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DIFFERENTIABILITY PROPERTIES OF THE FAMILY

OF P -PARALLEL BODIES

Maŕıa A. Hernández Cifre, Antonio R. Mart́ınez Fernández,
Eugenia Saoŕın Gómez

We investigate the differentiability of the quermassintegrals with respect to
the one-parameter family of the p-parallel bodies. As in the classical case, we
obtain that the volume is always differentiable. Although there is no polyno-
mial expression for a p-sum, the rest of quermassintegrals are differentiable
on positive values of the parameter too. We prove a sharp lower bound for
the derivative of the support function of the p-inner parallel bodies along
with equality conditions.

1. PRELIMINARIES AND MAIN RESULTS

Let Kn be the set of all convex bodies, i.e., non-empty compact convex sets
in the Euclidean space Rn, endowed with the standard scalar product 〈·, ·〉, and
let Kn

0 be the subset of Kn consisting of all convex bodies containing the origin 0.
We also denote by Kn

n (respectively, Kn
(0)
) the subset of Kn having interior points

(0 as an interior point). For M ⊆ Rn, convM and clM will denote its convex hull
and closure, and if M is measurable, we write vol(M) to denote its volume, i.e.,
n-dimensional Lebesgue measure. Let Bn be the n-dimensional unit ball and Sn−1

the (n− 1)-dimensional unit sphere of Rn.

The Minkowski addition and its counterpart, the Minkowski difference, of
non-empty sets in Rn are defined, respectively, as

A+B = {a+ b : a ∈ A, b ∈ B}, A ∼ B = {x ∈ Rn : B + x ⊆ A}.

We refer the reader to [17, Section 3.1] for a detailed study.
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In 1962, Firey introduced the following generalization of the classical Min-
kowski addition (see [4]). For 1 ≤ p < ∞ and K,E ∈ Kn

0 , the p-sum (or Lp-sum)
of K and E is the convex body K +p E ∈ Kn

0 defined as follows:

h(K +p E, u) =
(

h(K,u)p + h(E, u)p
)1/p

,

for all u ∈ Sn−1, where h(K,u) = max
{

〈x, u〉 : x ∈ K
}

is the support function of
K in the direction u. There is a homothety product corresponding to the p-sum
defined by λ ·K := λ1/pK for λ ≥ 0.

In [12] the following counterpart of the p-sum was introduced: for K,E ∈ Kn
0 ,

E ⊆ K, and 1 ≤ p <∞, the p-difference of K and E is defined as

K ∼p E =
{

x ∈ Rn : 〈x, u〉 ≤
(

h(K,u)p − h(E, u)p
)1/p

, u ∈ Sn−1
}

.

When p = 1, in both above cases the usual Minkowski sum and difference are
obtained. From the definition it follows that for any 1 ≤ p <∞,

h(K ∼p E, u) ≤
(

h(K,u)p − h(E, u)p
)1/p

.

When dealing with the p-difference, it is useful to work with the following
subfamily of convex sets (see [12] for further details):

Kn
00(E) =

{

K ∈ Kn
0 : 0 ∈ K ∼ r(K;E)E

}

,

where r(K;E) = max
{

r ≥ 0 : x+rE ⊆ K for some x ∈ Rn
}

is the relative inradius
of K with respect to E.

Let E ∈ Kn
0 andK ∈ Kn

00(E). The full system of p-parallel bodies ofK relative
to E, 1 ≤ p <∞, is defined as follows.

Definition 1 ([12]). Let E ∈ Kn
0 and K ∈ Kn

00(E). For 1 ≤ p <∞,

Kp
λ =

{

K ∼p |λ|E if −r(K;E) ≤ λ ≤ 0,

K +p λE if 0 ≤ λ <∞.

Kp
λ is the p-inner (respectively, p-outer) parallel body of K at distance |λ| relative

to E and Kp
−r(K;E) is the p-kernel of K with respect to E.

The p-kernel of K ∈ Kn
00(E) is always a degenerate convex body for all

1 ≤ p <∞ (see [2, p. 59] for p = 1 and [12, Proposition 3.1] for p > 1).

Differentiability properties of functions that depend on one-parameter fam-
ilies of convex bodies play an important role in some proofs in Convex Geometry
(see e.g. [17, Theorem 7.6.19 and Notes to Section 7.6]). In particular, for E ∈ Kn

n

and K ∈ Kn, the differentiability of functions depending on the full system of
1-parallel bodies was already addressed by Bol [1] and Hadwiger [6]. In this
case, i.e., when p = 1, the considered functions are the (relative) quermassintegrals
Wi(K

1
λ;E), i = 0, . . . , n− 1 (see Section 2 for a precise description).



188 M. A. Hernández Cifre, A. R. Mart́ınez Fernández, E. Saoŕın Gómez

One of the most useful classical tools in this context is the differentiability
of the function vol(K1

λ) on −r(K;E) ≤ λ ≤ 0, and the following consequence of its
explicit computation:

(1) vol(K) = n

∫ 0

−r(K;E)

W1(K
1
λ;E) dλ.

Further results and applications of the differentiability of quermassintegrals with
respect to the one-parameter family of 1-parallel bodies can be found in [10] and
the references therein.

In this work we approach the differentiability of the (relative) quermassin-
tegrals Wi(K

p
λ;E) as functions of the parameter λ ∈

(

−r(K;E),∞
)

. We prove
that they are always differentiable on [0,∞), providing an explicit expression for
the derivative, while, in general, we only have differentiability almost everywhere
on

(

−r(K;E), 0
)

. For the sake of brevity we write Wi(λ) = Wi(K
p
λ;E); if the

distinction of p is necessary we write Wi(λ; p).

Proposition 2. Let E ∈ Kn
0 , K ∈ Kn

00(E) and 1 ≤ p < ∞. Then Wi(λ) is

differentiable with the exception of at most countably many points on
(

−r(K;E), 0
)

,
0 ≤ i ≤ n− 1, and

d−

dλ
Wi(λ) ≥

d+

dλ
Wi(λ) ≥ |λ|p−1(n− i)Wp,i(λ,E;E).

Here, Wp,i(λ,E;E) := Wp,i(K
p
λ, E;E) (see (4)) is defined via a variational

argument involving p-sums. We refer to Section 2, especially to Theorem 5, for the
precise definition and references in the literature. We notice that the differentia-
bility of Wi(λ) does not imply, in general, that the lower bound is attained (see
Remark 16).

In order to get similar properties on the range (0,∞), first it will be shown
that, for λ ≥ 0, and wherever both one-sided derivatives exist,

d−

dλ
Wi(λ) ≥

d+

dλ
Wi(λ)

(Proposition 17). Then, proving that the above lower bound for the right derivative
also holds in this case, we will get our main result.

