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The main purpose of this paper is to construct new families of special num-
bers with their generating functions. These numbers are related to many
well-known numbers, which are Bernoulli numbers, Fibonacci numbers, Lucas
numbers, Stirling numbers of the second kind and central factorial numbers.
Our other inspiration of this paper is related to the Golombek’s problem [15]
“Aufgabe 1088. El. Math., 49 (1994), 126-127”. Our first numbers are not
only related to the Golombek’s problem, but also computation of the nega-
tive order Euler numbers. We compute a few values of the numbers which
are given by tables. We give some applications in probability and statistics.
That is, special values of mathematical expectation of the binomial distribu-
tion and the Bernstein polynomials give us the value of our numbers. Taking
derivative of our generating functions, we give partial differential equations
and also functional equations. By using these equations, we derive recurrence
relations and some formulas of our numbers. Moreover, we come up with a
conjecture with two open questions related to our new numbers. We give two
algorithms for computation of our numbers. We also give some combinato-
rial applications, further remarks on our new numbers and their generating
functions.
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1. INTRODUCTION

In this section, we consider the following question:

What could be more basic tools to compute the negative order of the first
and the second kind Euler numbers? One of motivations of this paper is associated
with this question and its answer. Another motivation of this paper is related to
the work of Golombek [15], which is entitled Aufgabe 1088.

Here, let C, R, Q, Z, N be the sets of complex numbers, real numbers, rational
numbers, integers, and positive integers, respectively and let Ng = {0,1,2,3,...} =
Nu {0}.

Golombek gave the following novel combinatorial sum:

k mn
1) Z(?)jnin(et*l)kh—ov

J=0

where n € N. Golombek [15] also mentioned that this sum is related to the following
sequence
n2" "t n(n 4+ 1)2"72 ...

We introduce new families of special numbers, which are not only used in
counting techniques and problems, but also computing negative order of the first
and the second kind Euler numbers and other combinatorial sums. Here, our tech-
nique is related to the generating functions and their functional equations. In the
historical development of mathematics, we can observe that the generating func-
tions play a very important role in pure and applied mathematics. These function
are powerful tools in solving counting problems and investigating properties of the
special numbers and polynomials. In addition, the generating functions are also
used in computer programming, in physics, and in other areas. Briefly, in Physics,
generating functions, which arise in Hamiltonian mechanics, are quite different from
generating functions in mathematics. The generating functions are functions whose
partial derivatives generate the differential equations that determine a system’s dy-
namics. These functions are also related to the partition function of statistical
mechanics (cf. [11], [21], [37]). In mathematics, a generating function can be
expanded as formal power series in one indeterminate whose coefficients encode in-
formation about a sequence of numbers and that is indexed by the natural numbers
(cf. [11], [12], [14], [13], [21], [37], [29], [40]). As far as we know, the generating
function is firstly discovered by Abraham de Moivre (26 May 1667 -27 November
1754, French mathematician) (cf. [21]). In order to solve the general linear recur-
rence problem, Moivre constructed the concept of the generating functions in 1730.
In work of Doubilet et al. [14], we also see that Laplace (23 March 1749-5 March
1827, French mathematician, physicist and statistician) discovered the remarkable
correspondence between set theoretic operations and operations on formal power
series. Their method gives us great success to solve a variety of combinatorial prob-
lems. They developed new kinds of algebras of generating functions better suited to
combinatorial and probabilistic problems. Their method depends on group algebra



New families of special numbers for computing negative order Euler... 3

(or semigroup algebra) (see, for details, [14]). It is well-known that there are many
different ways or approaches to generate a sequence of numbers and polynomials
from the series or the generating functions. The purpose of this paper is to con-
struct the generating functions for new families of numbers involving Golombek’s
identity in (1), Stirling numbers, central factorial numbers, Euler numbers of neg-
ative order, rook numbers and combinatorial sums. Our method and approach
provides a way of constructing new special families of numbers and combinatorial
sums. We show how several of these numbers and these combinatorial sums relate
to each other. We pose a conjecture with two open questions associated with our
new numbers and their generating functions.

We organize our paper as follows:

In Section 2, we briefly review some special numbers and polynomials, which
are Bernoulli numbers, Euler numbers, Stirling numbers, central factorial numbers
and array polynomials.

In Section 3, we give a generating function. By using this function, we define
a family of new numbers yi(n, k;\). We investigate many properties including
recurrence relations of these numbers by using their generating functions. We
compute a few values of the numbers y; (n, k; \), which are given by tables. We give
some remarks and comments related to the Golombek’s identity and the numbers
y1(n, k; 1). Finally, we give a conjecture with two open questions.

