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POTENTIAL THEORY FOR BOUNDARY

VALUE PROBLEMS ON FINITE NETWORKS

E. Bendito, A. Carmona, A. M. Encinas, J. M. Gesto

We aim here at analyzing self-adjoint boundary value problems on finite
networks associated with positive semi-definite Schrödinger operators. In
addition, we study the existence and uniqueness of solutions and its varia-
tional formulation. Moreover, we will tackle a well-known problem in the
framework of Potential Theory, the so-called condenser principle. Then, we
generalize of the concept of effective resistance between two vertices of the
network and we characterize the Green function of some BVP in terms of
effective resistances.

1. INTRODUCTION

In this paper we analyze self-adjoint boundary value problems on finite net-
works associated with positive semi-definite Schrödinger operators. Among oth-
ers, we treat general mixed boundary value problems that include the well-known
Dirichlet and Neumann problems and also the Poisson equation. In the last
years, these problems have deserved the attention of many researchers, see for in-
stance [1, 3, 4, 5]. The first of that papers is concerned with the general analysis of
self-adjoint boundary value problems associated with non-negative perturbations of
the combinatorial Laplacian and its associated Green functions from a Potential
Theory point of view. The two last ones are mainly concerned with the inverse
problem of identifying the conductivity function of the network, in terms of the
boundary data.

A Schrödinger operator on a finite network is a linear operator of the form
Lq = L + q, where L is the combinatorial Laplacian of the network and q is a
function on the vertex set. That function is usually known as ground-state since it
represent that each vertex of the network is connected with a conductor medium
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with null potential. So, a Schrödinger operator can be seen as a perturbation
of the combinatorial Laplacian. It is well-known that the energy associated with
this operator is a Dirichlet form if and only if the ground state is non-negative,
[7]. Some of the authors obtained in [3] a generalization of this result, when the
ground state takes negative values, which was applied to the study of Dirichlet

problems and Poisson equations. Here we extend the above results to the energy
associated with general self-adjoint BVP. In particular, we show that any BVP has
a unique solution provided that its associated energy is positive definite and we
characterize when this happens in terms of the ground state. Moreover, we tackle
the variational treatment of the self-adjoint BVP and we obtain the general version
of the celebrated Dirichlet Principle.

In addition, we are concerned with the Condenser Principle, a classic topic
in the framework of the Potential Theory associated with BVP. We extend the
situation treated in [2], where only the case in which the ground state is null and
a part of the boundary is insulated was considered. For that, we first tackle the
natural extension, namely when the ground state is associated with a weight; which
allows us to define the effective resistance with respect to this weight. As byproducts
we obtain the Generalized Foster’s Theorem that relates the total amount of the
ratios between the conductances of the network and the effective conductances, see
[9] for its usual formulation, and the expression of the Green function for the
problem in which a single vertex is grounded in terms of the effective resistances.
In its classical statement this expression is known as the inverse resistive problem
and it has been considered for several author. The problem is the following: Let
(c(x, y))x,y∈V denote the edge conductances of an electrical network, so that there is
a resistor of rxy = 1/c(x, y) ohms between nodes x and y. This uniquely determines
the matrix (Rxy)x,y∈V of effective resistances, defined such that if a potential of 1 V
is applied across nodes x and y, a current of 1/Rxy A will flow. Matrix (c(x, y))x,y∈V

is called the resistive inverse of (Rxy)x,y∈V . Coppersmith et al. [6] gave a simple
but obscure four-step algorithm for computing the resistive inverse. After Ponzio

gave a self-contained combinatorial explanation of this algorithm, [8]. In this work
we prove an analogous result when more general cases are considered. To do that
we consider the effective resistances, which can be obtained from the solution of
condenser problems. Next we determine the Green function for the problem in
terms of the effective resistances. Therefore, to obtain the inverse resistive it will
suffice to invert the Green function and to complete this inverse so that it be the
Laplacian of the network.

Finally, we study the case in which the energy is positive definite and we
show that the Green function for the corresponding Robin problem can be also
obtained as an inverse resistive of a suitable network.

2. PRELIMINARIES

Along the paper, Γ = (V,E) denotes a simple, finite and connected graph
without loops, with vertex set V and edge set E. Two different vertices, x, y ∈ V ,
are called adjacent, which will be represented by x ∼ y, if {x, y} ∈ E. Given
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x, y ∈ V , if d(x, y) is the length of the shortest path joining x and y it is well-
known that d defines a distance on the graph.