Theorem 3. Let E ∈ Kn
(0)
, K ∈ Kn

00(E) and let 1 ≤ p < ∞. Then Wi(λ) is

differentiable on (0,∞), 0 ≤ i ≤ n− 1, and

W ′
i (λ) = λp−1(n− i)Wp,i(λ,E;E).

As usual, when we write f ′ for a function f, we mean that the left and right
derivatives exist and coincide.

As a consequence of deep known results of Lutwak [11] relating the vol-
ume and the p-sum of convex bodies, we establish in Theorem 24 that vol(Kp

λ) is
differentiable on

(

−r(K;E),∞
)

, providing an explicit expression for its derivative.

In the last part of the paper we deal with the differentiability of the support
function h(λ, u) := h(Kp

λ, u) in terms of λ:
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Theorem 4. Let E ∈ Kn
(0)
, K ∈ Kn

00(E) and let 1 ≤ p <∞. Then, for all u ∈ Sn−1,

(2)
d

dλ
h(λ, u) ≥

|λ|p−1h(E, u)p

h(λ, u)p−1

almost everywhere on
(

−r(K;E), 0
]

. Equality holds for all u ∈ Sn−1, almost every-

where on
[

−r(K;E), 0
]

, if and only if K = Kp
−r(K;E) +p r(K;E)E.

The paper is organized as follows. In the next section we introduce the notions
and results which are used throughout the paper along with specific notation and
references. In Section 3 we study the differentiability of the quermassintegrals
in the above mentioned sense, proving Proposition 2 and Theorem 3, as well as
the differentiability of the volume in Theorem 24. Finally, in Section 4 we prove
Theorem 4 and a consequence of it.

2. GENERAL BACKGROUND

For convex bodies K1, . . . ,Km ∈ Kn and real numbers λ1, . . . , λm ≥ 0, the
volume of the linear combination λ1K1 + · · ·+λmKm is expressed as a polynomial
of degree at most n in the variables λ1, . . . , λm,

vol
(

λ1K1 + · · ·+ λmKm

)

=

m
∑

i1,...,in=1

V (Ki1 , . . . ,Kin)λi1 · · ·λin ,

whose coefficients V (Ki1 , . . . ,Kin) are the mixed volumes of K1, . . . ,Km. Notice
that such a polynomial expression is not possible for the sum +p when p > 1 (see
e.g. [5]). Further, it is known that there exist finite Borel measures on Sn−1, the
mixed area measures S(K2, . . . ,Kn, ·), such that

V (K1, . . . ,Kn) =
1

n

∫

Sn−1

h(K1, u) dS(K2, . . . ,Kn, u).

If only two convex bodies K,E ∈ Kn are involved in the above sum, the mixed
volumes arising V

(

K[n − i], E[i]
)

= Wi(K;E) are called the quermassintegrals of
K (relative to E), and [i] to the right of a convex body indicates that it appears
i times. In particular, we have W0(K;E) = vol(K) and Wn(K;E) = vol(E). We
notice that

(3) Wi(K;E) =
1

n

∫

Sn−1

h(K,u) dS
(

K[n− i− 1], E[i], u
)

.

If K,E ∈ Kn
0 , using a variational argument involving the p-sum, other func-

tionals can be introduced. This is the case, for example, of the so-called mixed
quermassintegrals defined by Lutwak in [11]; for further functionals defined in
such a variational way, we refer to [17, Section 9.1]. The following theorem gathers
deep results in the Lp-Brunn-Minkowski theory on which some of the proofs of this
paper are based on. Note that we need the stronger assumption K,L ∈ Kn

(0) and
E ∈ Kn

n in order the integral expression to make sense.
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Theorem 5 ([17, Theorems 9.1.1 and 9.1.2], [11]). Let K,L ∈ Kn
(0)

and E ∈ Kn
n.

Let 1 ≤ p <∞ and 0 ≤ i ≤ n− 1. Then

n− i

p
Wp,i(K,L;E) := lim

ε→0+

Wi(K +p ε · L;E)−Wi(K;E)

ε

=
n− i

p

1

n

∫

Sn−1

h(L, u)ph(K,u)1−p dS
(

K[n− i− 1], E[i], u
)

.
(4)

Moreover,

(5) Wp,i(K,L;E)n−i ≥Wi(K;E)n−i−pWi(L;E)p

and

(6) Wi(K +p L;E)
p

n−i ≥Wi(K;E)
p

n−i +Wi(L;E)
p

n−i .

The following binary operation on the real numbers was introduced in [12] in
order to deal with p-parallel bodies. Since we will often use it along this work, we
detail it here for completeness. Let +p : R× R −→ R denote the binary operation
defined by

a+p b =

{

sgn2(a, b)
(

|a|p + |b|p
)1/p

if ab > 0,

sgn2(a, b)
(

max
{

|a|, |b|
}p

−min
{

|a|, |b|
}p)1/p

if ab ≤ 0,

being sgn2 : R× R −→ R the function given by

sgn2(a, b) =















sgn(a) = sgn(b) if ab > 0,

sgn(a) if ab ≤ 0 and |a| ≥ |b|,

sgn(b) if ab ≤ 0 and |a| < |b|;

as usual, sgn denotes the sign function and 0 +p 0 := 0. For λ ≥ 0 and a ∈ R, we
will also use the product λ · a := λ1/pa.

For ab > 0, this definition corresponds essentially to the classical p-mean ([7,
Chapter II]) but does not correspond to any of the more general φ-means considered
in [7, Chapter III].

Commutativity, associativity and distributivity of +p can be easily proved
distinguishing the sign of the involved real numbers (see [12]).

Lemma 6. Let a, b, c ∈ R. Then

(i) a+p b = b+p a,

(ii) (a+p b) +p c = a+p (b +p c) = (a+p c) +p b,

(iii) a(b +p c) = (ab) +p (ac).
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The following inequality between real numbers can be easily obtained as a
consequence of the mean value theorem applied to the function tp. It will be useful
later.

Lemma 7. Let 0 ≤ a ≤ b and 1 ≤ p <∞. Then,

(7) p (b− a)ap−1 ≤ bp − ap ≤ p (b− a)bp−1.

We will be dealing with functions concerning p-parallel bodies, which instead
of being concave, satisfy an analogous inequality involving +p. In order to address
this property we will name it +p-concavity in the following definition. We notice
that given an interval I ⊆ R, x, y ∈ I and λ ∈ [0, 1], it follows from [12, Lemma 4.1]
that (1− λ) · x+p λ · y ∈ I.

Definition 8. Let f : I −→ R, with I ⊆ R an interval, and let 1 ≤ p <∞. We say

that f is +p-concave if for all x, y ∈ I and λ ∈ [0, 1],

f
(

(1− λ) · x+p λ · y
)

≥ (1− λ)f(x) + λf(y).

We say that f is +p-convex if −f is +p-concave.