In Section 4, we give a generating function for a new family of the other
numbers yz(n, k; A). By using this function, we investigate many properties with
a recurrence relation of these numbers. We compute a few values of the numbers
ya2(n, k; \), which are given by tables. We give relations between these numbers,
Fibonacci numbers, Lucas numbers, and A-Stirling numbers of the second kind. We
also give some combinatorial sums.

In Section 5, we define A-central factorial numbers C(n, k; A). By using their
generating function, we derive some identities and relations including these numbers
and the others.

In Section 6, we give some applications related to the special values of math-
ematical expectation for the binomial distribution, the Bernstein polynomials and
the Bernoulli polynomials.

In Section 7, by using the numbers y; (n, k; \), we compute the Euler numbers
of negative order. In addition, we compute a few values of these numbers, which
are given by tables.

In Section 8, we give two algorithms for our computations.

In Section 9, we give combinatorial applications, including a rook num-
bers and polynomials. We also give combinatorial interpretation for the numbers
y1(n, k;1). Finally in the last section, we give further remarks with conclusion.

The principal value In z is the logarithm whose imaginary part lies in the
interval (—m, 7]. Moreover we also use the following notational conventions:
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and

(/\>:1and (2>:)\(/\_1)M(>\_U+1):(A)v (neN, AeC)

0 ! v!

(cf- [4], [12], [42]). For combinatorial example, we will use the notations of Bona
[5], that is the set {1,2,...,n} is an n-element set, that is, n distinct objects.
Therefore, Bona introduced the shorter notation [n| for this set. The number
nn —1)(n —2)---(n — k + 1) of all k-element lists from [n] without repetition
occurs so often in combinatorics that there is a symbol for it, namely

nrg=nn-1)(n-2)---(n—k+1)

(cf. [5, pp. 11-13.]).

2. Background

In this section, we give a brief introduction about Bernoulli numbers, Euler
numbers, the (A-) Stirling numbers and array polynomials, which will be used in
subsequent sections.

In [2]-[45], we see that there are many known properties and relations in-
volving various kind of the special numbers and polynomials such as Bernoulli
polynomials and numbers, Euler polynomials and numbers, Stirling numbers and
also rook polynomials and numbers by making use of some standard techniques
based upon generating functions and other known techniques.

Bernoulli polynomials are defined by means of the following generating func-
tion (c¢f. [13]-[45]):

TR tn
o1¢ = T;Bn(x)g
(|t| < 27). One can observe that
Bn == Bn(o)v

which denotes Bernoulli numbers (cf. [13]-[45]; see also the references cited in each
of these earlier works).

The sum of powers of integers is related to the Bernoulli numbers and poly-
nomials:

@ YK = 5 (Brialn+1) = Braa)

(ct. [13], [40], [42]).
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The first kind Apostol-Euler polynomials of order k, with k > 0, Eﬁbk) (x; )
are defined by means of the following generating function:

k 0o
. _ 2 te _ k) (o B
(3) Fpy(t,z;k,\) = (Aetﬂ) e _ZBE” (252)

(lt] < when A =1 and || < |In (—A)| when X # 1), A € C, k € N with, of course,
EF (N = B (050,

which denote the first kind Apostol-Euler numbers of order k (cf. [20], [13], [28],
[26], [30], [40], [45]). Substituting k = A = 1 into (3), we have the first kind Euler

numbers E, = EY (1), which are defined by means of the following generating

function:
o0

(lt] < m) (cf. [13]-[45]; see also the references cited in each of these earlier works).

Tl

The second kind Euler numbers E} are defined by means of the following

generating function:
2 S
i 2
n=0
(It < %) (cf. [8], [13], [24], [26], [30], [42], [45]; see also the references cited in
each of these earlier works).

Stirling numbers of the second kind are used in pure and applied mathematics.
These numbers occur in combinatorics and in the theory of partitions. The Stirling
numbers of the second kind, denoted by Sa(n,v), the number of ways to partition
a set of n objects into k groups ([5], [7], [12], [37], [42]).

Let v € Ny and A € C. The A-Stirling numbers of the second kind Sa(n, v; A)
are generalized of the Stirling number of the second kind. These numbers Ss(n, v; \)
are defined by means of the following generating function:

(4) Fs(t,v;\) = ()\e — 1 ZSQ (n,v; )\

For further information about these numbers, the reader may be referred to [25]
and ([34], [33], [39]; see also the references cited in each of these earlier works).

