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ON HILBERT’S INEQUALITY ON TIME SCALES

Saker H. Saker, A. A. El-Deeb, H. M. Rezk, Ravi P. Agarwal*

In this paper, we will prove some new dynamic inequalities of Hilbert’s type
on time scales. Our results as special cases extend some obtained dynamic
inequalities on time scales.and also contain some integral and discrete in-
equalities as special cases. We prove our main results by using some algebraic
inequalities, Holder’s inequality, Jensen’s inequality and a simple consequence
of Keller’s chain rule on time scales.

1. INTRODUCTION

The original integral Hilbert’s inequality is given by

I ey <o ([ e dmy“(/omgz(x)dx)“,

where f(z), g(x) are nonnegative functions and satisfy

/ f*(z)dxr < 0o, and / x)dx < 0.

The constant 7 is the best possible (see [8]). This inequality has been extended
by Hardy and Riesz by introducing a pair of conjugate exponents p and g with
1/p+1/q =1, and proved that (see [8])

s ([ o) ([ )

*Corresponding author. Ravi P. Agarwal
2010 Mathematics Subject Classification. 26D15, 34A40, 39A12, 34N05.
Keywords and Phrases. Hilbert’s inequality, Holder’s inequality, Jensen’s inequality, Time scales.

399



400 S. H. Saker, A. A. El-Deeb, H. M. Rezk and R. P. Agarwal

where the constant 7/ sin(7/p) is the best possible. In [7] Hardy proved the discrete
version of (2) which is given by

oo 00 1/p %9 1/q
(3) ZZ ssm<2ap> (Zbi) :

m=1n

where p > 1, 1/p+1/q =1, {am}55_; and {b,}32, are nonnegative sequences such
that

o0 oo
Za{’n<oo, and Zb%<oo.
m=1

n=1

In the last decades a lot of results which generalize and extend (2) and (3) has
been obtained by several authors, we refer to the paper [11] and the papers they
are cited. For more details we refer the reader to the papers [9, 10, 11] and the
paper [6] which discuss the development of the discrete and continuous Hilbert-
type inequalities. Pachpatte in [11] established several new inequalities similar to
Hilbert’s inequality. One of them is given by

/ / Fps+t dsdt < D(p, q, a, b) (/Oa(a_5)(Fp_1(s)f(s))2d5>%

2

b
(4) x (/O (b—t)(Gq_l(t)g(t))th> :

where p, ¢ > 1, F(s) = [ f(T)dr > 0 and G(t fo 6)df > 0, for s, T € (0, a)
and ¢, 0 € (0, b) and

1
D(p, q, a, b) = §pq\/@

The discrete version of (4), which has been obtained by Pachpatte [11] is given by

AL B - -1 2 i
szm < Clp, g, kb, r) | D (k+1—m)(A% "ay,)
(5) X <Z<r+1—n><lebn>2> :
n=1

where p, ¢ > 1, A, =Y 0" jas>0and B, = 1, by >0, form=1,2, .., k and
n =1, 2, ..., r where k and r are natural numbers, and

1
C(p, q, k, r) = 51%1\/177’-
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In [10] Young-Ho Kim extended the inequality (4) and proved that

/ / saﬂaé dsdt < D(p, ¢, a, b) (/Oaw—s)(Fp*(s)f(s))?ds)

1

b 2
(6) X (/O (b—t)(GQI(t)g(t)th) ;

wherep,q>1a>0F = [, f(r)dr > 0 and G(t fo 6)do > 0, for s,
€ (0, a), and t, 6 € (0, b), and

2

A
D(p, q, a, b) = (2) pgVab.

The discrete version of (6) which has been obtained by Young-Ho Kim [10] and
can be considered as the extension of (5) due to Pachpatte [11] is given by

k T k %
AP B4
2 : —ImZn < CO(p, g K, T, @) < E (k+1-— m)(Af’n_lam)2>

m=1

(7) X (Z(T +1- n)(BZ_lbn)2> ;

n=1

where p, ¢ >1, >0, 4, => " as>0and B, =>} b, >0, form=1,2, ..,
kand n =1, 2, ..., r where k£ and r are natural numbers, and

1\ *
C(p, ¢, k, 7, a) = <2> paVkr.