If p = 1 this is the usual definition of concavity. +p-concave functions are not
as nice as concave functions. However, sometimes they share their good proper-
ties. Next we prove the existence of derivatives almost everywhere (cf. [17, Theo-
rem 1.5.4]), as well as absolute continuity (cf. [14, Remark B, p. 13]) for monotone
+p-concave functions in appropriate intervals, since they are indeed concave.

Lemma 9. Let f : I −→ R be an increasing +p-concave function, 1 ≤ p <∞, with
I ⊆ (−∞, 0] an interval. Then f is a concave function.

Proof. Let x, y ∈ I and λ ∈ [0, 1]. Using the concavity of tp for t ≥ 0 we get

(1− λ) · x+p λ · y = −
(

(1 − λ)(−x)p + λ(−y)p
)1/p

≤ (1− λ)x+ λy,

and since f is increasing and +p-concave, we get that f is concave on I.

Next we prove that +p-concave functions are quasi-concave (see e.g. [17,
p. 520] for details), although there is no direct relation between +p-concave func-
tions and concave ones.

Lemma 10. Let I ⊆ R be an interval and let 1 ≤ p < ∞. If f : I −→ R is

+p-concave, then f is quasi-concave.

Proof. The intermediate value theorem ensures that there exists µλ ∈ [0, 1] such
that (1− λ)x + λy = (1 − µλ) · x+p µλ · y. Therefore,

f
(

(1 − λ)x+ λy
)

= f
(

(1− µλ) · x+p µλ · y
)

≥ (1− µλ)f(x) + µλf(y) ≥ min
{

f(x), f(y)
}

. �
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Remark 11. In general, there is no relation between +p-concavity and concavity. Indeed,
let f(x) = xp, p > 1, which is a convex function on [0,∞). Then:

(i) f is +q-convex (and not +q-concave) if 1 ≤ q < p.

(ii) f is +q-concave (and not +q-convex) if p < q < ∞.

(iii) f is +p-linear, i.e., f
(

(1− λ) · x+p λ · y
)

= (1− λ)f(x) + λf(y), for all x, y ∈ [0,∞)
and λ ∈ [0, 1].

From now on we fix E ∈ Kn
0 and 1 ≤ p < ∞, and for K ∈ Kn we write

r = r(K;E). The following known relations between p-parallel bodies will be useful
throughout the whole work.

Proposition 12 ([12, Proposition 4.2]). Let K ∈ Kn
00(E) and let λ, µ ≥ 0. Then,

the following relations hold :

(i)
(

Kp
λ

)p

µ
= Kp

λ+pµ
.

(ii)
(

Kp
−λ

)p

µ
⊆ Kp

(−λ)+pµ
for λ ≤ r.

(iii)
(

Kp
−λ

)p

−µ
= Kp

(−λ)+p(−µ) for λp + µp ≤ rp.

(iv)
(

Kp
λ

)p

−µ
= Kp

λ+p(−µ) for µ ≤ r +p λ.

(v) λKp
σ =

(

λK
)p

λσ
for −r ≤ σ <∞.

The following straightforward facts about p-inner parallel bodies will be used
without further mention: for K ∈ Kn

00(E) and −r ≤ λ <∞,

(i) r(Kp
λ;E) = r +p λ,

(ii) Kp
λ ∈ Kn

00(E),

(iii) if K = Kp
−r +p rE, then K

p
λ = Kp

−r +p (r +p λ)E for all λ ∈ [−r, 0].

The full system of p-parallel bodies of a convex body K is continuous with
respect to the Hausdorff metric (see [17, Section 1.8] for the definition) and satisfies
a certain concavity property that will be needed later. We include the precise
statement for completeness.

Theorem 13 ([12, Theorem 4.1, Proposition 4.3]). Let K ∈ Kn
00(E). Then:

(i) Kp
λ is continuous in λ with respect to the Hausdorff metric on Kn.

(ii) Kp
λ is +p-concave on Kn with respect to inclusion, i.e., for λ ∈ [0, 1] and

µ, σ ∈
[

−r,∞
)

,

(8) (1− λ) ·Kp
µ +p λ ·Kp

σ ⊆ Kp
(1−λ)·µ+pλ·σ

.
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3. QUERMASSINTEGRALS OF K
p

λ AS FUNCTIONS OF λ

The problem of studying the differentiability of the quermassintegralsWi(K
1
λ) of a

convex body K with respect to the parameter λ of definition of the full system of
parallel bodies of K, in the 3-dimensional case and with respect to the Euclidean
unit ball B3, goes back to Bol, [1]. In [6], Hadwiger addressed a closely related
question, providing some partial solutions to it. This last question was posed and
studied for a general gauge body E and arbitrary dimension n in [10], where the
original problem was solved. In this section we study differentiability properties of
the functions Wi(λ).

For the sake of brevity, given a ∈ R and b ≥ 0, we denote by µ(a, b) the real
number satisfying

either a+ b = a+p µ(a, b), when µ(a, b) = (a+ b) +p (−a),

or a− b = a+p

(

−µ(a, b)
)

, when µ(a, b) = a+p

(

−(a− b)
)

.
(9)

Of course µ(a, b) will strongly depend on the “size” of a and b and their signs.

First we prove a lower bound for the right derivative of Wi(λ) with respect
to λ, for the whole range of definition [−r,∞).

Proposition 14. Let E ∈ Kn
(0), K ∈ Kn

00(E), 1 ≤ p <∞ and 0 ≤ i ≤ n− 1. Then,
wherever the right derivative exists,

(10)
d+

dλ
Wi(λ) ≥ |λ|p−1(n− i)Wp,i(λ,E;E) on [−r,∞),

and equality holds if λ ∈ [0,∞).

For the proof of this result we need the following property.

Lemma 15. Let E ∈ Kn
(0)
, K ∈ Kn

00(E), 1 ≤ p < ∞ and 0 ≤ i ≤ n − 1, and let

λ ∈ [−r,∞) and ε > 0. If there exist suitable positive constants C and c ≥ ε, not
depending on ε, such that :

(i) Kp
λ+ε ⊇ Kp

λ +p (εC)
1/pE, then

d+

dλ
Wi(λ) ≥ C

n− i

p
Wp,i(λ,E;E);

(ii) Kp
λ+ε ⊆ Kp

λ +p (εC)
1/pE, then

d+

dλ
Wi(λ) ≤ C

n− i

p
Wp,i(λ,E;E).

Proof. We prove (i), and thus we assume that Kp
λ+ε ⊇ Kp

λ +p (εC)
1/pE. Then,

the monotonicity of the mixed volumes (see e.g. [17, Section 5.1]) yields

Wi(λ+ ε)−Wi(λ)

ε
≥ C

Wi

(

K
p
λ +p (εC)1/pE;E

)

−Wi(λ)

εC
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for 0 < ε ≤ c, and thus, computing the limit as ε → 0+ and taking into account
(4), we get

d+

dλ
Wi(λ) ≥ C lim

η→0+

Wi

(

K
p
λ +p η1/pE;E

)

−Wi(λ)

η

= C
n− i

p
Wp,i(λ,E;E).