Given a vertex subset F ⊂ V , we denote by F c its complementary in V and
we call boundary and closure of F , the sets δ(F ) = {x ∈ V : d(x, F ) = 1} and
F = F ∪ δ(F ), respectively. Clearly, F = {x ∈ V : d(x, F ) ≤ 1}.

The sets of functions and non-negative functions on V are denoted by C(V )
and C+(V ) respectively. If u ∈ C(V ), its support is given by supp(u) = {x ∈ V :
u(x) 6= 0}. Moreover, if F is a non empty subset of V , its characteristic function
is denoted by χ

F
and we can consider the sets C(F ) = {u ∈ C(V ) : supp(u) ⊂ F}

and C+(F ) = C(F )∩ C+(V ). For any u ∈ C(F ), we denote by
∫

F u(x) dx or simply
by
∫

F
u dx the value

∑
x∈F

u(x). We call weight on F any function σ ∈ C+(F ) such

that supp(σ) = F . The set of weights on F is denoted by C∗(F ).

We call conductance on Γ a function c : V × V → R
+ such that c(x, y) > 0

iff x ∼ y. We call network any pair (Γ, c), where c is a conductance on Γ. In what
follows we consider fixed the network (Γ, c) and we refer to it simply by Γ.

The combinatorial Laplacian or simply the Laplacian of the network Γ is the
linear operator L : C(V ) → C(V ) that assigns to each u ∈ C(V ) the function

(1) L(x) =
∫

V
c(x, y)

(
u(x) − u(y)

)
dy, x ∈ V.

If F is a proper subset of V , for each u ∈ C(F ) we define the normal derivative
of u as the function in C

(
δ(F )

)
given by

(2)

(
∂u

∂n
F

)
(x) =

∫
F
c(x, y)

(
u(x) − u(y)

)
dy, for any x ∈ δ(F ).

The relation between the values of the Laplacian on F and the values of the normal
derivative at δ(F ) is given by the First Green Identity, proved in [1]

∫

F

vL(u) dx =
1

2

∫

F

∫

F

cF (x, y)
(
u(x) − u(y)

)(
v(x) − v(y)

)
dxdy −

∫

δ(F )

v
∂u

∂n
F

dx,

where u, v ∈ C(F ) and cF = c · χ(F×F )\(δ(F )×δ(F )). A direct consequence of the
above identity is the so-called Second Green Identity

∫

F

(
vL(u) − uL(v)

)
dx =

∫

δ(F )

(
u
∂v

∂n
F

− v
∂u

∂n
F

)
dx, for all u, v ∈ C(F ).

When F = V the above identity tell us that the combinatorial Laplacian is a self-
adjoint operator and that

∫
V
L(u) dx = 0 for any u ∈ C(V ). Moreover, since Γ is

connected L(u) = 0 iff u is a constant function.

Given q ∈ C(V ) the Schrödinger operator on Γ with ground state q is the
linear operator Lq : C(V ) → C(V ) that assigns to each u ∈ C(V ) the function
Lq(u) = L(u) + qu.
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3. SELF-ADJOINT BOUNDARY VALUE PROBLEMS

In this section we study different type of boundary value problems associated
with the Schrödinger operator with ground state q. Given a non-empty subset
F ⊂ V , δ(F ) = H1 ∪H2, where H1 ∩H2 = ∅ and functions g ∈ C(F ), g1 ∈ C(H1),

g2 ∈ C(H2), a boundary value problem on F consists on finding u ∈ C(F ) such that

(3) Lq(u) = g on F,
∂u

∂n
F

+ qu = g1 on H1 and u = g2 on H2.

In addition, the associated homogeneous boundary value problem consists on

finding u ∈ C(F ) such that Lq(u) = 0 on F ,
∂u

∂n
F

+ qu = 0 on H1 and u = 0 on H2.

The Green Identity implies that the boundary value problem (3) is self-
adjoint in the sense that

∫
F
vLq(u) dx =

∫
F
uLq(v) dx for all u, v ∈ C(F ∪ H1)

verifying that
∂u

∂n
F

+ qu =
∂v

∂n
F

+ qv = 0 on H1.