Observe that
Sa(n,v) = Sa(n,v; 1),

which are computing by the following formulas:

a" = zn: < “”5 > 0185 (n, v)
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’ =33 (3 ) iy

(cf. [13]-[45]; see also the references cited in each of these earlier works). A
recurrence relation for these numbers is given by

Sg(n,k‘) = Sg(n -1,k — 1) + I{/’SQ(TL — 1,k/’),
with
S2(n,0) =0 (n € N); So(n,n) =1 (n € N); S3(n,1) =1 (n € N)

and Sa(n,k) =0 (n < k or k < 0) (¢f. [13]-[45]; see also the references cited in
each of these earlier works).

Let v € Ng and A € C. In [34], we defined the A-array polynomials S (x; \)
by means of the following generating function:

(5) FA(t,JU,v;)\):()\6771 ZS” x; )\

(cf. [4], [34)).
The array polynomials S!’(z) are defined by means of the following generating
function:

(6) Falt,z,v) = (6 _1 an

(cf. [4], [10], [34]; see also the references cited in each of these earlier works). By
using the above generating function, we have

1) = ;jio(—l)”—f (4 )iy

with
Sp(x) = Sy (x) = 1,80 (x) = 2"
and for v > n,
Sp(x)=0
(cf. [10], [34], [35]; see also the references cited in each of these earlier works).
Recently, central factorial numbers T'(n, k) have been studied by many au-
thors. These numbers are used in theory of numbers, combinatorics and probability.

Central factorial numbers T'(n, k) (of the second kind) are defined by means of the
following generating function:

(7) Fp(t, k) =

t p—
(2k)! =
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(cf. [5], [7], [12], [41], [35], [37]; see also the references cited in each of these earlier
works).

These numbers have the following relations:
= ZT(n, Be(z —1)(z —2%)(z —3%) - (x — (k- 1)?).
k=0

Combining the above equation with (7), we also have
T(n,k)=T(n—1,k— 1)+ k*T(n — 1,k),

, (n,k) # (1,1). Forn, k € N, T(0,k) = T(n,0) = 0 and
7], [12], [41], [35], [37]).

3. A family of new numbers y;(n, k; \)

In this section, we give generating function for the numbers y;(n, k; \). We
give some functional equations and differential equations of this generating func-
tion. By using these equations, we derive various new identities and combinatorial
relations involving these numbers. Some of our observations on these numbers can
be briefly expressed as follows: the numbers y; (n, k; \) are related to the A-Stirling
numbers of the second kind, the central factorial numbers, the Euler numbers of
negative orders and the Golombek’s identity.

Let k£ € Ny and A € C. We define these numbers, y1(n, k; A) by the following
generating function:

(8) Fy,(t, k5 ) = k, (Ae' +1)" Zylnm
n=0

The function Fy, (¢, k; A\) is an analytic function.
By using (8), we get

> t" t"
;?h(n,kﬂ\)a 7;) k'z< ) nl

Comparing the coefficients of t™ on both sides of the above equation, we arrive at
the the following theorem:

Theorem 1. Let n € Ny. The following identity holds:

Lo~ [k :
() Lk A) = — ") .
Y kl%( J >3
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We assume that A # 0. For k =0,1,2,3,4 and n =0,1,2,3,4,5, we use (9)

to compute a few values of the numbers y; (n, k; A) as follows:

n\k 0 1 2 3

0 IoA+1 AN+ a+1 ¥4I+ N+ 2
1 0 A A+ IN N+ 1N

2 0 A 207 + A SN 207+ 1A

3 0 A 4N 4 X IN 4N+ 1IN

4 0 A 8A% + A ZN +8X2 4 3

5 0 A 16A% + A BINT +16M% + 2

4

s A AT PN A+ g
INHIN+IN+ 1IN

244 , 3,3 2 1

XN FINT AT+ 2N
ENTH N 202+ I
LN H TN 407+ A
LN L BN 4802 + LA

Table 1: Some numerical values of the numbers yi(n, k; ).

For k=0,1,2,...,9and n =0,1,2,...,9, we also use (9) to compute a few

values of the numbers y;(n, k; 1) as follows:

n\k 0 1 2 3 4 5 6 7 8 9
o 122 3 2 S a1 355 855
1012 2 3 3 i 5 315 355
2 0 1 3 4 2 2 % 32 = o
3 015 o 2 =2 k¥ m g
4 01 9 22 8 24 24 328 1 =
274 275 328 1624 5048 208
70 1 65 4y BB gm0 mEmoowm e s
8 0 1 129 1222 % 6554 10{%14 252%68 11§E7)17 10461388
9 0 1 257 3537 42294 86g45 1815458 144445534 6721;48 403;23

Table 2: Some numerical values of the numbers yi(n, k; 1).