Item (ii) is analogous. �

Proof of Proposition 14. Let ε > 0 and α ∈ (0, 1), and let µ(λ, ε) satisfy
λ+ ε = λ+p µ(λ, ε) (cf. (9)).

First, we assume that λ ∈ [−r, 0) and we observe that, since we aim to
take limits as ε → 0, we may suppose that −r ≤ λ < λ + ε < 0. In this case,

µ(λ, ε) =
(

|λ|p − |λ+ ε|p
)1/p

, and we are going to prove that

(11) µ(λ, ε) ≥ (εCp,α,λ)
1/p for all 0 < ε ≤ c(p, α, λ),

with Cp,α,λ = p(1− α)|λ|p−1, and

c(p, α, λ) =

{

[

1− (1− α)1/(p−1)
]

|λ| if p > 1,

|λ| if p = 1.

If p = 1, then µ(λ, ε) = ε > (1 − α)ε = εC1,α,λ for all ε ≤ |λ| = c(1, α, λ), which
establishes (11) in this case. So, let p > 1 and ε ≤ c(p, α, λ). Then

(1− α)
1

p−1 |λ| ≤ |λ| − ε = |λ+ ε|,

i.e., (1 − α)|λ|p−1 ≤ |λ + ε|p−1, and with Lemma 7 for a = |λ + ε| and b = |λ| we
get that µ(λ, ε)p = |λ|p − |λ + ε|p ≥ p ε|λ + ε|p−1 ≥ εCp,α,λ for all ε ≤ c(p, α, λ),
which concludes the proof of (11).

Using Proposition 12 (ii) and (11), we immediately get

Kp
λ+ε = Kp

λ+pµ(λ,ε)
⊇ (Kp

λ)
p
µ(λ,ε) = Kp

λ +p µ(λ, ε)E ⊇ Kp
λ +p (εCp,α,λ)

1/pE.

Thus, Lemma 15 ensures that

d+

dλ
Wi(λ) ≥ Cp,α,λ

n− i

p
Wp,i(λ,E;E) = (1 − α)|λ|p−1(n− i)Wp,i(λ,E;E)

for all α ∈ (0, 1). It proves (10) when λ < 0.

If λ = 0, then writing η = εp and using (4),

d+

dλ

∣

∣

∣

∣

λ=0

Wi(λ) = lim
ε→0+

εp−1 lim
η→0+

Wi

(

0 +p η
1/p

)

−Wi(0)

η

=

{

0 if p > 1,

(n− i)W1,i(0, E;E) if p = 1.
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Therefore (10) holds with equality.

Next, we assume λ > 0. Now µ(λ, ε) =
(

(λ + ε)p − λp
)1/p

, and therefore,
Lemma 7 yields

(12)
(

p ελp−1
)1/p

≤ µ(λ, ε) ≤
(

p ε(λ+ ε)p−1
)1/p

.

Using Proposition 12(i), the left inequality in (12) implies

Kp
λ+ε = Kp

λ+pµ(λ,ε)
= (Kp

λ)
p
µ(λ,ε) ⊇ Kp

λ +p

(

εpλp−1
)1/p

E

⊇ Kp
λ +p

(

ε(1− α)pλp−1
)1/p

E

for all ε > 0, and Lemma 15 yields

d+

dλ
Wi(λ) ≥ (1− α)λp−1(n− i)Wp,i(λ,E;E)

for any α ∈ (0, 1). It shows (10) on (0,∞).

Next we deal with the equality case. Noticing that (λ+ ε)p−1 ≤ (1 + α)λp−1

if and only if ε ≤ λ
[

(1 + α)1/(p−1) − 1
]

, we get from the right inequality in (12)
that

µ(λ, ε) ≤
(

εp(1 + α)λp−1
)1/p

,

and hence, by Proposition 12(i), that

(13) Kp
λ+ε = Kp

λ +p µ(λ, ε)E ⊆ Kp
λ +p

(

εp(1 + α)λp−1
)1/p

E

for ε ≤ λ
[

(1 + α)1/(p−1) − 1
]

. Now, applying Lemma 15 we obtain

d+

dλ
Wi(λ) ≤ (1 + α)λp−1(n− i)Wp,i(λ,E;E)

for any α ∈ (0, 1) which, together with (10), proves the equality case and concludes
the proof. �

Remark 16. We notice that if we work on the range (−r, 0), the inclusion in (13) would
be reversed, and we cannot expect to get equality in (10).

We are now ready to prove Proposition 2.

Proof of Proposition 2. Expressions (6), (8) imply that the functionWi(λ)
p/(n−i)

is +p-concave and increasing on (−r, 0). Then, Lemma 9 ensures that it is concave
on this range. Hence there exist left and right derivatives of Wi(λ) and they satisfy
the required inequality on (−r, 0). Finally, (10) concludes the proof.

The next result cannot be obtained as a consequence of the +p-concavity of
the full system of p-parallel bodies (8), since there is no analogue of Lemma 9 for
+p-concave increasing functions defined on [0,∞) (see Remark 11).
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Proposition 17. Let E ∈ Kn
0 , K ∈ Kn

00(E), 1 ≤ p <∞ and 0 ≤ i ≤ n− 1. Then,
wherever the left derivative exists for λ ≥ 0,

d−

dλ
Wi(λ) ≥

d+

dλ
Wi(λ).

Proof. By (8) and Lemma 6, it is easy to check that

(14) Kp
λ+p(−t) +p K

p
λ+pt

⊆ 21/pKp
λ

for all t > 0 such that λ+p (−t) > −r. Then, (6) yields

Wi

(

21/pKp
λ;E

)

p
n−i ≥Wi

(

λ+p (−t)
)

p
n−i +Wi(λ+p t)

p
n−i ,

which, by the homogeneity of Wi amounts to

(15) Wi(λ)
p

n−i −Wi

(

λ+p (−t)
)

p
n−i ≥Wi(λ +p t)

p
n−i −Wi(λ)

p
n−i .

Let ε > 0 with −r < λ− ε. By (9) we write λ− ε = λ+p

(

−µ(λ, ε)
)

> −r, and with

m(a, b) :=
Wi(b)

p/(n−i) −Wi(a)
p/(n−i)

Wi(b)−Wi(a)
,

inequality (15) implies that

Wi(λ) −Wi(λ− ε) =
Wi(λ)

p/(n−i) −Wi(λ− ε)p/(n−i)

m(λ− ε, λ)
(16)

≥
Wi

(

λ+p µ(λ, ε)
)p/(n−i)

−Wi(λ)
p/(n−i)

m(λ− ε, λ)

=
(

Wi(λ+p µ(λ, ε))−Wi(λ)
)m

(

λ, λ+p µ(λ, ε)
)

m(λ− ε, λ)
.

