv h(z)$$

then $f \in S^*[A, B]$. This result is sharp.

Proof. We choose $p(z) = \frac{f(z)}{zf'(z)}$, $q(z) = \frac{1+Bz}{1+Az}$, $\theta(\omega) = (1-2\alpha)\omega + \alpha$ and $\phi(\omega) = -\alpha$. Then q(z) is convex, thus univalent, because $1 + zq''(z)/q'(z) = -\alpha$.

(1-Az)/(1+Az); $\theta(\omega)$ and $\phi(\omega)$ are analytic in the domain $D = \mathcal{C}$ which contains $q(\mathcal{U})$ and $\phi(\omega)$ when $\omega \in q(\mathcal{U})$. Further,

$$Q(z) = zq'(z)\phi(q(z)) = \frac{\alpha(A-B)z}{(1+Az)^2}$$

is starlike because $\frac{zQ'(z)}{Q(z)} = \frac{1-Az}{1+Az}$. Further,

$$h(z) = \theta(q(z)) + Q(z) = \alpha + (1 - 2\alpha)\frac{1 + Bz}{1 + Az} + \frac{\alpha z(A - B)}{(1 + Az)^2}$$

and

$$\operatorname{Re}\frac{zh'(z)}{Q(z)} = \operatorname{Re}\left(1 - \frac{1}{\alpha} + \frac{2}{1 + Az}\right) > 1 - \frac{1}{\alpha} + \frac{2}{1 + |A|}$$

 $z \in \mathcal{U}$, which is greater or equal to zero if and only if $\alpha \geq \frac{1+|A|}{3+|A|}$. Therefore from Lemma 1 follows that $p(z) \prec q(z)$, i.e., $f \in S^*[A, B]$.

The result is sharp as the functions ze^{Az} and $z(1+Bz)^{A/B}$ show in the cases B = 0 and $B \neq 0$, respectively.

REMARK 1. According to the definition of subordination, the sharpness of the result of Theorem 1 means that $h(\mathcal{U})$ is the greatest region in the complex plane with the property that if

$$\frac{1-\alpha+\alpha z f''(z)/f'(z)}{z f'(z)/f(z)} \in h(\mathcal{U})$$

for all $z \in \mathcal{U}$ then $f(z) \in S^*[A, B]$.

The following corollary embeds $G_{\lambda,\alpha}$ into $S^*[A, B]$.

Corollary. $G_{\lambda,\alpha} \subseteq S^*[A,B]$ when $\frac{1+|A|}{3+|A|} \le \alpha \le 1$ and $(1-2\alpha)|A| = (1-3)$

$$\lambda = (A - B) \cdot \frac{(1 - 2\alpha)|A| - (1 - 3\alpha)}{(1 + |A|)^2}$$

This result is sharp, i.e., given λ is the greatest so that inclusion holds.

Proof. In order to prove this corollary, due to Theorem 1 it is enough to show that $\lambda = \min\{|h(z) - (1 - \alpha)| : |z| = 1\} \equiv \hat{\lambda}$, where h(z) is defined as in the statement of the theorem and

$$h(z) - (1 - \alpha) = -z(A - B) \cdot \frac{A(1 - 2\alpha)z + 1 - 3\alpha}{(1 + Az)^2}.$$

Further, let

$$\psi(t) \equiv \left| h(e^{i\gamma\pi/2}) - (1-\alpha) \right|^2$$

= $(A-B)^2 \cdot \frac{\left((1-2\alpha)^2 A^2 + 2(1-3\alpha)(1-2\alpha)At + (1-3\alpha)^2\right)}{(1+2At+A^2)^2},$

 $t = \cos(\gamma \pi/2) \in [-1, 1]$. Thus $\widehat{\lambda} = \min\{\sqrt{\psi(t)} : -1 \le t \le 1\}$.