Problem (3) is generically known as a mixed Dirichlet-Robin problem and
summarizes the different boundary value problems that appear in the literature
with the following proper names:

(i) Dirichlet problem: ∅ 6= H2 = δ(F ) and hence H1 = ∅.

(ii) Robin problem: ∅ 6= H1 = δ(F ) and q 6= 0 on H1.

(iii) Neumann problem: ∅ 6= H1 = δ(F ) and q = 0 on H1.

(iv) Mixed Dirichlet-Neumann problem: H1, H2 6= ∅ and q = 0 on H1.

(v) Poisson equation on V : F = V .

The study of the boundary value problem (3) when q ∈ C+(V ) has been
extensively treated, see for instance [1, 4, 5], where the existence and uniqueness
of solutions was established, whereas the analysis for Dirichlet Problem and
Poisson equation in the case in which when q can take negative value has been
developed in [3]. In this work we extend the above results for the self-adjoint
boundary value problem (3).

Proposition 3.1. (Fredholm Alternative) Given g ∈ C(F ), g1 ∈ C(H1), g2 ∈
C(H2), the boundary value problem

Lq(u) = g on F,
∂u

∂n
F

+ qu = g1 on H1 and u = g2 on H2

has solution iff for any v ∈ C(F ) solution of the homogeneous problem it is verified

∫

F

gv dx+

∫

H1

g1v dx =

∫

H2

g2
∂v

∂n
F

dx.
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In addition, when the above condition holds, then there exists a unique u ∈ C(F )
solution of the boundary value problem such that

∫
F uv dx = 0, for any v ∈ C(F )

solution of the homogeneous problem.

Proof. First observe that problem (3) is equivalent to the boundary value problem

Lq(u) = g − Lq(g2) on F,
∂u

∂n
F

+ qu = g1 on H1 and u = 0 on H2

in the sense that u is a solution of this problem iff u+ g2 is a solution of (3).

Consider now the linear operator F : C(F ∪ H1) → C(F ∪ H1) defined as

F(u) = Lq(u) on F and F(u) =
∂u

∂n
F

+qu on H1. If V denotes the space of solutions

of the homogeneous problem, then kerF = V . Moreover, from the Second Green

Identity, we get that
∫

F∪H1

vF(u) dx =
∫

F∪H1

uF(v) dx; that is, F is self-adjoint

and hence ImgF = V⊥, using the classical Fredholm Alternative. Consequently
problem (3) has a solution iff the function g̃ ∈ C(F ∪H1) given by g̃ = g − Lq(g2)
on F and g̃ = g1 on H1 verifies that

0 =

∫

F∪H1

g̃v dx =

∫

F

gv dx+

∫

H1

g1v dx−
∫

F

vLq(g2) dx

=

∫

F

gv dx+

∫

H1

g1v dx−
∫

H2

g2
∂v

∂n
F

dx,

for any v ∈ V . Finally, the Fredholm Alternative also establishes that when the
necessary and sufficient condition are attained there exists a unique w ∈ V⊥ such
that F(w) = g̃. Therefore, u = w + g2 is the unique solution of problem (3) such
that for any v ∈ V

∫
F
uv dν =

∫
F∪H1

uv dν =
∫

F∪H1

wv dν = 0,

since v = 0 on H2 and g2 = 0 on F ∪H1.

Fredholm Alternative establishes that the existence of solution of problem
(3) for any data g, g1 and g2 is equivalent to the uniqueness of solution and hence
it is equivalent to the fact that the homogeneous problem has v = 0 as its unique
solution. So, applying the First Green Identity, if v ∈ V

0 =

∫

F

vLq(v) dx =
1

2

∫

F

∫

F

c
F
(x, y)

(
v(x) − v(y)

)2
dxdy +

∫

F

q v2dx

and hence uniqueness is equivalent to be v = 0 the unique solution of the above
equality.

The above equality leads to define the energy associated with Problem (3) as
the symmetric bilinear form EF

q : C(F ) × C(F ) → R given for any u, v ∈ C(F ) by

(4) EF
q (u, v) =

1

2

∫

F

∫

F

c
F
(x, y)

(
u(x) − u(y)

) (
v(x) − v(y)

)
dxdy +

∫

F

quv dx.
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A sufficient condition so that the homogeneous problem associated with (3)
have v = 0 as its unique solution is that the energy be positive definite. Next,
we characterize when this property is achieved. To do this, it will be useful to
introduce for any weight σ on F , the so-called ground state associated with σ as

qσ = − 1

σ
L(σ) on F , qσ = − 1

σ

∂σ

∂n
F

on δ(F ) and qσ = q otherwise. Clearly, if

σ ∈ C∗(F ) then for any a > 0, µ = aσ ∈ C∗(F ) and moreover qµ = qσ.