We notice that m(a, b) is the slope in R2 of the straight line joining the points
(

Wi(a),Wi(a)
p/(n−i)

)

and
(

Wi(b),Wi(b)
p/(n−i)

)

, which yields

(17) lim
a→b−

m(a, b) = lim
c→b+

m(b, c) =
p

n− i
Wi(b)

p
n−i−1

.

In order to compute the limit in (16) we need to control the size of the right-hand

side in the latter inequality. Since µ(λ, ε) =
(

λp − (λ− ε)p
)1/p

, given α ∈ (0, 1), an
easy computation proves that, for ε small enough,

(18) λ+p µ(λ, ε) =
(

2λp − (λ− ε)p
)1/p

≥ λ+ (1 − α) ε.

Indeed, if λ = 0, then (18) is valid for all ε > 0, whereas if λ > 0 it suffices to
consider

ε ∈

(

0, λ
1− (1− α)1/(p−1)

1 + (1− α)p/(p−1)

]

.
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Thus, for ε > 0 small enough we get

Wi(λ)−Wi(λ− ε)

ε
≥

Wi

(

λ+ (1− α) ε
)

−Wi(λ)

ε

m
(

λ, λ+p µ(λ, ε)
)

m(λ− ε, λ)
.

Then, taking limits as ε → 0+ to the right in the above inequality, since, by (17),
limε→0+ m

(

λ, λ +p µ(λ, ε)
)

/m(λ− ε, λ) = 1, we obtain

d−

dλ
Wi(λ) ≥ (1− α) lim

ε→0+

Wi

(

λ+ (1− α) ε
)

−Wi(λ)

(1− α)ε

= (1− α) lim
η→0+

Wi(λ+ η)−Wi(λ)

η
= (1 − α)

d+

dλ
Wi(λ)

for all α ∈ (0, 1). We notice that the above expression can be written because the
right derivative always exists on [0,∞) (Proposition 14).

We observe that, for λ < 0, (14) does not hold in general.

At this point we notice that, in the classical case p = 1, the differentiability
ofWi(λ; 1) on (0,∞), 0 ≤ i ≤ n−1, follows immediately from the fact thatWi(K+
λE;E) can be written as a polynomial in λ ≥ 0 (see e.g. [17, Theorem 5.1.7]).

In order to establish the differentiability of Wi(λ) on (0,∞), and taking into
account Proposition 17, we will prove that the bound for the right derivative given
in (10) provides also an upper bound for the left derivative.

Proof of Theorem 3. We are going to prove that

(19)
d−

dλ
Wi(λ) ≤ λp−1(n− i)Wp,i(λ,E;E),

which, together with the equality case in Proposition 14 and Proposition 17, will
conclude the proof.

Let λ > 0 and ε > 0 with λ − ε > 0, and let µ(λ, ε) =
(

λp − (λ − ε)p
)1/p

,

which satisfies λ − ε = λ +p

(

−µ(λ, ε)
)

(cf. (9)). From Lemma 7 we obtain that

µ(λ, ε) ≤
(

pελp−1
)1/p

, and hence

λ− ε ≥ λ+p

[

− (p ελp−1)1/p
]

,

which implies, by Proposition 12 (iv) and the monotonicity of the mixed volumes,
that for all 0 < ε < λ,

(20)
Wi(λ)−Wi(λ− ε)

ε
≤

Wi(λ)−Wi

(

λ+p [−(p ελp−1)1/p]
)

ε
.

We need some properties of the latter quermassintegral, for which we argue,
where it applies, as in the proof of [11, Theorem (1.1)]. We show the argument
for completeness. For the sake of brevity we write, for τ, µ ≥ 0, W1,i(µ, τ) :=
W1,i

(

Kp
µ,K

p
τ ;E

)

and λ(ε) := λ+p

[

−(p ελp−1)1/p
]

, and let

g(ε) :=Wi

(

λ+p [−(p ελp−1)1/p]
)

1
n−i =Wi

(

λ(ε)
)

1
n−i .
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We also define

ℓi := lim inf
ε→0+

Wi(λ)−W1,i

(

λ, λ(ε)
)

ε
, ℓs := lim sup

ε→0+

W1,i

(

λ(ε), λ
)

−Wi

(

λ(ε)
)

ε
.

Since Kp
λ(ε) ⊆ Kp

λ for ε < λ, the monotonicity of the mixed volumes (cf. (4)) yields

that ℓi and ℓs are the lim inf and lim sup, respectively, of nonnegative functions for
0 < ε < λ. Using inequality (5) we obtain

ℓi ≤ lim inf
ε→0+

Wi(λ)−Wi(λ)
(n−i−1)/(n−i)Wi

(

λ(ε)
)1/(n−i)

ε

=Wi(λ)
n−i−1
n−i lim inf

ε→0+

Wi(λ)
1/(n−i) −Wi

(

λ(ε)
)1/(n−i)

ε
,

and analogously,

ℓs ≥ lim sup
ε→0+

Wi

(

λ(ε)
)

n−i−1
n−i

Wi(λ)
1/(n−i) −Wi

(

λ(ε)
)1/(n−i)

ε
.

The continuity of the full system of p-parallel bodies with respect to the Hausdorff
metric (Theorem 13 (i)) and of the quermassintegrals Wi on Kn (see e.g. [17,
p. 280]) prove that g is continuous at 0. Hence we may write

ℓi ≤Wi(λ)
n−i−1
n−i lim inf

ε→0+

Wi(λ)
1/(n−i) −Wi

(

λ(ε)
)1/(n−i)

ε
(21)

≤Wi(λ)
n−i−1
n−i lim sup

ε→0+

Wi(λ)
1/(n−i) −Wi

(

λ(ε)
)1/(n−i)

ε
≤ ℓs.

Moreover, using the integral expressions of Wi and W1,i given in (3) and (4), re-
spectively, we can write

ℓi = lim inf
ε→0+

1

n

∫

Sn−1

h(λ, u)− h
(

λ(ε), u
)

ε
dS

(

Kp
λ[n− i− 1], E[i], u

)

and

ℓs = lim sup
ε→0+

1

n

∫

Sn−1

h(λ, u)− h
(

λ(ε), u
)

ε
dS

(

Kp
λ(ε)[n− i− 1], E[i], u

)

.

Since

lim
ε→0+

h(λ, u)− h
(

λ(ε), u
)

ε
= λp−1h(λ, u)1−ph(E, u)p

uniformly on Sn−1, the continuity of
(

h(λ, u) − h(λ(ε), u)
)

/ε on ε ∈ (0, λ) and

the weak convergence S
(

Kp
λ(ε)[n − i − 1], E[i], ·

)

→ S
(

Kp
λ[n − i − 1], E[i], ·

)

([17,

Theorem 4.2.1] and Theorem 13 (i)) when ε→ 0+ prove that

(22) ℓi = ℓs =
λp−1

n

∫

Sn−1

h(λ, u)1−ph(E, u)p dS
(

Kp
λ[n− i− 1], E[i], u

)

.
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Now, since ℓi = ℓs, we get from (21) that the right derivative of gn−i at 0 does
exist and satisfies

lim
ε→0+

g(ε)n−i − g(0)n−i

ε
= (n− i)g(0)n−i−1 d+

dε

∣

∣

∣

∣

ε=0

g(ε).

