Applicable Analysis and Discrete Mathematics, 1 (2007), 293-298.

Available electronically at http://pefmath.etf.bg.ac.yu
Presented at the conference: Topics in Mathematical Analysis and Graph Theory,
Belgrade, September 1-4, 2006.

SOME RESULTS ON STARLIKE AND CONVEX FUNCTIONS

Nikola Tuneski

Let \mathcal{A} be the class of analytic functions in the unit disk that are normalized with $f(0)=f^{\prime}(0)-1=0$. In this paper we give sharp sufficient conditions on the expression

$$
\frac{1-\alpha+\alpha z f^{\prime \prime}(z) / f^{\prime}(z)}{z f^{\prime}(z) / f(z)}
$$

that implies starlikeness and convexity of function f.

1. INTRODUCTION AND PRELIMINARIES

Let \mathcal{A} denotes the class of functions $f(z)$ that are analytic in the unit disk $\mathcal{U}=\{z:|z|<1\}$ and normalized by $f(0)=f^{\prime}(0)-1=0$.

Further, let $f, g \in \mathcal{A}$. Then we say that $f(z)$ is subordinate to $g(z)$, and we write $f(z) \prec g(z)$, if there exists a function $\omega(z)$, analytic in the unit disk \mathcal{U}, such that $\omega(0)=0,|\omega(z)|<1$ and $f(z)=g(\omega(z))$ for all $z \in \mathcal{U}$. Specially, if $g(z)$ is univalent in \mathcal{U} then $f(z) \prec g(z)$ if and only if $f(0)=g(0)$ and $f(\mathcal{U}) \subseteq g(\mathcal{U})$.

If $-1 \leq B<A \leq 1$ then an important class is defined by

$$
S^{*}[A, B]=\left\{f \in \mathcal{A}: \frac{z f^{\prime}(z)}{f(z)} \prec \frac{1+A z}{1+B z}\right\} .
$$

Geometrically, this means that the image of \mathcal{U} by $z f^{\prime}(z) / f(z)$ is inside the open disk centered on the real axis with diameter end points $(1-A) /(1-B)$ and $(1+$ $A) /(1+B)$. Special selection of A and B lead us to the following classes:

- $S^{*}[1,-1] \equiv S^{*}$ is the class of starlike functions;

[^0]- $S^{*}[1-2 \alpha,-1] \equiv S^{*}(\alpha), 0 \leq \alpha<1$, is the class of starlike functions of order α.

Also, $K^{*}(\alpha), 0 \leq \alpha<1$, is the class of convex functions of order α, defined by $f(z) \in K(\alpha)$ if and only if $z f^{\prime}(z) \in S^{*}(\alpha)$, i.e., $\operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>\alpha, z \in \mathcal{U}$.

In this paper we will study the class

$$
G_{\lambda, \alpha}=\left\{f \in \mathcal{A}:\left|\frac{1-\alpha+\alpha z f^{\prime \prime}(z) / f^{\prime}(z)}{z f^{\prime}(z) / f(z)}-(1-\alpha)\right|<\lambda, z \in \mathcal{U}\right\}
$$

$0<\alpha \leq 1, \lambda>0$, and give sufficient conditions that embed it into the classes $S^{*}[A, B]$ and $K(\delta), 0 \leq \delta<1$. Comparison with previous known results will be done.

In that purpose from the theory of first-order differential subordinations we will make use of the following lemma.

Lema 1 ([1]). Let $q(z)$ be univalent in the unit disk \mathcal{U}, and let $\theta(\omega)$ and $\phi(\omega)$ be analytic in a domain D containing $q(\mathcal{U})$, with $\phi(\omega) \neq 0$ when $\omega \in q(\mathcal{U})$. Set $Q(z)=z q^{\prime}(z) \phi(q(z)), h(z)=\theta(q(z))+Q(z)$, and suppose that
i) $Q(z) \in S^{*}$; and
ii) $\operatorname{Re} \frac{z h^{\prime}(z)}{Q(z)}=\operatorname{Re}\left\{\frac{\theta^{\prime}(q(z))}{\phi(q(z))}+\frac{z Q^{\prime}(z)}{Q(z)}\right\}>0, z \in \mathcal{U}$.