Observe that qσ = 0 iff σ = aχ
F
, with a > 0 . More generally, if σ ∈ C∗(F ),

then tacking v = χF in the Second Green Identity we obtain that
∫

F σ qσ = 0,

which implies that qσ must take positive and negative values, except when σ = aχ
F
,

a > 0. Moreover, in [3] it was proved that −
∫

F cF
(x, y) dy < qσ(x) for any x ∈ F

and also that when H2 6= ∅, then it is possible to choose σ ∈ C∗(F ) such that
qσ(x) < 0 for any x ∈ F ∪H1.

Proposition 3.2. The Energy EF
q is positive semi-definite iff there exists σ ∈ C∗(F )

such that q ≥ qσ. Moreover, it is not strictly definite iff q = qσ, in which case
EF

q (v, v) = 0 iff v = aσ, a ∈ R.

Proof. Consider the network ΓF = (F ,E, c
F
), where E = {(x, y) ∈ E : c

F
(x, y) >

0} and let L its combinatorial Laplacian. Then, for any u ∈ C(F ), L(u) = L(u)

on F and L(u) =
∂u

∂n
F

on δ(F ). Moreover, EF
q (u, u) =

∫
F uL(u) dx+

∫
F qu

2dx and

hence the results follow by applying Proposition 3.3 and Corollary 3.4 of [3].

The next result establishes the fundamental result about the existence and
uniqueness of solution for Problem (3) and about its variational formulation.

Proposition 3.3. (Dirichlet principle) Suppose that there exists σ ∈ C∗(F ) such
that q ≥ qσ. Given g ∈ C(F ), g1 ∈ C(H1) and g2 ∈ C(H2), consider the convex
set Cg2

= {v ∈ C(F ) : v = g2 on H2} and the quadratic functional Jq : C(F ) → R

determined by the expression

Jq(u)=
1

2

∫

F

∫

F

c
F
(x, y)

(
u(x)−u(y)

)2
dxdy+

∫

F

q u2 dx−2

∫

F

g u dx−2

∫

H1

g1u dx.

Then u ∈ C(F ) is a solution of (3) iff u minimizes Jq on Cg2
. Moreover, if it is

not simultaneously true that H2 = ∅ and q = qσ, then Jq has a unique minimum on
Cg2

. Otherwise, Jq has a minimum iff
∫

F
gσ dx +

∫
δ(F )

g1σ dx = 0. In this case,

there exists a unique minimum u ∈ C(F ) such that
∫

F
uσ dx = 0.

Proof. Observe first that Cg2
= g2 + C(F ∪H1) and that for all v ∈ C(F ∪H1) we

get Jq(v) = EF
q (v, v) − 2

∫
F g v dx − 2

∫
H1

g1 v dx. Keeping in mind, that q ≥ qσ,

we get that Jq is a convex functional on C(F ∪H1) and hence on Cg2
. Moreover,

it is an strictly convex functional iff it is not simultaneously true that H2 = ∅ and
q = qσ and then Jq has a unique minimum on Cg2

.

On the other hand, when H2 = ∅ and q = qσ simultaneously the minima of
Jq are characterized by the Euler identity: EF

q (u, v) =
∫

F g v dx +
∫

H1

g1v dx, for
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all v ∈ C(F ). Since in this case EF
q (u, σ) = 0 for all u ∈ C(F ), necessarily g and g1

must satisfy that
∫

F g σ dx+
∫

H1

g1σ dx = 0. Moreover, if this condition holds and

V denotes the vector subspace generated by σ, then u ∈ V⊥ minimizes Jq on V⊥ iff

u minimizes Jq on C(F ) and the existence of minimum follows since Jq is strictly
convex on V⊥. In any case, the equations described in (3) are the Euler-Lagrange
identities for the corresponding minimization problem.

The following result is an extension of the monotonicity property of the
Schrödinger operator in the case q ≥ qσ that was proved in [3].