In recent years the study of dynamic inequalities on time scales has received a lot
of attention (see the book [1]). The general idea is to prove a result for a dynamic
inequality where the domain of the unknown function is a so-called time scale T,
which may be an arbitrary closed subset of the real numbers R. The cases when the
time scale is equal to the reals or to the integers represent the classical theories of
integral and of discrete inequalities. The three most popular examples of calculus
on time scales are differential calculus, difference calculus, and quantum calculus,
ie, when T=R, T=Nand T = ¢"° = {¢* : t € Ny} where ¢ > 1. For recent
results of Hilbert’s type inequalities on time scales, we refer the reader to the recent
book [2].

Following this trend and to develop the study of dynamic inequalities on time
scales we will prove some new inequalities of Hilbert’s type on time scales. The
results as special cases, when T = R and T = N contain the inequalities (6) and (7)
due to Young-Ho Kim and also generalize the results by Pachpatte to time scales.
The technique in this paper depends on the application of the chain rule, Hélder’s
inequality, Jensen’s inequality on time scales and some algebraic inequalities.
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Before we present our main result, let us recall essentials about time scales.
For more details of time scale analysis, we refer the reader to the two books by
Bohner and Peterson [3], [4] which summarize and organize much of the time scale
calculus.

A time scale T is an arbitrary nonempty closed subset of the real numbers R.
We assume throughout that T has the topology that it inherits from the standard
topology on the real numbers R. Let a, b € T, the interval [a,b] in time scale T
is defined by [a, b] := {t € T : a < t < b}. The forward jump operator and the
backward jump operator are defined by:

o(t):=inf{s € T:s>t}, and p(t):=sup{seT:s>t}.

A point ¢t € T is said to be right-dense if o(t) = ¢, right-scattered if o(t) > ¢, left—
dense if p(t) = t and is left—scattered if p(t) < t. A function f: T — R is said to be
right—dense continuous (rd—continuous) provided it is continuous at all right-dense
points in T and its left-sided limits exist (finite) at all left-dense points in T. The
set of all such rd—continuous functions is denoted by C,.4(T, R). The graininess p
for a time scale T is define by u(t) := o(t) — ¢, and for a function f : T — R the
notation f?(t) denotes f(o(t)). For a function f : T — R the delta derivative is
defined by

At) .= im @) - £t
(8) f (t) o s—)t} o(t)#t O'(t) —t

Here are some basic formulas involving delta derivatives: f7 = f + uf?, (f9)* =
A A

R+ fog2 = fg™ + 297, (L)A = %, where f, g are delta differentiable

and gg? # 0 in the last formula. For a, b € T, and a delta differentiable function f

the Cauchy integral of f2 is defined by fab FA(t)At = f(b) — f(a). The integration
by parts formula on time scales is given by

b b
(9) / FHg> (AL = (g’ / A (607 ()AL

The chain rule formula, (see [3, Theorem 1.90]) that we will use in this paper is

1
(10) ) = ([ @)+ 0= mar " an) o,

where v > 1 and u : T — R is delta differentiable function. The Holder’s inequality,
(see [3, Theorem 6.13]) on time scales is given by
b v
[ lstorae]

where a, be T and f, g € Crq(I, R), y>1and 1/y+1/v =1.

1
v

b b
(11) / F(Bg(t)|AL < / £t At
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Theorem 1. [Fubini’s Theorem [5, Theorem 6.13]] Let f be bounded and delta
integrable over a rectangle R = [a, b) X [¢, d) and suppose that the single integral

d
- / f(t, $)Ags,

exists for each t € [a, b). Then the iterated integral

b b d
/ I(t)Alt:/ Alt/ f(t, S)AQS,
a a c
exists and the equality

(12) //f(t, $)A1tAgs = /ab Alt/cd ft, s)Ags,
R

holds.