If $\alpha \leq 1/2$ then $1 - 2\alpha \geq 0$ and having in mind that $1 - 3\alpha \leq -\frac{2|A|}{3 + |A|} \leq 0$ we receive that $\psi(t)$ is a monotone function and

$$\widehat{\lambda} = \min\{\sqrt{\psi(-1)}, \sqrt{\psi(1)}\} = \min\{|h(-1) - (1-\alpha)|, |h(1) - (1-\alpha)|\} = \lambda.$$

The last equality holds because $1 - 3\alpha + A(1 - 2\alpha)z \ge 0$ is equivalent to $\alpha \ge \frac{1 + |A|}{3 + |A|} \ge \frac{1 - |A|}{3 - 2|A|}$.

If $\alpha > 1/2$ we have the following analysis. Equation $\psi'_t(t) = 0$ has unique solution

$$t_* = -\frac{A^2(1-\alpha)(1-2\alpha) + (1-3\alpha)(1-4\alpha)}{2A(1-2\alpha)(1-3\alpha)}.$$

It can be verified that $|t_*| > 1$ is equivalent to

$$\varphi(A,\alpha) \equiv A^2(1-\alpha)(1-2\alpha) - 2|A|(1-2\alpha)(1-3\alpha) + (1-3\alpha)(1-4\alpha) > 0.$$

Now, $\varphi(A, \alpha)$ is decreasing function of $|A| \in [0, 1]$ which implies $\varphi(A, \alpha) \ge \varphi(1, \alpha) = 2\alpha^2 > 0$. Thus, $|t_*| > 1$ which implies that $\psi(t)$ is a monotone function on [-1, 1] leading to $\widehat{\lambda} = \min\{\sqrt{\psi(t)} : -1 \le t \le 1\} = \min\{\sqrt{\psi(-1)}, \sqrt{\psi(1)}\} = \min\{|h(-1) - (1 - \alpha)|, |h(1) - (1 - \alpha)|\}$. At the end, the function

$$\eta(A,\alpha) \equiv |h(1) - (1-\alpha)| - |h(-1) - (1-\alpha)| = 2A \cdot \frac{1 - A^2 - 2\alpha(2 - A^2)}{(1+A)^2(1-A)^2}$$

has the opposite sign of the sign of coefficient A. Therefore,

$$\widehat{\lambda} = \left\{ \begin{array}{cc} |h(1) - (1 - \alpha)|, & A \ge 0\\ |h(-1) - (1 - \alpha)|, & A < 0 \end{array} \right\} = \lambda.$$

Sharpness of the result follows from the sharpness of Theorem ?? (see Remark 1) and the fact that obtained λ is the greatest which embeds the disc $|\omega - (1-\alpha)| < \lambda$ in $h(\mathcal{U})$.

The following example exhibits some concrete conclusions that can be obtained from the results of the previous section by specifying the values α , A, B.

Example 1. Let $-1 \leq B < A \leq 1$.

i)
$$G_{\lambda,1/2} \subseteq S^*[A, B]$$
 when $\lambda = \frac{A-B}{2(1+|A|)^2}$.
ii) $G_{\lambda,1} \subseteq S^*[A, B]$ when $\lambda = (A-B) \cdot \frac{2-|A|}{2(1+|A|)^2}$.
iii) $G_{\lambda,1/(2-\gamma)} \subseteq S^*[A, B]$ when $\gamma \ge -\frac{1-|A|}{1+|A|}$ and $\lambda = (A-B) \cdot \frac{1+\gamma-\gamma|A|}{2(1+|A|)^2}$.
iv) $G_{\lambda,\alpha} \subseteq S^*$ when $1/2 \le \alpha \le 1$ and $\lambda = \alpha/2$.

v) $G_{\lambda,\alpha} \subseteq S^*[0,B] \subset S^*(1/(1-B))$ when $1/3 \leq \alpha \leq 1, -1 \leq B < 0$ and $\lambda = B(1-3\alpha)$.

Given λ is the greatest so that inclusions hold.