Proposition 3.4. Suppose that q ≥ qσ and that it is not simultaneously true that

H2 = ∅ and q = qσ. If u ∈ C(F ) verifies that Lq(u) ≥ 0 on F,
∂u

∂n
F

+ qu ≥ 0 on H1

and u ≥ 0 on H2, then u ∈ C+(F ).

Proof. Consider again the network ΓF = (F ,E, c
F
), where E = {(x, y) ∈ E :

c
F
(x, y) > 0} and let L its combinatorial Laplacian. Then, if u ∈ C(F ) verifies the

hypotheses, L(u) ≥ 0 on F ∪H1 and the conclusion follows by applying Proposition
4.1 in [3].

Suppose that there exists σ ∈ C∗(F ) such that q ≥ qσ and it is not simultane-
ously true that H2 = ∅ and q = qσ. The Green operator associated with Problem (3)
is the linear operator GF

q : C(F ) → C(F ) that assigns to any g ∈ C(F ) the unique

solution of the boundary value problem Lq(u) = g on F ,
∂u

∂n
F

+ qu = 0 on H1 and

u = 0 on H2. Moreover, we define the Green function associated with Problem (3)
as the function GF

q : F ×F → R that assigns to any y ∈ F and any x ∈ F the value

GF
q (x, y) = GF

q (εy)(x), where εy stands for the Dirac function at y. So, for any

g ∈ C(F ) it is verified that GF
q (g)(x) =

∫
F G

F
q (x, y) g(y) dy. Finally, let us remark

that from the above proposition GF
q ≥ 0 and moreover GF

q (x, y) = GF
q (y, x) for any

x, y ∈ F , since the boundary value problem (3) is self-adjoint.

4. THE CONDENSER PRINCIPLE

In this section we obtain a generalization of the well-known Condenser Prin-
ciple. From no on we suppose that there exists σ ∈ C(F ) such that q ≥ qσ. Given
a non-empty subset F ⊂ V , suppose that δ(F ) = H1 ∪ {x} ∪ {y}, where x, y /∈ H1

and x 6= y. The generalized Condenser Problem consists in the following mixed
boundary value problem

(5) Lq(u) = 0 on F,
∂u

∂n
F

+ qu = 0 on H1, u(x) = σ(x) and u(y) = 0.

Proposition 4.1. (Condenser Principle) If u ∈ C(F ) is the unique solution of the
Condenser Problem (5), then 0 ≤ u ≤ σ on V .
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Proof. The positiveness of u follows directly from Proposition 3.4. Moreover, if v =

σ−u then Lq(v) = σ(q−qσ) ≥ 0 on F ,
∂v

∂n
F

+qu = σ(q−qσ) ≥ 0 on H1, v(x) = 0

and v(y) = σ(y). Therefore, applying again Proposition 3.4, v ≥ 0.

Under the hypotheses of the above proposition, F is called condenser with
source and sink x and y, respectively when H1 is connected with a medium of
conductivity q. Moreover, the above boundary value problem is called the condenser
problem corresponding to F .

Next, we introduce a concept that is closely related with the condenser prob-
lem in the case q = qσ, namely the effective resistance between x and y when a
subset of the network, D, is connected with a medium of conductivity qσ. Fixed a
weight σ ∈ C∗(V ) and the set D ⊂ V , consider for any x, y /∈ D with x 6= y, the
unique solution u ∈ C(V ) of the boundary value problem

(6) Lqσ
(u) = 0 on Dc \ {x, y}, ∂u

∂n
Dc

+ qσu = 0 on D, u(x) = σ(x) and u(y) = 0.

The effective conductance between x, y relative to D with respect to σ, is
defined as the value CD

σ (x, y) = EDc

qσ
(u, u). Clearly, CD

σ (x, y) > 0, otherwise,
u = a σ and hence u can not verify u(y) = 0 and u(x) = σ(x) simultaneously. In
addition, it is verified that

(7) CD
σ (x, y) = σ(x)Lqσ

(u)(x) = −σ(y)Lqσ
(u)(y).

The effective resistance between x, y relative to D with respect to σ, is defined
as the value RD

σ (x, y) = CD
σ (x, y)−1. The effective conductance, and hence the

effective resistance, is a symmetric set function, that is, CD
σ (x, y) = CD

σ (y, x) since
EDc

qσ
(u, u) = EDc

qσ
(σ−u, σ−u). So, it is irrelevant which vertex acts as the source and

which one acts as the sink. On the other hand, applying the Dirichlet Principle
we obtain that

CD
σ (x, y) = min

{
EDc

qσ
(v, v) : v(x) = σ(x) and v(y) = 0

}
.