It is evident from Theorem 1 that we can interchange the roles ¢ and s, that
is, we may assume the existence of the double integral and existence of the single

integral
b
— [ st 9

for each s € [¢, d). Then Theorem 1 will state the existence of the iterated integral

d d b
/ k(s)AQSZ/ Azs/ ft, s)Aqt,
and the equality

(13) //f(t, s)AltAgs:/cd Ags/abf(t, $)ALt.
R

If together with the double integral f [ f(t, s)A1tAss there exist both single inte-

grals I and K, then the formulas (12) and (13) will hold simultaneously, i.e.,

(14) /Alt/ft SAQS—/AQS/ft s)Aqt.

Theorem 2 (Jensen’s Inequality [1]). Let a, b € T and ¢, d € R. Suppose that
g € Crq([a, blr, (¢, d)) and h € Cry([a, b1, R) are nonnegative with

b
/ h(s)As > 0.
If ® € C((c, d), R) is convez, then

(15) (f (s)g(s )SJ; A(5)2(9(s))As.
f h(s)A
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2. MAIN RESULTS

In this section, we will prove the main results. Throughout this paper, we
will assume (usually without mentioning) that the functions in the statements of
the theorems are right-dense continuous nonnegative functions and the integrals
considered exist and finite. We also assume that all the constants and the bound-
aries of the integrals that appear in the inequalities are real numbers greater than
or equal to zero. In particular, we will assume that v > 0 and h, [ > 1 be real
numbers, and p > 1, ¢ > 1 with 1/p+1/¢ = 1.

First, we prove the basic lemma that will be needed in the proofs of the main
results and can be considered as the extension of power rules for integrals. The
proof depends on the application of the time scales chain rule.

Lemma 1. Let T be a time scale with x, a € T such that x > a. If a« > 1, then

(16) < / " f(T)AT>a <af ™ ( / . f(T)AT> " an

Proof. Define

(17) F(z):= /x f(n)AT

Applying the chain rule (10), we see that

1
(18) (Fo ()™ = a/o [WF? (2) 4 (1 — h)F(2)]* " dhF> (z).

Since F'(z) is nondecreasing and o(z) > x, we have

F@S < o [ @)+ 1= nF @) )
1
(19) = o [ @ @) = alF @) @),

Integrating both sides of (19) from a to o(z), we have
o(x) o(x)
(20) [ sy <a [T s ertan
a a
Since F'(a) = 0, we get
a(:r
1) JARA RGOS

Substituting (21) into (20), we have

( /:(””')fvw) <a /:(I)f(n) < /;(”)fmm) A,

which is the desired inequality (16). The proof is complete. I
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Now, we are ready to state and prove the main results in this paper.

Theorem 3. Let T be a time scale with s, t, tg, x, y € T, and define

(22) A(s) = /t:a(f)m, and Bt / b(r

Then for o(s) €

[to, ©
o(s))B'(a(t)) .
29) // —tow( <>—t0>v>%AAt

, x] and o(t ) [to, y], we have

< O 1, p, ) [ / :<a<x> - o(s))(a(s)Ah-l<o<s>>>ms];

x [ /:w(y) - a(t))(b(t)Bl—l<o<t>>>w}

where
1 > 1 1

(24) ct, v =i ()7 @ - o
Proof. By using the inequality (16), we obtain

o(s)
(25) Ao <h [ aln)at o)

to
and

! o(®) -1

(26) Blo) <t [ bn)B' o)

to

Applying Holder’s inequality (11) on the right hand side of (25) with indices p and
q, we have

1
q

o(s) 1 a(s)
(27) /t a(n) A" H(a(n)An < (o(s) —to)? (/t (a(ﬂ)Ahl(U(n)))qﬁﬁ>

Applying Holder’s inequality (11) on the right hand side of (26) with indices p and
q, we have also that

1
a

o(t) o pe®
(28) /t b(n) B~ (o (n)An < (a(t) —to)7 (/t (b(n)B”(a(n)))qM>

From (25)-(28), we get
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Using the elementary inequality (see [9])
1 1
n n n a'}/ ¥
(30) {Ha} g{Z;} , 0<7,
=1
for nonnegative real numbers a;, for i = 1,2,...,n , we observe that