If $p(z)$ is analytic in \mathcal{U}, with $p(0)=q(0), p(\mathcal{U}) \subseteq D$ and

$$
\begin{equation*}
\theta(p(z))+z p^{\prime}(z) \phi(p(z)) \prec \theta(q(z))+z q^{\prime}(z) \phi(q(z))=h(z) \tag{1}
\end{equation*}
$$

then $p(z) \prec q(z)$, and $q(z)$ is the best dominant of (1)

2. MAIN RESULTS AND CONSEQUENCES

In the beginning, using Lemma 1 we will prove the following result.
Theorem 1. Let $f \in \mathcal{A},-1 \leq B<A \leq 1$ and $\frac{1+|A|}{3+|A|} \leq \alpha \leq 1$. If

$$
\frac{1-\alpha+\alpha z f^{\prime \prime}(z) / f^{\prime}(z)}{z f^{\prime}(z) / f(z)} \prec \alpha+(1-2 \alpha) \frac{1+B z}{1+A z}+\frac{\alpha z(A-B)}{(1+A z)^{2}} \equiv h(z)
$$

then $f \in S^{*}[A, B]$. This result is sharp.
Proof. We choose $p(z)=\frac{f(z)}{z f^{\prime}(z)}, q(z)=\frac{1+B z}{1+A z}, \theta(\omega)=(1-2 \alpha) \omega+\alpha$ and $\phi(\omega)=-\alpha$. Then $q(z)$ is convex, thus univalent, because $1+z q^{\prime \prime}(z) / q^{\prime}(z)=$
$(1-A z) /(1+A z) ; \theta(\omega)$ and $\phi(\omega)$ are analytic in the domain $D=\mathcal{C}$ which contains $q(\mathcal{U})$ and $\phi(\omega)$ when $\omega \in q(\mathcal{U})$. Further,

$$
Q(z)=z q^{\prime}(z) \phi(q(z))=\frac{\alpha(A-B) z}{(1+A z)^{2}}
$$

is starlike because $\frac{z Q^{\prime}(z)}{Q(z)}=\frac{1-A z}{1+A z}$. Further,

$$
h(z)=\theta(q(z))+Q(z)=\alpha+(1-2 \alpha) \frac{1+B z}{1+A z}+\frac{\alpha z(A-B)}{(1+A z)^{2}}
$$

and

$$
\operatorname{Re} \frac{z h^{\prime}(z)}{Q(z)}=\operatorname{Re}\left(1-\frac{1}{\alpha}+\frac{2}{1+A z}\right)>1-\frac{1}{\alpha}+\frac{2}{1+|A|}
$$

$z \in \mathcal{U}$, which is greater or equal to zero if and only if $\alpha \geq \frac{1+|A|}{3+|A|}$. Therefore from Lemma 1 follows that $p(z) \prec q(z)$, i.e., $f \in S^{*}[A, B]$.

The result is sharp as the functions $z e^{A z}$ and $z(1+B z)^{A / B}$ show in the cases $B=0$ and $B \neq 0$, respectively.

Remark 1. According to the definition of subordination, the sharpness of the result of Theorem 1 means that $h(\mathcal{U})$ is the greatest region in the complex plane with the property that if

$$
\frac{1-\alpha+\alpha z f^{\prime \prime}(z) / f^{\prime}(z)}{z f^{\prime}(z) / f(z)} \in h(\mathcal{U})
$$

for all $z \in \mathcal{U}$ then $f(z) \in S^{*}[A, B]$.
The following corollary embeds $G_{\lambda, \alpha}$ into $S^{*}[A, B]$.
Corollary. $G_{\lambda, \alpha} \subseteq S^{*}[A, B]$ when $\frac{1+|A|}{3+|A|} \leq \alpha \leq 1$ and

$$
\lambda=(A-B) \cdot \frac{(1-2 \alpha)|A|-(1-3 \alpha)}{(1+|A|)^{2}}
$$

This result is sharp, i.e., given λ is the greatest so that inclusion holds.
Proof. In order to prove this corollary, due to Theorem 1 it is enough to show that $\lambda=\min \{|h(z)-(1-\alpha)|:|z|=1\} \equiv \widehat{\lambda}$, where $h(z)$ is defined as in the statement of the theorem and

$$
h(z)-(1-\alpha)=-z(A-B) \cdot \frac{A(1-2 \alpha) z+1-3 \alpha}{(1+A z)^{2}}
$$

Further, let

$$
\begin{aligned}
\psi(t) & \equiv\left|h\left(e^{i \gamma \pi / 2}\right)-(1-\alpha)\right|^{2} \\
& =(A-B)^{2} \cdot \frac{\left((1-2 \alpha)^{2} A^{2}+2(1-3 \alpha)(1-2 \alpha) A t+(1-3 \alpha)^{2}\right)}{\left(1+2 A t+A^{2}\right)^{2}}
\end{aligned}
$$