Proposition 4.2. If for any z /∈ D, νD
z ∈ C(V ) denotes the unique solution of the

problem

Lqσ
(νD

z ) = 1 on Dc \ {z}, ∂ν
D
z

∂n
Dc

+ qσν
D
z = 0 on D and νD

z (z) = 0,

then the function

u =
σ(x)

σ(y)νD
y (x) + νD

x (y)σ(x)

(
σ(y)νD

y − σ(y)νD
x + νD

x (y)σ
)

is the unique solution of the boundary value problem (6). In addition,

RD
σ (x, y) =

(∫

Dc

σ dx

)−1
(
νD

y (x)

σ(x)
+
νD

x (y)

σ(y)

)
.
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Proof. If v = σ(y)νD
y − σ(y)νD

x + νD
x (y)σ, then a direct evaluation gives

Lqσ
(v) = 0 on Dc \ {x, y}, ∂v

∂n
Dc

+ qσv = 0 on D and v(y) = 0.

Moreover v(x) = σ(y)νD
y (x) − σ(y)νD

x (x) + νD
x (y)σ(x) = σ(y)νD

y (x) + νD
x (y)σ(x),

which implies that u =
σ(x) v

σ(y)νD
y (x) + νD

x (y)σ(x)
. On the other hand, applying the

Identity (7), we get that

CD
σ (x, y) = σ(x)Lqσ

(u)(x) =
σ(x)2Lqσ

(v)(x)

σ(y)νD
y (x) + νD

x (y)σ(x)
.

Finally, tacking into account that 0 =

∫

Dc

σLqσ
(νD

x ) dx+

∫

D

σ

(
∂νD

x

∂n
Dc

+ qσν
D
x

)
dx,

we obtain that 0 =
∫

Dc σLqσ
(νD

x ) dx =
∫

Dc σ dx−σ(x)+σ(x)Lqσ
(νD

x )(x) and hence,

σ(x)Lqσ
(v)(x) = σ(x)σ(y)Lqσ

(νD
y )(x) − σ(x)σ(y)Lqσ

(νD
x )(x) = σ(y)

∫
Dcσ dx,

which implies that

CD
σ (x, y) =

σ(x)σ(y)

σ(y)νD
y (x) + νD

x (y)σ(x)

∫

Dc

σ dx

and the last claim follows.

Observe that if for any x /∈ D we define RD
σ (x, x) = 0, then the above formula

for the effective resistance between two vertices in Dc is still valid for y = x. Now
we can generalize a well-known result about the effective resistance.

Corollary 4.3. (Generalized Foster’s Theorem) The following identity holds

∫
Dc

∫
DcR

D
σ (x, y)c

Dc (x, y)σ(x)σ(y) dxdy = 2(|V | − |D| − 1).

Proof. From the expression of the effective resistance, we have that

σ(x)σ(y)RD
σ (x, y) =

(∫
Dcσ dx

)−1 (
σ(y)νD

y (x) + σ(x)νD
x (y)

)
.

On the other hand, tacking into account the symmetry of c
Dc we get that

∫
Dc

∫
Dcσ(x)νD

x (y)c
Dc (x, y) dxdy =

∫
Dc

∫
Dcσ(y)νD

y (x)c
Dc (x, y) dxdy

which implies that

∫
Dc

∫
DcR

D
σ (x, y)c

Dc (x, y)σ(x)σ(y) dxdy

= 2
(∫

Dcσ dx
)−1 ∫

Dc σ(x)
∫

Dcν
D
x (y)c

Dc (x, y) dydx.

Finally, the result follows by keeping in main that for any x ∈ Dc

σ(x)
∫

Dcν
D
x (y)c

Dc (x, y) dy = σ(x)Lqσ
(νD

x )(x) =
∫

Dcσ dx− σ(x).
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Another well-known consequence of Proposition 4.2 establishes that when
q = qσ for any y /∈ D, the Green function for problem

(8) Lqσ
(u) = f on Dc \ {y}, ∂u

∂n
Dc

+ qσu = 0 on D, u(y) = 0

can be seen as an inverse resistive; i.e. can be expressed in terms of effective
resistances.