Some special values of y;(n, k; \) are given as follows:

1
y1(0,k; \) = H(A + 1),

y1(n,0;A) =0, (neN)

and

yi(n, ;A) = A, (neN).

By using (8), we derive the following functional equation

k
Akt =3 " (— 1)k ( ’; )l!Fyl(t,l;)\).

=0
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Combining (8) with the above equation, we get

00 n 00 k n
2P Z (k;f') _ Z (Z(_l)k—l < ]; )l!yl(n,l;)\)> %

n=0 n=0 \I[=0

Comparing the coefficients of %n, on both sides of the above equation, we obtain the
following theorem:

Theorem 2.

k
KPR =) (-1 ( ’; )l!yl(ml;)\).

=0

We give a relationship between the numbers y(n, k; A) and the A-Stirling
numbers of the second kind by the following theorem:

Theorem 3.

' n
Satn ki) =53 () Satks A= ks ).
=0

Proof. By using (4) and (8), we derive the following functional equation:
Fo(2t,k; \?) = K\ Fs(t, k; N E,, (¢, k; ).

From the above equation, we have

n=0 n=0 n=0
Therefore
o tn o0 n tn
n=0 Y n=0 1=0 ’

"

Comparing the coefficients of n, on both sides of the above equation, we get the

desired result. O

A relationship between the numbers yi(n, k;\), Sa(n,k;A\3) and the array
polynomials S} (x; A) is given by the following theorem:

Theorem 4.

n k P
k A2k¢72] | ) .- )
Sa(n, ki %) = < 7 ) ( . >3njy1(l,];)\)5k, "(2k — 2j; A).
j=0
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Proof. Combining (4), (5) and (8), we get

k
Fs(3t,k; \?) :Z

J:0

)\Qk HFa(t, 2k — 25, k; ) Fy, (t, 73 ).

By using the above functional equation, we obtain

t"
n!

M-

<
Il
o

23"52 (n, k5 X%)

n=0 (k_j)' n=0

Therefore
oo
n=0 =0 j=

Comparing the coefficients of % on both sides of the above equation, we arrive at
the desired result. O

There are many combinatorial applications for (9). That is, by substituting
A =1 into (9), we set

(10) B(n, k) = kly1(n, k; 1).

In [15], Golombek gave the following formula for (9):

d (et + 1)k7 |t:0

B(”? k) = dt"

Remark 1. If we substitute A = —1 into (9), then we get the Stirling numbers of
the second kind (cf. [5]-[44]):

k
Salna) = (-1 ki) = 1 S0 () g
2

Remark 2. We claim that the numbers B(n, k) are related to the following num-
bers:
aka

where the sequence ay is a positive integer depend on k. Consequently, in the work
of Spivey Identity 8-Identity 10 Spevy, we see

B(0, k) = 2F,
B(1,k) = k2F 1,
B(2,k) = k(k +1)282
see also [5, p. 56, Ezercise 21] and [11, p. 117].

. 00 . . m 2 . m
NHETEN Sy (”’Qk—QJ;/\)EZyl(”J;)\)E
" n=0

n

n — kN o\ 2k—2; yy an—l N
> 378y (n, k; ) Z > < > ( ; )]!)\ Tyl 33 VST (2h=2550)
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Remark 3. In [38, Identity 12.], Spivey also proved the following novel identity
by the falling factorial method:

m

(1) Blma) =Y (1) 2 Isa(m. ).

=0

The numbers B(0, k) are given by means of the following well-known gener-
ating function: Let |x| < %, we have

iB(O,k;)xk S

1—2z"
k=0

The numbers B(1, k) are given by means of the following well-known generating
function: Let |z| < £, we have

3 B, k)t = —
; (L) (1—2x)

Remark 4. In work of Boyadzhiev [6, p.4, Eq-(7)], we have
i < K )j”xj = i ( F )j!Sz(n §)2? (14 x)FI
=0\ =0\ 7 |
Substituting x = 1 into the above equation, we arrive at (11).