$t=\cos (\gamma \pi / 2) \in[-1,1]$. Thus $\hat{\lambda}=\min \{\sqrt{\psi(t)}:-1 \leq t \leq 1\}$.
If $\alpha \leq 1 / 2$ then $1-2 \alpha \geq 0$ and having in mind that $1-3 \alpha \leq-\frac{2|A|}{3+|A|} \leq 0$ we receive that $\psi(t)$ is a monotone function and

$$
\widehat{\lambda}=\min \{\sqrt{\psi(-1)}, \sqrt{\psi(1)}\}=\min \{|h(-1)-(1-\alpha)|,|h(1)-(1-\alpha)|\}=\lambda .
$$

The last equality holds because $1-3 \alpha+A(1-2 \alpha) z \geq 0$ is equivalent to $\alpha \geq$ $\frac{1+|A|}{3+|A|} \geq \frac{1-|A|}{3-2|A|}$.

If $\alpha>1 / 2$ we have the following analysis. Equation $\psi_{t}^{\prime}(t)=0$ has unique solution

$$
t_{*}=-\frac{A^{2}(1-\alpha)(1-2 \alpha)+(1-3 \alpha)(1-4 \alpha)}{2 A(1-2 \alpha)(1-3 \alpha)}
$$

It can be verified that $\left|t_{*}\right|>1$ is equivalent to

$$
\varphi(A, \alpha) \equiv A^{2}(1-\alpha)(1-2 \alpha)-2|A|(1-2 \alpha)(1-3 \alpha)+(1-3 \alpha)(1-4 \alpha)>0
$$

Now, $\varphi(A, \alpha)$ is decreasing function of $|A| \in[0,1]$ which implies $\varphi(A, \alpha) \geq \varphi(1, \alpha)=$ $2 \alpha^{2}>0$. Thus, $\left|t_{*}\right|>1$ which implies that $\psi(t)$ is a monotone function on $[-1,1]$ leading to $\widehat{\lambda}=\min \{\sqrt{\psi(t)}:-1 \leq t \leq 1\}=\min \{\sqrt{\psi(-1)}, \sqrt{\psi(1)}\}=\min \{\mid h(-1)-$ $(1-\alpha)|,|h(1)-(1-\alpha)|\}$. At the end, the function

$$
\eta(A, \alpha) \equiv|h(1)-(1-\alpha)|-|h(-1)-(1-\alpha)|=2 A \cdot \frac{1-A^{2}-2 \alpha\left(2-A^{2}\right)}{(1+A)^{2}(1-A)^{2}}
$$

has the opposite sign of the sign of coefficient A. Therefore,

$$
\widehat{\lambda}=\left\{\begin{array}{cc}
|h(1)-(1-\alpha)|, & A \geq 0 \\
|h(-1)-(1-\alpha)|, & A<0
\end{array}\right\}=\lambda
$$

Sharpness of the result follows from the sharpness of Theorem ?? (see Remark 1) and the fact that obtained λ is the greatest which embeds the disc $|\omega-(1-\alpha)|<\lambda$ in $h(\mathcal{U})$.

The following example exhibits some concrete conclusions that can be obtained from the results of the previous section by specifying the values α, A, B.

Example 1. Let $-1 \leq B<A \leq 1$.
i) $G_{\lambda, 1 / 2} \subseteq S^{*}[A, B]$ when $\lambda=\frac{A-B}{2(1+|A|)^{2}}$.
ii) $G_{\lambda, 1} \subseteq S^{*}[A, B]$ when $\lambda=(A-B) \cdot \frac{2-|A|}{2(1+|A|)^{2}}$.
iii) $G_{\lambda, 1 /(2-\gamma)} \subseteq S^{*}[A, B]$ when $\gamma \geq-\frac{1-|A|}{1+|A|}$ and $\lambda=(A-B) \cdot \frac{1+\gamma-\gamma|A|}{2(1+|A|)^{2}}$.
iv) $G_{\lambda, \alpha} \subseteq S^{*}$ when $1 / 2 \leq \alpha \leq 1$ and $\lambda=\alpha / 2$.
v) $G_{\lambda, \alpha} \subseteq S^{*}[0, B] \subset S^{*}(1 /(1-B))$ when $1 / 3 \leq \alpha \leq 1,-1 \leq B<0$ and $\lambda=B(1-3 \alpha)$.