It implies (cf. (21))

(23) lim
ε→0+

Wi(λ)−Wi

(

λ(ε)
)

ε
= (n− i)ℓi = (n− i)ℓs.

Thus, (20), (23), (22), and (4) yield

d−

dλ
Wi(λ) = lim

ε→0+

Wi(λ)−Wi(λ− ε)

ε
≤ lim

ε→0+

Wi(λ)−Wi

(

λ(ε)
)

ε
= (n− i) ℓi

=
n− i

n
λp−1

∫

Sn−1

h(E, u)ph(λ, u)1−p dS
(

Kp
λ[n− i − 1], E[i], u

)

= (n− i)λp−1Wp,i(λ,E;E)

for λ > 0, which proves (19) and concludes the proof.

We point out that none of the results proved so far provides a proof of the
differentiability of Wi at λ = 0. In order to deal with this we will need a slightly
different approach. This will be treated in Corollary 21.

There exist families of convex bodies for which the functions Wi(λ) are dif-
ferentiable on (−r, 0), 0 ≤ i ≤ n− 1. This is, for instance, the case of the so-called
tangential bodies, which can be defined as follows: a convex body K ∈ Kn contain-
ing E ∈ Kn, is called a tangential body of E, if through each boundary point of K
there exists a support hyperplane to K also supporting E. We notice that if K is
a tangential body of E, then r(K;E) = 1. We refer to [17, Section 2.2 and p. 149]
for further detailed information.

In [12, Theorem 4.2] it was proven that K is a tangential body of E if and
only if Kp

λ is homothetic to K for all λ ∈ (−r, 0). This property, the homogeneity of
quermassintegrals and the differentiability of (1 − |λ|p)1/p on (−1, 0) immediately
prove the following result. We notice that E is always assumed to be in Kn

0 , and
any other assumption complements this one.

Lemma 18. Let E ∈ Kn
n and K ∈ Kn

0 be a tangential body of E, and let 1 ≤ p <∞.
Then Wi(λ) is differentiable on (−1, 0), 0 ≤ i ≤ n− 1, and

W ′
i (λ) = (n− i)|λ|p−1

(

1− |λ|p
)

n−i
p −1

Wi(0).

Next we prove a lemma that will be used to provide an upper bound for the
left derivative of Wi(λ), involvingWi(λ) itself. The case p = 1 was obtained in [16,
Lemma 4.7].
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Lemma 19. Let E ∈ Kn
n, K ∈ Kn

00(E) and 1 ≤ p <∞. For all −r ≤ λ ≤ 0,

(24)
r +p λ

r
K ⊆ Kp

λ.

Equality holds for some λ ∈ (−r, 0) if and only if K is homothetic to a tangential

body of E.

Proof. Since K ∈ Kn
00(E) we have rE ⊆ K, which yields rh(E, u) ≤ h(K,u) for

all u ∈ Sn−1. Thus, h(K,u)p/rp − h(E, u)p ≥ 0 for all u ∈ Sn−1, and so

rp − |λ|p

rp
h(K,u)p + |λ|ph(E, u)p ≤ h(K,u)p, for all u ∈ Sn−1.

It implies, as required, that

h
(

r +p λ

r
K +p |λ|E, u

)

≤ h(K,u), for all u ∈ Sn−1.

The equality case is provided by [12, Theorem 4.2], which ensures that (24) holds
with equality for some λ ∈ (−r, 0) if and only if K is homothetic to a tangential
body of E.

Now we are ready to prove the mentioned upper bound for the left derivative
of Wi(λ). The case p = 1 of this lemma was obtained in [8, Lemma 2.2].

Proposition 20. Let E ∈ Kn
n, K ∈ Kn

00(E), 1 ≤ p < ∞ and 0 ≤ i ≤ n− 1. Then
the left derivative exists on (−r, 0] and

(25)
d−

dλ
Wi(λ) ≤ (n− i)

|λ|p−1

rp − |λ|p
Wi(λ).

For 0 ≤ i ≤ n− 2, equality holds almost everywhere on (−r, 0) if and only if K is

homothetic to a tangential body of E.

Proof. The existence of the left derivative is assured by the concavity of Wi (see
e.g. [15]). Let λ ∈ (−r, 0] and ε ≥ 0 be such that −r < λ − ε ≤ λ. Using (9) and
Proposition 12 (iii) we can write

Kp
λ−ε = Kp

λ+p(−µ(λ,ε)) = (Kp
λ)

p
−µ(λ,ε).

Then, Lemma 19 and the monotonicity and homogeneity of the mixed volumes
yield

(

r +p λ+p

(

−µ(λ, ε)
)

r +p λ

)n−i

Wi(λ) ≤Wi(λ− ε),

and thus,

d−

dλ
Wi(λ) = lim

ε→0+

Wi(λ)−Wi(λ− ε)

ε
≤ lim

ε→0+

1−
(

rp−|λ−ε|p

rp−|λ|p

)(n−i)/p

ε
Wi(λ)

= (n− i)
|λ|p−1

rp − |λ|p
Wi(λ).
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Next we deal with the equality case. From Proposition 2 we know that, with the
exception of at most countably many points, the function Wi(λ) is differentiable
on (−r, 0). Hence, assuming equality in (25) we can write

W ′
i (λ) = (n− i)

|λ|p−1

rp − |λ|p
Wi(λ)

almost everywhere on (−r, 0). Then, for µ ∈ (−r, 0),

∫ 0

µ

W ′

i (λ)

Wi(λ)
dλ = (n− i)

∫ 0

µ

|λ|p−1

rp − |λ|p
dλ,

and thus we obtain that

(26) Wi(µ) =
(

r +p µ

r

)n−i

Wi(0) =Wi

(

r +p µ

r
K;E

)

.

Therefore, because of the inclusion provided by Lemma 19, we can conclude that
(

(r +p µ)/r
)

K = Kp
µ for 0 ≤ i ≤ n − 2. Now, [12, Theorem 4.2] implies that K is

homothetic to a tangential body of E.

Conversely, if K is homothetic to a tangential body of E then (see [12,
Theorem 4.2]) Kp

λ =
(

(rp − |λ|p)1/p/r
)

K. The homogeneity of Wi allows us to
explicitly compute the derivative on (−r, 0):

W ′
i (λ) = (n− i)|λ|p−1

(

rp − |λ|p
)

n−i
p

−1

rn−i
Wi(0) = (n− i)

|λ|p−1

rp − |λ|p
Wi(λ).