Theorem 5. Let d € N and mqg,m1, ma,...,mqg € Q . Let mg # 0. Thus we have

(12) §mv3(d — v, k) =21 ( ’:l ) :

Proof. Tt is well-known that
"k
1+z)k = < . ) @,
(1+2) ; ;

Taking the d** derivative, with respect to x, we obtain

(13) <2>(1+z)kd:§<§><é>xﬂ'd.

Substituting x = 1 into the above equation, we get

a *(3)-2(5) ()
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In [36], we have
( y ) =moj" +m1j" + o+ maaj,

where mg, my,...,mg_1 € Q. Therefore
k "k
Qk_d ( d > = Z ( ] ) (mojd+m1jd_1 +"'+md71j) .
§=0
Thus we get

k—a [ K = SR
()-En ()
v=0 7=0 J

Combining (10) with the above equation, we have

el k d—1
2 g )= > myB(d—v,k).
v=0

This completes the proof. O

There are many combinatorial arguments of (13). That is, if we substitute
d = 3 and 4 into (13), then we compute B(3, k) and B(4, k), respectively, as follows:

B(3,k) = k*(k +3)2~3

and
B(4,k) = k(k® + 6k? + 3k — 2)2F 4.
By using (12), we derive the following result:
ok—d /. " My
B(d, k) = — —B(d —v,k).
@n =" () - s
Therefore, we conjecture that
B(d, k) = (k% + 21k + 20k ®2 -+ Fag ok? + g 1K)28
where x1,xs,...,24-1 and d are positive integers. Consequently, we arrive at the

following open questions:
1-How can we compute the coefficients z1,x2,...,24_17
2-We assume that for |z| < r

> B(d, k)z* = fa(w).
k=1

Is it possible to find fi(z) function?
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3.1. Recurrence relation and some identities for the numbers y;(n, k; \)

Here, by applying derivative operator to the generating functions (8), we give
a recurrence relation and other formulas for the numbers y; (n, k; A).

Theorem 6. Let k € N. The following identity holds:
yi(n+ 1,k A) = kyi(n, ks A) — yi(n kb — 1;A).

Proof. Taking derivative of (8), with respect to ¢, we obtain the following partial
differential equation:

8t yl(tk)\)_kFyl(tk)\) yl(tk /\)

Combining (8) with the above equation, we get

Zylnk)\ _1)—k2y1nk)\ Zylnk )
n=0 !

After some elementary calculations, comparing the coefficients of % on both sides
of the above equation, we obtain the desired result. O

Theorem 7. Let k € N. The following identity holds:
9 (nk')\)—zn: ") Gk — 1)
8)\91 s vy - = .] Y17, ) .

Proof. Taking derivative of (8), with respect to A, we obtain the following partial
differential equation:

O p (tk2) = e'Fy, (t,k — 1; \).

(15) N

Combining (8) with the above equation, we get

> e G =35 (] Jntik- 0

n=0 j=0

After some elementary calculations, comparing the coefficients of % on both sides
of the above equation, we obtain the desired result. O

Theorem 8. Let k € N. The following identity holds:

A ya(m, ks N) = kg, ki ) — g,k — 1),



14 Yilmaz Simsek

Proof. By using (15), we obtain the following partial differential equation:

)‘a)\ Ul(tk/\)_kal(tk)‘) 7/1(tk )‘)

Combining (8) with the above equation, we get

B
Z)\Aylnk)\ Zkylnk)\ ' Zylnkz

Comparing the coefficients of % on both sides of the above equation, we get the
desired result. O

4. A family of new numbers yz(n, k; \)

In this section, we define a family of new numbers y2(n, k; A) by means of the
following generating function:

(16) Fy2(tvk;)‘) =

1
@ (el +Alet 4 2)" ZankA
n=0

where k € Ny and A € C.

By using (16) with their functional equation, we derive various identities and
relations including our new numbers, the Fibonacci numbers, the Lucas numbers,
the Stirling numbers and the central factorial numbers.

We get the following explicit formula for the numbers ya(n, k; A):

Theorem 9. Let n,k € N. The following identity holds:

(17) ya(n, k; ) P < )2’@ ];%( ) — )" A2,

Proof. By (16), we have

A= = I 20 — )N | =,
;y2("’k’A)n! ; (2k)!j_0< j ) ;( z >( AR I

Comparing the coefficients of on both sides of the above equation, we obtain the
desired result. O

For k=0,1,2,3 and n =0,1,2,3,4,5,we use (17) to compute a few values of
the numbers ya(n, k; A) as follows:
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n\k 0 1 2 3
1, A A244XN | 4x+1 1 A3460% | N 1 6A+1 1