Given λ is the greatest so that inclusions hold.
Remark 2. The result from Example 1 (i) is the same as in Corollary 2.6 in [5]. Also, for $\alpha=1 / 2$ in Example 1 (v) we receive the same result as in Theorem 1 from [2]. Finally, for $\alpha=1$ and $B=-1$ in Example 1(v) we receive the same result as in Corollary 2 from [3].

Next theorem studies connection between $G_{\lambda, \alpha}$ and the class of convex functions of some order.
Theorem 2. $G_{\lambda, \alpha} \subseteq K\left(2-\frac{1}{\alpha}\right)$ when $\frac{1}{2} \leq \alpha<1$ and $\lambda=\frac{(1-\alpha)(3 \alpha-1)}{\sqrt{2\left(5 \alpha^{2}-4 \alpha+1\right)}}$.
Proof. Let $f \in G_{\lambda, \alpha}$ and $B=\frac{\lambda}{(1-3 \alpha)}$. Then, by Example 1 (v) we have $f \in$ $S^{*}[0, B]$, i.e., $\left|\frac{f(z)}{z f^{\prime}(z)}-1\right|<B, z \in \mathcal{U}$. Further,

$$
1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\left(2-\frac{1}{\alpha}\right)=\frac{z f^{\prime}(z)}{\alpha f(z)} \cdot \frac{1-\alpha+\alpha z f^{\prime \prime}(z) / f^{\prime}(z)}{z f^{\prime}(z) / f(z)}
$$

and for all $z \in \mathcal{U}$ we obtain

$$
\begin{aligned}
\left|\arg \left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-2+\frac{1}{\alpha}\right)\right| & \leq\left|\arg \frac{z f^{\prime}(z)}{f(z)}\right|+\left|\arg \frac{1-\alpha+\alpha z f^{\prime \prime}(z) / f^{\prime}(z)}{z f^{\prime}(z) / f(z)}\right| \\
& \leq \arcsin |B|+\arcsin \frac{\lambda}{1-\alpha} \\
& =\arcsin \left(\frac{\lambda}{1-\alpha} \cdot \sqrt{1-B^{2}}+|B| \cdot \sqrt{1-\frac{\lambda^{2}}{(1-\alpha)^{2}}}\right) \\
& =\arcsin 1=\frac{\pi}{2}
\end{aligned}
$$

i.e., $f \in K\left(2-\frac{1}{\alpha}\right)$.

Example 2. For $\alpha=1 / 2$ and $\alpha=1 /(2-\gamma)$ in the previous theorem we receive
i) $G_{\lambda, 1 / 2} \subseteq K$ when $\lambda=\sqrt{2} / 4$.
ii) $G_{\lambda, 1 /(2-\gamma)} \subseteq K(\gamma)$ when $0 \leq \gamma<1$ and $\lambda=\frac{1-\gamma^{2}}{(2-\gamma) \sqrt{2\left(1+\gamma^{2}\right)}}$.

Remark 3. By putting $\alpha=\frac{1}{2-\gamma}, 0 \leq \gamma<1$, we receive the result from Theorem 2 in [4].

Acknowledgement. The work on this paper was supported by the Ministry of Education and Science of the Republic of Macedonia (MESRM) (Project No.171383/1).

REFERENCES

1. S. S. Miller, P. T. Mocanu: On some classes of first-order differential subordinations. Michigan Math. J., 32 (1985), 185-195.
2. M. Obradović, N. Tuneski: On the starlike criteria defined by Silverman. Zeszyty Nauk. Politech. Rzeszowskiej Mat. 24 (181) (2000), 59-64.
3. N. Tuneski: On certain sufficient conditions for starlikeness. Internat. J. Math. \& Math. Sci., (23) 8 (2000), 521-527.
4. V. Singh, N. Tuneski: On a Criteria for Starlikeness and Convexity of Analytic Functions. Acta Mathematica Scientia, 24 (B4) (2004), 597-602.
5. N. Tuneski: On the Quotient of the Representations of Convexity and Starlikeness. Math. Nach., 248-249 (2003), 200-203.

Faculty of Mechanical Engineering,
(Received October 25, 2006)
Karpoš II b.b.,
1000 Skopje,
Republic of Macedonia
E-mail: nikolat@mf.edu.mk

[^0]: 2000 Mathematics Subject Classification. 30C45.
 Key Words and Phrases. Analytic function, subordination, starlikeness, convexity.