Corollary 4.4. Given x, y, z /∈ D it is verified that

GDc\{y}
qσ

(z, x) =
1

2
σ(x)σ(z)

(
RD

σ (x, y) +RD
σ (z, y) −RD

σ (z, x)
)
.

In particular, the effective resistance determines a distance on Dc.

Proof. First, observe that if u is the solution of Problem (6), then Identity (7)

implies that Lqσ
(u) =

CD
σ (x, y)

σ
(εx − εy) on Dc. Therefore, for any x /∈ D and

z ∈ V it is verified that G
Dc\{y}
qσ

(z, x) = RD
σ (x, y)σ(x)u(z); that is,

GDc\{y}
qσ

(z, x) =

(∫

Dc

σ dx

)−1

σ(x)σ(z)

(
νD

y (z)

σ(z)
− νD

x (z)

σ(z)
+
νD

x (y)

σ(y)

)
.

In particular, when x, z /∈ D, then

GDc\{y}
qσ

(x, z) =

(∫

Dc

σ dx

)−1

σ(x)σ(z)

(
νD

y (x)

σ(x)
− νD

z (x)

σ(x)
+
νD

z (y)

σ(y)

)

and the expression of the Green function is a consequence of its symmetry on Dc.

The last conclusion is a direct consequence of being G
Dc\{y}
qσ

non-negative.

We finish this section by generalizing the above corollary to the case q ≥
qσ. Specifically, we prove that the Green function of the Robin boundary value
problem

Lq(u) = f on Dc,
∂u

∂n
Dc

+ qu = 0 on D,

can be seen as an inverse resistive relative to a new network. To do this, consider
a new vertex x̂ /∈ V , the set V̂ = V ∪ {x̂} and σ̂ ∈ C∗(V̂ ) the weight on V̂ defined
as σ̂(x) = σ(x) when x ∈ V and as σ(x̂) = 1.

We consider the network Γ̂ = (V̂ , Ê, ĉ) where ĉ(x, y) = c(x, y) when x, y ∈ V
and ĉ(x̂, x) = σ(x)(q(x) − qσ(x)) for any x ∈ V . Therefore, E is a proper subset

of Ê and this also assures that Γ̂ is connected. In addition, we denote by L̂ the
combinatorial Laplacian of Γ̂ and by qσ̂ the ground state associated with L̂ and σ̂.
The following result will be the key for our purposes.
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Proposition 4.5. For any u ∈ C(V̂ ), it is verified that

L̂(u) + qσ̂u = L(u|V ) + q u− (q − qσ̂)u(x̂) on V

and
∂u

∂n
V̂\D

+ qσ̂u =
∂u

∂n
V\D

+ q u− (q − qσ̂)u(x̂) on D.

In particular, if u ∈ C(V ), then

L̂qσ̂
(u) = Lq(u) on V and

∂u

∂n
V̂\D

+ qσ̂u =
∂u

∂n
V\D

+ q u on D.

Proof. Given u ∈ C(V̂ ), we get that for any x ∈ V

L̂(u)(x) = L(u|V )(x) + ĉ(x, x̂)
(
u(x) − u(x̂)

)
.

In particular, tacking u = σ̂ it is verified that L̂(σ̂)(x) = L(σ)(x)+ĉ (x, x̂)
(
σ(x)−1

)
,

which implies that ĉ(x, x̂) = qσ(x) − qσ̂(x) +
ĉ (x, x̂)

σ(x)
= q(x) − qσ̂(x) and the result

follows substituting the value of ĉ(·, x̂) in the expression of L̂(u)(x). The same
reasoning works for the normal derivative.

Corollary 4.6. For all x, y /∈ D it is verified that

GDc

q (x, y) =
1

2
σ(x)σ(y)

(
RD

σ̂ (x, x̂) +RD
σ̂ (y, x̂) −RD

σ̂ (x, y)
)
,

where RD
σ̂ is the effective resistance relative to D with respect to σ̂ in the network

Γ̂.

Proof. Taking into account the above proposition, we get that u ∈ C(V ) is the
unique solution of the problem

Lq(u) = f on Dc,
∂u

∂n
Dc

+ qu = 0 on D

iff it is the unique solution of the mixed problem

L̂qσ̂
(u) = f on Dc,

∂u

∂n
V̂\D

+ qσ̂u = 0 on D and u(x̂) = 0.

The result follows by applying Corollary 4.4 to Γ̂ and taking y = x̂.
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