1
YN 2
(31) (a1a2)% < (al—;%> .

Setting a1 = (o(s) — o) and ag = (0(t) — to) in (31), we get that

(0(5) ~10)" + (o(t) tow]* .
2

(32 [(o(s) — to)(o(t) —to)]* < [

Therefore,

33)  [(0(s) — to)(olt) — to)]F < [

From (29) and (33), we have

(o(s) = t0)" + (o(t) — t(m) ”
2

o(s) é
x ( / (a(n)Ahl(U(n)))qAn>

o(t) %
(34) X(/t (b(n)Bl_l(U(n)))qAn> :

AM(o(s))B'(a(t)) < hl(

Dividing both sides of (34) by [(o(s) — to)” + (o(t) — to)'y]% , we get

Ah(U(S))Bl(O(t)) hl 1 ;7( " a(mMA~(s ‘N )é
((a(5) = to)" + (o (t) — to)7) 7 = (2) /t (a(n) A (o (n)))*An

1

o(t) q
(35) x ( / (b(n)B”(J(n)))"An> .

Integrating both sides of (35) from ¢y to y and from ¢y to = and applying Holder’s
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inequality with indices p and ¢, we obtain

/to /t s) —t0)7 + ( ((t)(—))t) )7 e
< (2) et [ X ( /:S)(a(n)Ah_l(G(n)))qAn> As
(36) [ / ( /t:(t)w(n)B“(o(n)))qm) s’

Applying Fubini’s Theorem 1 on the right hand side of (36), we have

Q=

l, / —tig s <(t>(i))to>v>f~mm
< hz( )”(x—to>é<y—to>é [/:u—a( )(a(s) 4" (o (s)))1As|

<| /<y ~ o) e B o)

By using the facts that o(z) > z and o(y) > y, we obtain

[ o v

< Chlp,7) Ut:(a(w) —0(8))(G(S)Ah1(0(8)))%8}

1

x [/:(U(y) - U(t))(b(t)B”(U(t)))th} y

which is the desired inequality (23). The proof is complete. I
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Remark 1. If we apply the inequality (30) on the right-hand side of inequality
(23), and proceeding as the proof of Theorem 3, we get the following inequality

[ e e et
< amLap,w{(ljw@>—dﬁxa$A”*w@»WAQ7
(37) +<Lﬁdwaﬁ»@®BZHdMVA§W}m,

20
‘d\»—A

(z—to)7 (y — to) 7.

1
CO(h7 lu D, ’Y) =Rl (2)

As a special case of Theorem 3 when T = R we have o(z) = =, o(y) = v,
o(s) = s and o(t) =t and we get the following result.

Corollary 1. Assume that a(s) and b(t) are nonnegative functions and define

A(s) = /0 “a(r)dr, and Bt / b(r

Then
[ 2
< cumuzxw[ﬂﬂx—@m@wﬂlw»w4é
(39) X[A?y—wwaF%wvmr,
where

N
Crth 1) = (5) 7 ).

‘C\»—A

Remark 2. If we put p = ¢ = 2 in the inequality (38), then we get the result due
to Young-Ho Kim [10, Theorem 3.1].

As a special case of Theorem 3 when T = Z we have o(z) = z+1, o(y) = y+1,
o(s) =s+1and o(t) =t + 1 and we get the following result.

Corollary 2. Assume that a(n) and b(m) are nonnegative sequences and define

A(n) = Za(s), and B(m Zb
k=0

s=0
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Then
N M
A" (n)B'(m)
nz::mz:: (n+1)7 + (m+ 1))
N i
< Cu(h, I, p, v) <Z(N+ 1—(n+ 1))(a(”)Ah1(n))q>
n=1
M 2
(39) <Z (M+1-(m+ ))(b(m)Bl_l(m))q> ,
where N
Colh, I, p, 7) = (;) " RN M)F.

Remark 3. If we put p = g = 2 in the inequality (39), then we get the result due
to Young-Ho Kim [10, Theorem 2.1].

Remark 4. If we take h =1 =1, then the inequality (23) becomes

A%(s)B7(t) 5
(40) /t /t Ot + o ()—to)v)%A At

< o, ) [ | o)~ oteate)ras] % [ et~ opeiya "

to tO

e = (5) -t

In the next theorems, we assume that there exist two functions ® and ¥
which are real-valued, nonnegative, convex, and submultiplicative functions defined
on [0,00). The function @ is said to be a submultiplicative on [0, c0) if ®(zy) <
O (z)®(y), for =, y > 0.