0 L osx+5+1 21 T 202 T3 720 ~ T a8 T a8x T 7205° T 36

1 0 2_ 1 A242)0 2241 A344)2 4 A L A
2 72X 12 672 240 48 48/\ 24013
A 1 A24N | A+l A2 A2 a1 1 1

2 0 2 + 2\ 6 + 622 80 + 30 + 48 + 48)\ + 302 + 803
A_ L 22240 242 3T A N 1 1 3

3 0 5 —5x 6 62 s T 15T 48 48>\ 15)\2 80)\3
A1 22240 | A4 @ g

4 0 2 + 2\ 3 + 62 + Jr Jr 48)\ + 15)\2 + 80>\3
A1 8AZ4A A48 27,\3 4,\2 A1 4

5 05— 5 6 6A2 + 15 + 48X ~ 15XZ 80)\3

Table 3: Some numerical values of the numbers y2(n, k; \).

By using (8) and (16), we get the following functional equation:

k
Fy,(t k) = TZ::O (G NE, (<t k= A7)

n!

(ZyanA _Z( D™y1(n, k — /\_1)tn>~

n=0
Therefore
> ok AL o n . R
;yz(mk;)\)a: (%)!;;;(*1) ( ] )y1(l73;/\)y1(nl,k1;>\ )y

Comparing the coefficients of £; -1 on both sides of the above equation, the numbers
ya(n, k; \) is given in terms of the numbers y1 (n, k; A) by the following theorem:

Theorem 10. The following identity holds:

n

k
(18)  ya(n, ks ) = 'Z

Jozo

( )yl(z Ji N (n— LE = i A71).

Theorem 11. The following identity holds:
y1(n, 2k; 2) = A" z_: ( ? ) K"y (4, ks A).
7=0
Proof. By using (8) and (16), we get the following functional equation:

MR B (8 ks N) = Fy, (8, 2k; \).
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From the above functional equation, we obtain

> Lt e (B & Lt
;yl(nﬂk,)\)a—)\ nz:% — ;yQ(n,k,)\)a.

Therefore
n n—ij . . tn
E y1n2k:)\ Eﬁ ]EO( i )k Tya (4, ks N) ok

Comparing the coefficients of L 7 on both sides of the above equation, we obtain the
desired result. O

By substituting A = 1 into (16), we have

F,,(tk) = (et +et4 2)k

(2k)!

The function F,(t,k) is an even function. Consequently, we get the following
result:
ya(2n+1,k;1) =

Thus, we get

(19) E,,(t,k) = Fy,(t,k; 1) = Zygnk

By using (19), we give the following explicit formula for the numbers (y2(n, k) =
ya(n, k;1)):

Corollary 1. The following identity holds:

(20) P < )2’“]2(?)21;‘)"

From the equation (20), we see that

Y2 (Ov O) =

For k=0,1,2,...,9 and n € N, we use (20) to compute a few values of the numbers
ya(n, k) as follows:

yQ(na 0) = 07
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2 =
y2(nv ) 6 3 )
(_1)n +1 2n—3 _ (_2)n—3 3n—2 + (_3)n—2
3 = 9
y2(n,3) 48 15 N 80
(n.4) = (=1)" 41 2n 4 ()"t oneh (=) gn2 oy (_3)"?
bl %) = 720 105 315 560
4n73 —(—4 n—3
I o
630
(n 5) B (71)71 +1 2n74 + (72)7174 + 2n75 o (72)n75 3n72 + (73)n—2
Yl ) = 17280 2835 8960
n— n—4 _
+2 (4 4 + (—4) ) 5n72 + (75)” 2
2835 145152 ’
(e VAL 20— ()" 4204 (" 3 (3T
n =
YaAm 604800 31185 98560
3n—5 _ (_3)71—5 47,,_4 + (_4)71—4 2 <4n—5 _ (_4)n—5>
12320 31185 * 155925
572 4 (=5)"72 65 — (—6)"°
1596672 61600 ’
(n 7) B (_1)n + 1 277,—3 _ (_2)1’7,73 271—10 + (_2)71710 3n_3 _ (_3)7173
Y2k, 1) = 29030400 6081075 405405 7321600
n— n—>5
3n—5 _ (_3)”*5 4n—4 + (_4)”*4 2 (4” 5_ (—4) )
640640 1216215 2027025
572 4 (=5)" 2 6P — (—6)" " 24 (=)
38320128 800800 1779148800 ’
(n.8) = (-D"+1 7 (=7)"7% 52 (=5) R gt g (=3)n !
Y2im, &) = 1828915200 26687232000 1494484992 64064000
4n—5 _ (_4)”‘5 8n—5 _ (_8)”—5 4n—5 _ (_4)71—5 3n—5 _ (_3)”‘5
18243225 638512875 30405375 256256000
T e il AR M I e
182432250 11211200 18243225
2n—11 (-9 n—11 2n—7 _ (-9 n—"7 _|_2n—12 + (=2 n—12
e i i ) (2™