We observe that the equality case in (25) when i = n− 1 cannot be deduced
from (26), and we will treat it in a different way in Theorem 25.

As a direct consequence we get the following result.

Corollary 21. Let E ∈ Kn
n, K ∈ Kn

00(E), 1 < p < ∞ and 0 ≤ i ≤ n − 1. Then
Wi(λ) is differentiable at 0 and W ′

i (0) = 0.

Proof. Using Proposition 20 we conclude that the left derivative exists at λ = 0
and (d−/dλ)

∣

∣

λ=0
Wi(λ) ≤ 0. Moreover, using Proposition 14, we can assure that

the right derivative of Wi(λ) at λ = 0 exists. Finally, the equality case for (10)
together with Proposition 17 allows us to conclude the result:

0 =
d+

dλ

∣

∣

∣

∣

λ=0

Wi(λ) ≤
d−

dλ

∣

∣

∣

∣

λ=0

Wi(λ) ≤ 0.

We observe that the above result is not true in the classical case p = 1, since
the above used bounds for the left and right derivatives are neither zero nor equal,
in general.

In the following lemma we provide an equivalent expression for the left deriva-
tive of Wi(λ) involving the p-sum in computing the limit.
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Lemma 22. Let E ∈ Kn
0 , K ∈ Kn

00(E), 1 ≤ p < ∞ and 0 ≤ i ≤ n − 1. Then, for
all λ ∈ (−r, 0),

d−

dλ
Wi(λ) = p|λ|p−1 lim

ε→0+

Wi(λ)−Wi

(

λ+p (−ε1/p)
)

ε
.

Proof. Let ε > 0 be such that −r < λ − ε and let µ(λ, ε) =
(

|λ − ε|p − |λ|p
)1/p

,

which satisfies λ − ε = λ +p

(

−µ(λ, ε)
)

(cf. (9)). From Lemma 7 we obtain that
pε|λ|p−1 ≤ µ(λ, ε)p ≤ pε|λ− ε|p−1, and hence

Kp
λ ∼p

(

pε|λ|p−1
)1/p

E ⊇ Kp
λ−ε ⊇ Kp

λ ∼p

(

pε|λ− ε|p−1
)1/p

E.

Then, using the monotonicity of the mixed volumes we can write

Wi

(

λ+p

(

−pε|λ|p−1
)1/p)

≥Wi(λ− ε) ≥Wi

(

λ+p

(

−pε|λ− ε|p−1
)1/p)

.

Therefore, since the left derivative exists (see Proposition 2),

p|λ|p−1 lim
ε→0+

Wi(λ)−Wi

(

λ+p

(

−p|λ|p−1ε
)1/p)

p|λ|p−1ε
≤

d−

dλ
Wi(λ)

≤ lim
ε→0+

p|λ− ε|p−1Wi(λ)−Wi

(

λ+p

(

−p|λ− ε|p−1ε
)1/p)

p|λ− ε|p−1ε
,

which proves the result.

The case i = 0 can be already found in the literature, directly related to
the p-sums, though not in the context of p-inner parallel bodies. In [11], Lutwak
proved the following integral expression for a p-variation of the volume functional.

Theorem 23 ([11, Lemma (3.2)]). Let K,E ∈ Kn
(0)

and 1 ≤ p <∞. Then,

n

p
Wp,0(K,E;E) = lim

ε→0

vol(K +p ε ·E)− vol(K)

ε

=
1

p

∫

Sn−1

h(E, u)ph(K,u)1−pdS
(

K[n− 1], u
)

.

We observe that the above formula is not a particular case of (4) when i = 0,
since here the limit as ε → 0 is two-sided. In the case of the left limit, the result
was established using a variation of the support function, which turns out to be
equivalent to the p-difference considered in this work. Using Lutwak’s proof for an
arbitrary −r ≤ λ ≤ 0, we prove in Theorem 24 that the volume function of the
system of parallel bodies, vol(λ) = vol(Kp

λ), is differentiable on its whole range of
definition (−r,∞).

Theorem 24. Let E ∈ Kn
(0)
, K ∈ Kn

00(E) and 1 ≤ p < ∞. Then, for all λ ∈
(−r,∞),

(27)
d

dλ
vol(λ) = |λ|p−1

∫

Sn−1

h(E, u)ph(λ, u)1−p dS
(

Kp
λ[n− 1], u

)

.
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Proof. Theorems 3 and 23 ensure that vol(λ) is differentiable on [0,∞), with the
desired derivative. Thus, let λ ∈ (−r, 0). Since Kp

λ ∈ Kn
00(E), using Proposition 2,

Lemma 22 for i = 0 and Theorem 23, we get

n|λ|p−1Wp,0

(

λ,E;E
)

≤
d+

dλ
vol(λ) ≤

d−

dλ
vol(λ)

= |λ|p−1

∫

Sn−1

h(E, u)ph(λ, u)1−p dS
(

Kp
λ[n− 1], u

)

= n|λ|p−1Wp,0

(

λ,E;E
)

,

i.e., the volume function is differentiable and satisfies (27).

Since dimKp
−r ≤ n − 1 (see [12, Proposition 3.1]), the latter result provides

the following integral formula for the volume of K in terms of functionals evaluated
on its p-inner parallel bodies (cf. (1)):

vol(K) = n

∫ 0

−r

|λ|p−1Wp,0(λ,E;E) dλ

=

∫ 0

−r

|λ|p−1

(
∫

Sn−1

h(E, u)ph(λ, u)1−p dS
(

Kp
λ[n− 1], u

)

)

dλ.

Theorem 23 for p = 1 is connected to the theory of Wulff shapes. We refer to
[17, Section 7.5] and the references therein for detailed information, in particular,
to Lemma 7.5.3. It provides, in the same way we have just done, the proof of the
differentiability of W0(λ; 1).

We observe that, if K ∈ Kn
0 and 0 ≤ ε ≤ 1, then vol(K +p εK)− vol(K) ≤

vol(K)− vol(K ∼p εK) if p > n, just noticing that K +p εK = (1 + εp)1/pK and
K ∼p εK = (1− εp)1/pK ([12, Proposition 2.1]). Therefore, the differentiability of
the volume in the above sense cannot be obtained as in [13].

3. DIFFERENTIABILITY PROPERTIES OF THE SUPPORT

FUNCTION

For K,E ∈ Kn, the concavity of the family of parallel bodies of K in −r ≤
λ < ∞ yields concavity of the support function, as a function in λ ∈ (−r,∞),
which implies the existence of derivatives almost everywhere. Moreover, in [3] it
was proved that wherever the derivative exists, it satisfies

(28)
d

dλ
h(λ, u) ≥ h(E, u),

and equality holds for all u ∈ Sn−1, all λ ∈ (0,∞) and almost everywhere on (−r, 0),
if and only if K = K−r + rE.