Theorem 4. Let T be a time scale with s, t, to, x, y € T, A(s) and B(t) be as
defined in Theorem 8. Furthermore assume that

w\H

(41) F(s) = ) f(T)AT, and  G(t) :—/t g(n)An.
Then for o(s) € [to, and ot ) [tg, y], we have that
[ / (DEEE)
to Jto —t0”+(()—t0) )

< Dy w{ /tj<a<x>—a<s>> (s H;]) asj’

(12) «{ /:w(y) ~o(0) (atore | 23] ) At}é7
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where

2
N7 [T (REI)N NS Y (2ETWO)N 7
w0 e (D) [ (B 8N (HEY )
2 to FU(S) to GU (t)
Proof. Since ® is convex and submultiplicative function, we get by applying Jensen’s
inequality that

g(s a(s) T a(T) -
(A%(s) = @ ol ())a(tso) FOmA
J29 f(r)ar

W(U(S) —to)

20 ST
< O(F(0(9)® | =
( S fr)ar
B(F7(s)) [ a(r)
e < T, 1o ] an
Applying Holder’s inequality with indices p and ¢ on the right hand side of (44),
(s 1 o(s) a(T 1 Z
(15)  @(a7(s) < PO ; { [ (sme [53]) AT} |

Also, since ¥ is convex and submultiplicative function, we get by applying Jensen’s
inequality and Holder’s inequality with indices p and ¢ that
1
(G(t)) o b(n) 1\ * ’
(16 W) < G o0~ [ (s |Gh|) anp
Go(t) o g(n)

S=

Form (45) and (46), we have

D(A7(s5)) (B (1))

< (0(s) — to) s (o(t) — to)b (‘Ig’((;’))) {/toff(s) <f(r)<I> [;E:;DQAT}é)
o (L el ) )

Applying the inequality (30) on the term (o(s) — to)%(a(t) - to)%, we get the
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following inequality

(A7(s))¥(B (1))

G (1)

From (48), we have

D(A7(s))W(B7(t))

: (;) (q)%f(();)) { / :(S) (re [42])’ AT}}?)
o (L G )

Integrating both sides of (49) from ¢y to y and from ¢y to z, we obtain

/ / (s) ( t)) )2 AsAt
< (5[ (@Efliii” { /to " (s [;g;])qm}é) N
0 ) /toy (W(G(ZS)) {/t:(t) <g(77)‘l' {%qu}}é) At.

Applying Holder’s inequality with indices p and ¢ on the right hand side of (50),
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IN
/N
DO |
~_

< 3‘“ s <
N

2
Bl
—

—~
~—

S~—

S—

Il
S
=
2
——
—
\
=
N
=
.y
A
1
Pt
N—
>
P
——

Applying Fubini’s Theorem 1 on the right hand side of (51), we obtain

/ / ( ( < t?)v)ﬁmm |
< o) { / (2~ o(s)) <f<s><1> ) s
X ’ v LGRS %.
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Remark 5. If we apply the inequality (30) on the right-hand side of inequality
(42), and proceeding as the proof of Theorem 4, we get the following inequality

[ / ENUEW)
—tow( (1)~ to)) >

< Dolp, ) { | ote) = o(s) (1) [JM)A]

2

a~y

(53) +] [0t - o) (0w )RS

where

AN O NSRS W (O
i e (1) [ (RO s (P (oY )
o N=\3) 1, TF) , G
As a special case of Theorem 4 when T = R, we have o(z) = z, o(y) = vy,
o(s) = s and o(t) = t. Then we get the following result.

Corollary 3. Assume that a(s), b(t), f(s) and g(t) are nonnegative functions and
define

Als) = /Osa(T)dT, B(t) = /Otb( dr, F(s / F(rydr, Glt / o(7)dr.

Then

o [ 24280020 - 5] +f
oo o)
o= () (52 ([ (Yo

Remark 6. If we put p = q = 2 in the inequality (54), then we get the result due
to Young-Ho Kim [10, Theorem 3.3].

where

3 =

As a special case of Theorem 4 when T = Z we have o(z) = 241, o(y) = y+1,
o(s) =s+1and o(t) =t + 1 and we get the following result.