6081075 91216125
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Y2 (TL, 9) =

(-1)" +1 T2 4 (=) 524 (5" gnd gy (—gyn?
146313216000 ' 853991424000 83691159552 975822848000

gn—>5 _ (—8)"75 gn—>5 _ (_3)”*5 2 (4n75 _ (_4)77,75)

For n = 0, we have

10854718875 8712704000 1550674125
6n_6 + (_6)71,76 3n_6 + (_3)7176 6n_7 _ (_6)7’7,77
952952000 871270400 34034000
n— n—"7
2T gy T e T
1550674125 536166400 10854718875
+2n—8 + (_2)71—8 2n—11 _ (_2)n—11 2n—12 + (_2)71—12
1550674125 310134825 1550674125
4 2
y2(070) =1, y?(o, 1) =2, y2(072) = y2(0’3) T y2(0’4) = ﬁ’

and for k=0,1,2,...,9and n =1,2,...,

2
3 45

we use (20) to compute a few values

of the numbers ys(n, k), as follows:

=
=~

© 00~ O U W~ S

OO DD OO OO OO

1 2 3 4 5 6 7 8 9
0 O 0 0 0 0 0 0 0

2 2 4 2 4 4 8 2
L3 15 315 2835 155925 6081075 638512875 10854718875
0 O 0 0 0 0 0 0

5 8 2 2 34 8 92 2
L3 15 315 405 155025 1216215 638512875 834978375
0 O 0 0 0 0 0 0 0
1 11 4t 184 152 454 634 1688 542

3 15 315 2835 155925 6081075 638512875 10854718875
0 O 0 0 0 0 0 0 0

65 338 1957 2144 7984 2672 41462 15206
L% 35 315 3835 155925 1216215 0638512875  T0S5A71SETS
0 O 0 0 0 0 0

Table 4: Some numerical values of the numbers y2(n, k).

This function is related to the cosht. That is,

k

Fyz(t7k) = (22](?)'

(cosht 4+ 1)".

By using this function, we get the following combinatorial sums:

Theorem 12. Fach of the following identities holds true:

yz(n,k;l):(;k)!jz:( ’; )2’”2(? >(2l—j)2”.
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Also .
3(5)e5 (1) e
Proof. By using (19), we have
o 120 o0 LA k—‘j ; )
S g =3 (%),g(j)z Jg;(l)@l—,?) -

Comparing the coefficients of #2* on both sides of the above equation, we obtain

the desired result. O

By using (19), we obtain

F,, (t,2k; 1)e ™™ =

(t,v;1)Fy, (—t, k —v;1).

By using the above functional equation, we obtain the following theorem:

Theorem 13. The following identity holds:

n

( ? >(_k) y1(; 2k; 1) %Z ( 7; )Ek:yl(j,v;l)w(n—j,k—v;l).

7=0 Jj= v=0

M-

Recall that the following identity has very important applications in theory
of double series and its applications ([29, Lemma 11, Eq-(7)]):

s oo s [3]
(21) SN Ank) =)D A(n,n—2k),
k=0

n=0 n=0k=0
where [z] denotes the greatest integer function.
Theorem 14. The following identity holds:

3]

v (m2k1) =3 ( 27; ) K%y (5, k; 1),

j=0

Proof. By using (19), we obtain the following functional equation:
Fy, (t,2k;1) = F,, (¢, k)e*

Combining this equation with (8), we get

o " 0o n 00 2n

n=0 " n=0 =0
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By using (21) in the above equation, we obtain

n Jen—27
E 2k;1)— = E —_ 1, ks 1 ",

Comparing the coefficients of ¢ on both sides of the above equation, we obtain the
desired result. O

We now present a relation between the Lucas numbers L,, and the numbers
ya(n, k; 1) by the following theorem:

Theorem 15. Leta+b=1,ab= —1 and &=t = ¢ = % Then

(5]

n k n—2m
A < 2'm ) CmeQ(m’j; 1) (2> 5

where Lgf) denote Lucas numbers of order k.