For p ≥ 1, Lemma 9 ensures the existence of derivatives of h(λ, u) almost
everywhere, and it makes sense to ask for an analogue of (28) when 1 ≤ p < ∞.
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It is the content of Theorem 4. We notice that if λ ≥ 0, the existence of the
derivative, as well as its explicit expression, follow from the fact that h(λ, u)p =
h(0, u)p + λph(E, u)p, i.e., equality holds in (2).

Proof of Theorem 4. The existence of the derivative of h(λ, u) almost every-
where on (−r, 0) is ensured by Lemma 9. Writing λ+ ε = λ+p µ(λ, ε) (cf. (9)) and
using Proposition 12 (ii), we have

h(λ+ ε, u)− h(λ, u) ≥ h
(

Kp
λ +p µ(λ, ε)E, u

)

− h(λ, u)

=
[

h(λ, u)p + µ(λ, ε)ph(E, u)p
]1/p

− h(λ, u)

≥
µ(λ, ε)ph(E, u)p

p
[

h(λ, u)p + µ(λ, ε)ph(E, u)p
](p−1)/p

,

where the last inequality follows from the right-hand side of (7). Since

lim
ε→0+

[

h(λ, u)p + µ(λ, ε)ph(E, u)p
]

p−1
p = h(λ, u)p−1

and lim
ε→0+

µ(λ, ε)p/ε = p|λ|p−1, we may conclude that

d

dλ
h(λ, u) = lim

ε→0+

h(λ+ ε, u)− h(λ, u)

ε
≥

|λ|p−1h(E, u)p

h(λ, u)p−1
.

Now we deal with the equality case in (2). If K = Kp
−r+p rE, it is not difficult

to check that h(λ, u)p = h(−r, u)p+(r+pλ)
ph(E, u)p for all u ∈ Sn−1, and a direct

computation proves that, for all λ ∈ [−r, 0] and u ∈ Sn−1,

d

dλ
h(λ, u) =

|λ|p−1h(E, u)p

h(λ, u)p−1
.

Conversely, we assume that, for all u ∈ Sn−1 and almost everywhere on [−r, 0],
equality holds in (2). For u ∈ Sn−1, we consider the function

ψ(λ) := h(λ, u)p − h(−r, u)p − (r +p λ)
ph(E, u)p.

Since h(λ, u)p is increasing and +p-concave on (−r, 0), Lemma 9 and [14, Prob-
lem/Remark B, p.13] yield that it is absolutely continuous. Therefore ψ is abso-
lutely continuous on [−r, 0], and since ψ(−r) = 0 and ψ′(λ) = 0 almost everywhere
on [−r, 0], we get that ψ ≡ 0 for any u ∈ Sn−1. In particular, ψ(0) = 0 for any
u ∈ Sn−1, which yields K = Kp

−r +p rE.

Next we will slightly relax the equality conditions in Theorem 4, for which
we will impose regularity on E: a convex body E ∈ Kn is said to be regular if
the supporting hyperplane at every boundary point is unique. This property will
ensure that the support suppS

(

E[n− 1], ·
)

= Sn−1 (see e.g. [17, Theorem 4.5.3]):

(29)
If E is regular, then equality holds in (2) almost everywhere on [−r, 0] and
S
(

E[n− 1], ·
)

-almost everywhere on Sn−1 (instead of for all u ∈ Sn−1) if
and only if K = Kp

−r +p rE.
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We notice that, in order to prove (29), it suffices to see that ifK,L,E ∈ Kn, K ⊆ L,
with E regular, such that h(K,u) = h(L, u) S

(

E[n − 1], ·
)

-almost everywhere on
Sn−1, then K = L. Indeed, under these assumptions, by (3) we get Wn−1(K;E) =
Wn−1(L;E), and hence

∫

Sn−1

[

h(L, u)− h(K,u)
]

dS
(

E[n− 1], u
)

= 0.

Then h(L, u) = h(K,u) for all u ∈ suppS
(

E[n− 1], ·
)

= Sn−1, and so K = L.

We point out that this property can be not true for an arbitrary E. Indeed,
let M := suppS

(

E[n − 1], ·
)

( Sn−1 and let u0 ∈ Sn−1\M. Since Sn−1\M is
open on Sn−1, there exists an open neighborhood Ω ⊆ Sn−1\M of u0, and taking
L = conv

{

Bn, (1 + ε)u0
}

and ε > 0 small enough such that cl(L\Bn) ∩ Sn−1 ⊆ Ω,
we have h(Bn, u) = h(L, u) for all u ∈M, but L 6= Bn.

As mentioned at the beginning of Section 3, Hadwiger proposed to deter-
mine the convex bodies for which Wi(λ, 1) is differentiable, 1 ≤ i ≤ n − 1, with
W ′

i (λ, 1) = (n − i)Wi+1(λ, 1). In [9, 10] the cases i = n − 1, n − 2 were solved,
respectively. We conclude the paper by using the previous discussion to solve the
corresponding p-problem for i = n − 1. It will provide also the characterization of
the equality case in (10) when i = n− 1.

Theorem 25. Let E ∈ Kn
0 be regular, K ∈ Kn

00(E) and 1 ≤ p <∞. Then Wn−1(λ)
is differentiable on (−r, 0) with W ′

n−1(λ) = |λ|p−1Wp,n−1(λ,E;E), if and only if

K = Kp
−r +p rE.

Proof. First we assume that W ′
n−1(λ) = |λ|p−1Wp,n−1(λ,E;E). Then, integrating

and using (4), Fubini’s Theorem and Theorem 4 we can write

Wn−1(K)−Wn−1(K
p
−r) =

1

n

∫ 0

−r

(
∫

Sn−1

|λ|p−1h(E, u)p

h(λ, u)p−1
dS

(

E[n− 1], u
)

)

dλ

≤
1

n

∫

Sn−1

(
∫ 0

−r

d

dµ

∣

∣

∣

∣

µ=λ

h(µ, u) dλ

)

dS(E[n− 1], u)

=Wn−1(K)−Wn−1(K
p
−r).

Hence, we have equality all over the above expression, and thus
∫ 0

−r

|λ|p−1h(E, u)p

h(λ, u)p−1
dλ =

∫ 0

−r

d

dµ

∣

∣

∣

µ=λ
h(µ, u) dλ

S
(

E[n−1], ·
)

-almost everywhere on suppS(E[n−1], ·) = Sn−1, because E is regular.
From (29) we get K = Kp

−r +p rE.

Conversely, if K = Kp
−r +p rE then, by (3), Theorem 4 and (4),

W ′
n−1(λ) =

1

n

∫

Sn−1

d

dµ

∣

∣

∣

∣

µ=λ

h(µ, u) dS
(

E[n− 1], u
)

=
1

n

∫

Sn−1

|λ|p−1h(E, u)p

h(λ, u)p−1
dS

(

E[n− 1], u
)

= |λ|p−1Wp,n−1(λ,E;E)
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for all λ ∈ (−r, 0). �
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