Corollary 4. Assume that a(n), b(m), f(n) and g(m) are nonnegative sequences
and define
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Then
YL 9(A(n)¥(B(m))
;m;«nﬂwwmﬂn
N q) ¢
< Dy, ) {Z(NH— 1) (re | 55)) }
Y b T\ 1)
(55) x{mz_lwﬂ—(mﬂn( () [Q()D } .
where

() Tz e

Dafp. 7) = (;) {

Remark 7. If we put p = g = 2 in the inequality (55), then we get the result due
to Young-Ho Kim [10, Theorem 2.3].

Theorem 5. Let T be a time scale with s, t, tg, x, y € T. Furthermore assume that
1 t

(56) A(s) :== .y

! /S a(t)Ar, and B(t):= b(n)An

S_tO to

then for o(s) € [to, z] and o(t) € [to, y], we have

//wmsm D)(a(s) ~ to)(o(t) ~to) 5,
o ((0() —to) + (1) — 1))

Q= 2

< 1, { [ ot - (9)(@la(s))7s

q

(57) < /:w(y)—a(t»(w(t)ww} |

2

1 )= (3) @t

=

(y—to)r.
Proof. From (56), we see

. B 1 o(s)
(58) D(A%(s)) =D (cr(s)—to /to a(T)AT> )

Applying Jensen’s inequality on the right hand side of (58), we get

. 1 o(s)
(59) BA(5) <~ /t Ba(r)|Ar.
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Applying Holder’s inequality with indices p and ¢ on the right hand side of (59),
we have

- 1 v )
00 BAE) < (o) —to) (/ (@fa(r)) m) .

This implies that

1 o(s)
(61) (A7 (s))(0(s) — to) < (a(s) —to)” (/t (@[G(T)])qAT> :

Similarly, we obtain

1
q

o
(62) V(B (t))(o(t) —to) < (o(t) —to)? (/t (‘I’[b(n>])qAn> :

From (61) and (62), we get

D(A7(5))W(B7(t))(a(s) = to)(o(t) - to)

o) a
< (o)~ to)” (o(t) — o)} ( / (<I>[a(T)DqAT>

1

o(t) q
(63) x ( / (‘P[b(n)})qﬁn> .

Applying the inequality (30) on the term (o(s) — to)%(a(t) - to)%, we get the
following inequality

D(A7(5)) (B (t))(a(s) — to)(o(t) — to)

< <(0(5) —to)? ;F (o(t) — to)”) % (/t:(S) (fb[a(r)])qA7-> g

o(t) i
(64) x ( / (‘HMH)D"M) .

Dividing both sides of (64) by [(o(s) — to)” + (o(t) — tO)V]% we get that

P(A7(s))W(B7(t))(a(s) — to)(a(t) — to)
—1t0)7 + (o(t) —to)7) ™
o(t) )é
N)4An | .

(o) ()

Q=
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Integrating both sides of (65) from ¢y to y and from ¢y to x, we obtain

/ /y B(A7(s) t)(o(s) —to)(@(t) —to) \ A,

—tov+< (t) — to)7) 77

< (1) [/; </>

1

y a(t) a
(66) x l/ ( / (‘I’[b(n)])qAn> At] .

Applying Holder’s inequality again with indices p and g on the right hand side of
(66), we obtain

/ /y P(A7(s)) (B (t))(o(s) —to)(o (t)2 t0) Asas
to Jto ((o(s) —to)Y + (o(t) —to)?) 7

O et [ ([
[ /( [ qAn>A
— Hp.) [ A ( /t:(s)@[ (r )1)%) As ]
(67) x [ / ( /t:(t)(‘l’[b(n)])%n> s’

Applying Fubini’s Theorem 1 on the right-hand side of (67), we get
)

[ [ A UE ) o) —t)
wln (o) v+<<>—to>v>ﬂ
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By using the fact o(z) > = and o(y) > y, we obtain

/ /y@ () U(BT(H)(a(s) ~ ) (t) ~ o)