REMARK 2. The result from Example 1 (i) is the same as in Corollary 2.6 in [5]. Also, for $\alpha = 1/2$ in Example 1 (v) we receive the same result as in Theorem 1 from [2]. Finally, for $\alpha = 1$ and B = -1 in Example 1(v) we receive the same result as in Corollary 2 from [3].

Next theorem studies connection between $G_{\lambda,\alpha}$ and the class of convex functions of some order.

Theorem 2. $G_{\lambda,\alpha} \subseteq K\left(2-\frac{1}{\alpha}\right)$ when $\frac{1}{2} \leq \alpha < 1$ and $\lambda = \frac{(1-\alpha)(3\alpha-1)}{\sqrt{2(5\alpha^2-4\alpha+1)}}$.

Proof. Let $f \in G_{\lambda,\alpha}$ and $B = \frac{\lambda}{(1-3\alpha)}$. Then, by Example 1 (v) we have $f \in S^*[0, B]$, i.e., $\left|\frac{f(z)}{zf'(z)} - 1\right| < B, z \in \mathcal{U}$. Further,

$$1 + \frac{zf''(z)}{f'(z)} - \left(2 - \frac{1}{\alpha}\right) = \frac{zf'(z)}{\alpha f(z)} \cdot \frac{1 - \alpha + \alpha zf''(z)/f'(z)}{zf'(z)/f(z)}.$$

and for all $z \in \mathcal{U}$ we obtain

$$\left| \arg \left(1 + \frac{zf''(z)}{f'(z)} - 2 + \frac{1}{\alpha} \right) \right| \le \left| \arg \frac{zf'(z)}{f(z)} \right| + \left| \arg \frac{1 - \alpha + \alpha zf''(z)/f'(z)}{zf'(z)/f(z)} \right|$$
$$\le \arcsin |B| + \arcsin \frac{\lambda}{1 - \alpha}$$
$$= \arcsin \left(\frac{\lambda}{1 - \alpha} \cdot \sqrt{1 - B^2} + |B| \cdot \sqrt{1 - \frac{\lambda^2}{(1 - \alpha)^2}} \right)$$
$$= \arcsin 1 = \frac{\pi}{2},$$

i.e., $f \in K\left(2-\frac{1}{\alpha}\right)$.

EXAMPLE 2. For $\alpha = 1/2$ and $\alpha = 1/(2 - \gamma)$ in the previous theorem we receive

i) $G_{\lambda,1/2} \subseteq K$ when $\lambda = \sqrt{2}/4$.

ii)
$$G_{\lambda,1/(2-\gamma)} \subseteq K(\gamma)$$
 when $0 \le \gamma < 1$ and $\lambda = \frac{1-\gamma^2}{(2-\gamma)\sqrt{2(1+\gamma^2)}}$

REMARK 3. By putting $\alpha = \frac{1}{2-\gamma}$, $0 \le \gamma < 1$, we receive the result from Theorem 2 in [4].

Acknowledgement. The work on this paper was supported by the Ministry of Education and Science of the Republic of Macedonia (MESRM) (Project No.17-1383/1).

REFERENCES

- S. S. MILLER, P. T. MOCANU: On some classes of first-order differential subordinations. Michigan Math. J., 32 (1985), 185–195.
- M. OBRADOVIĆ, N. TUNESKI: On the starlike criteria defined by Silverman. Zeszyty Nauk. Politech. Rzeszowskiej Mat. 24 (181) (2000), 59–64.
- N. TUNESKI: On certain sufficient conditions for starlikeness. Internat. J. Math. & Math. Sci., (23) 8 (2000), 521–527.
- V. SINGH, N. TUNESKI: On a Criteria for Starlikeness and Convexity of Analytic Functions. Acta Mathematica Scientia, 24 (B4) (2004), 597–602.
- N. TUNESKI: On the Quotient of the Representations of Convexity and Starlikeness. Math. Nach., 248-249 (2003), 200-203.

Faculty of Mechanical Engineering, Karpoš II b.b., 1000 Skopje, Republic of Macedonia E-mail: nikolat@mf.edu.mk (Received October 25, 2006)