2
P

((o(s) =to)7 + (o) —t0)7) ™

< Hip) { I olo) - a(s))(@[a(s)nm}é

A :'<o<y> ~oO)h)ar)

which is the desired inequality (57). The proof is complete. I

Remark 8. If we apply the inequality (30) on the right-hand side of inequality
(57), and proceeding as the proof of Theorem 5, we get the following inequality

/ / (0(5) = to)(a(t) = to) = P(A7(s))W(B7 (1)) AsAt

o(s) —to)7 + (o(t) —to)7)*

< {[ [ oo N@lasras]

2

(69) ¥ [ / (o(y) — o) (W )1)%]7} "

where

8=

2
1\~
Hp, 2) = (3) o=t -t
As a special case of Theorem 5 when T = R, we have o(z) = z, o(y) = v,
o(s) = s and o(t) =t and we get the following result.

Corollary 5. Assume that a(s) and b(t) are nonnegative functions and define

A(s) == 1/03 a(t)dr and B(t):= %/0 b(T)dr.

S

Then

/Om /Oy st@((i(i))t\f)(g(t)) dsdt < Hy(p. ) { /O m(xs)[é(a(s))]qu}é

@) < { [T owowiaf,

where
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Remark 9. If we put p = g = 2 in the inequality (70), then we get the result due
to Young-Ho Kim [10, Theorem 3.4].

As a special case of Theorem 5 when T = Z we have o(z) = z+1, o(y) = y+1,
o(s) =s+1and o(t) =t + 1. Then we get the following result.

Corollary 6. Assume that a(n) and b(m) are nonnegative sequences and define

A(n) := %Za(s), and B(m %Z
s=0 k=0
Then
Sk (m + 1)®(A(n)) ¥ (B(m))
Z::mZ:: ((n+1)7 + (m + 1)7)7
N 7
< Hs(p, v) {Z(N +1-(n+ 1))[‘I’(a(n))]q}
M 7
(71) x {Z(M +1—(m+ 1))[‘1’(b(m))]q} :
m=1
where N
. )= (5) o,

Remark 10. If we put p = q = 2 in the inequality (71), then we get the result due
to Young-Ho Kim [10, Theorem 2.5].

In the following theorem, we prove a new dynamic inequality with two dif-
ferent weighted functions.

Theorem 6. Let T be a time scale with s, t, tg, ©, y € T, F and G be as defined
in Theorem 4. Furthermore assume that

(72) A(s) == ﬁ /t: f(n)a(t)Ar, and B(t):= ﬁ /to g(m)b(n)An.

Then for o(s) € [to, x| and o(t) € [to, y], we have

[[[ ey,
to —to —|—(O’(t)—t0) )Py

< K@ ) [ / <a<x>—a<s>><f<s><1>[a<s>]>ms}3

to

(73) x [ [ ot - a(t))(g(t)\l/[b(tﬂ)%t] "

to
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where

o =

K 0= (35) @) -1

Proof. From (72), we see

(74) D(A%(s)) = (Fﬂl(s) /t:(S) f(T)G(T)AT) .
Applying Jensen’s inequality on the right hand side of (74), we observe that
1 a(s)
VAT S gy [ S@Rlamiar

Applying Holder’s inequality with indices p and ¢ on the right hand side of (74),
we obtain

o (ols) —to)b [ [ O\
(75) B(A <s>><p,(8)< / (f(r)®la()) m) |

From (75), we get

=

(76) (A7(s))F7(s) < (o(s) = to)

o(s) 7
( / <f<r><1>[a<7>]>qm) .

Similarly, we obtain

=

(77) V(B(1))G7(t) < (a(t) = to)

() i
( / (g(n)‘l’[b(n)])qﬁn> .

D(A7(s))W(B? (1)) F7 (s)G7 (¢)

From (76) and (77), we observe that

-

. o(s) q
< (o(s) —to)7 (a(t) —to): (/t (f(T)‘I’[a(T)])qAT>

=

o(t) 7
(78) x ( / (9(77)\1’[6(77)])%77> |

Applying the inequality (30) on the term (o(s) — to)%(a(t) - to)%, we get the
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following inequality

D(A7(s))W(B7 (1)) F7 (s)G7 (1)

S >< (me)
o(t)
(79) (/ (g(m) W [b(n )])qAn> |

Dividing both sides of (79) by [(o(s) — ¢
D(A7(s)) (B (1)) F ()G (t
((o(s) = t0)7 + (a(t) —to)7)*7

% o(s) % o(s) %
s < (3) (/ <f<7><1>[a<7>1>w> (/ (g(n)‘P[b(n)])qAn>-

Integrating both sides of (80) from ¢y to y and from ¢ty to z, we obtain

//ny QIEEOINN
to Jto —to (t> _tO) )
m ‘7(5 %
( ()])QAT> As)

1

(81) ( ( J(t mn> ’ At) .

Applying Hélder’s inequality again with indices p and ¢ on the right hand side of
(81), we have

/”” /y P(A7(s))W(B7 (1) F7(s)G (¢ )A At
to Jto ((0(s) = to)? + (o(t) — to)7) 7
2 1 z a(s)
<;) (z —t0)" (y — to) l/t </t (f(T)<I>[a(T>])qAT> As
o’(t) %
[ < / quy) At
O'(S
_ [ / ( (ﬂ])%) As
o(t) a
(82) [ < / qAn) At

0)? + (o(t) — to)”’]% , we get that
)

1
q

s =

1
q
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Applying Fubini’s Theorem 1 on the right—hand side of (82), we get

//WA” QOLLOISIOINY
to Jto *t07+ ()*to))

< K(p) [ / (w—a<s>><f<s>¢[a<s>])ms]‘11

to

1
q

(83) <| /:<y—o(t))(g(t)\ﬂ[b(tn)w} .

By using the fact o(z) > z and o(y) > y, we obtain

//“Mf TP 5,
to Jto —to (t)—to))

1

< K | [0 - o) siae)as]

to

1
q

x M?(U(y) —J(t))(g(t)‘l’[b(t)])%t} ,

which is the desired inequality (73). The proof is complete. I

Remark 11. If we apply the inequality (30) on the right-hand side of inequality
(73), and proceeding as the proof of Theorem 6, we get the following inequality

//yM’ >> HOLEHOINY
to S >—to (7(t) o))

< Ko 0 {|[ olo) - 0(8))(f(8)<1>[a(8)])%sr

2

(34) ¥ [ / :’<o<y> - o(t))(g(t)@[b(tmw] } ,

Ko(p, ) = (;) (o —t0)” (y — to)?.

As a special case of Theorem 6 when T = R, we have o(z) = z, o(y) = v,
o(s) = s and o(t) = ¢t and we get the following result.

Corollary 7. Assume that a(s), b(t), f(s) and g(t) are nonnegative functions and
define

1 t
0= g | o
F(s) - :/0 f(r)dr, and G(t) ::/0 g(T)dr.
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Then

TV O(A(s))U(B(t)F(s)G(t) © B qs%
[ e < i) [ -9
(85) | [ w-owwepenal

where

2

Ki(p, 7) = (;) 7 (ay)h

Remark 12. If we put p = q = 2 in the inequality (85), then we get the result due
to Young-Ho Kim [10, Theorem 3.5].

As a special case of Theorem 6 when T = Z we have o(z) = z+1, o(y) = y+1,
o(s) =s+1and o(t) =t + 1 and we get the following result.

Corollary 8. Assume that a(n), b(m), f(n) and g(m) are nonnegative sequences
and define

A(n) := % Yon_o f(s)a(s), B(m):= ﬁ Yoreo g(k)b(k),

F(n):= Sy f(s), and G(m) == Y5 g(k).
Then
YKL F(n)G(m)®(A(n))¥(B(m))
gzz (n+1)7 + (m+1)7)5
N 1
< Ky(p) { SN+ 1-(n+1)) (f(n)<1>[a(n)})q}
n=1
Y 1
(86) ><{Z(MH—(m+1>><g<m>wb<m>1>‘J} :
where

Remark 13. If we put p = q = 2 in the inequality (86), then we get the result due
to Young-Ho Kim [10, Theorem 2.6].
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