LY = i ( ’j ) (2)!(—2)"

J=0

m=

Proof. In [22, pp. 232-233] and [8], the Lucas numbers L,, are defined by means
of the following generating function:

o0 tn
e 4 bt = Z L,—.
n!
n=0

From the above, we have

(22) Fr(t,k;a,b) = (e + 6bt)k = Z L#

n=0

tTL
H.

where
n

L0 Z( n )L(m)Lw—mx
n ] n n

j=0
By combining (22) with (16), we obtain the following functional equation
k b k ;
Pt ka,b) =e? Y ( . ) (—2)F =9 (25)1F,, (ct, 33 1).

=7

Since F,(ct,j;1) is an even function, we have

S S (5) S (B ) ot 3 et e

n=0 n=0 7=0 m=0
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Using (21) in the above equation, we get

Soe- S5 (2 Y () mwnsn (575

n=0 j=0 m=0

S

Comparing the coefficients of ¢ on both sides of the above equation, we obtain the
desired result. O

We also present an identity including the Fibonacci numbers f,,, the Lucas
numbers L, and the numbers y;(n, k; 1) by the following theorem:

Theorem 16. Leta+b=1, ab= —1 and %b =c= % Then

n

_ Z( )2c”’y(n—J}k;l)((a—Qckj)fﬁfj—l)'

Proof. We set

o0

a_b an

(¢f. [22, p. 232], [8]). By combining (22) and (8) with the above equation, we
obtain the following functional equation

Ff(t, a, b)

Fr(t, k;a,b) = kIFy, (2ct, k; 1) (e*™ — 2cFy(kt, a,b)) .

Therefore
S R oo n tn
ZLS‘)E k'z ( ) T20)" P yi(n — 5, k; 1)—
n=0 ’ n=0 j=0
. n
—k'ZZ( ) (20" g1 (n =, ks DK
n=0 5=0

After some elementary calculations and comparing the coefficients of % on both
sides of the above equation, we obtain the desired result. O

4.1. Recurrence relation for the numbers y,(n, k; \)

Here, taking derivative of (16), with respect to t, we give a recurrence relation
for the numbers yo(n, k; A).

Theorem 17. Let k € N. Then

yan1, K5 A) = ks (1, K5 A) — (s e 15 ) — A" ( n )(—1)”jy2<j,k—1;x>‘
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Proof. Taking derivative of (16), with respect to t, we obtain the following partial
differential equation:

0
g btk N) = RE (1 k5 0) = Fyy (k= 130) = A7 le "y (1. — 1),

Combining (16) with the above equation, we obtain

Zygnk)\ :kagnk)\ Zygnk

n=0 'no

—ZZ( ) 'y2(j,k—1;A)%-

n=0 j=0

After some elementary calculation, comparing the coefficients of tn—n, on both sides
of the above equation, we obtain the desired result. O

Theorem 18. Let n € Ny and k € N. Then
0 " n -
2 YY) 22 } : : .
2 6)\y2(nak7)‘)*>\ j0< ] >y2 ]7 = < . >y2(]7k17A)

Proof. Taking derivative of (16), with respect to A\, we obtain the following partial
differential equation:

2/\286)\ By, (6 k) = By, (t — 130) (e —%e t).

Combining (16) with the above equation, we get

/\225)\y2nk>\ ZZ( .)ygj, 1,)\)%

n=0 j=0
ZZ ( .>yz(j,k1;>\)j:,-
n=0 j=0 :

After some elementary calculation, comparing the coefficients of % on both sides
of the above equation, we get the desired result. O

5. A-central factorial numbers C(n, k; \)

In this section, we define A-central factorial numbers C(n, k; A) by means of
the following generating function: Let k € Ny and A € C. Then

. = ¢
(e +ae = 2)" = 37 Ol ks N

(23)  Feltk)) = (2%)'
: n=0
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For A = 1, we have the central factorial numbers
T(n,k) =C(n,k;1)
(ct. [2], [7], [18], [35], [41]).
Theorem 19. The following identity holds:

n
C (n,k;/\Q) = 2‘"(21{:)!2 ( 1; ) C(4, k; Nya(n — 4, k; N).
3=0
Proof. By using (16) and (23), we get the following functional equation:
Fo (2t k3 N%) = (2k)\Fo(t, ky M) Fy, (¢, ks A).

From this equation, we get

ZanAz ) (2k)! Zan)\ Z nkA—
n=0 n=0 n=0
Therefore
iC(n kA2 2 i(%)!i ") Gk N — g ks A)
n=0 Y n' n=0 7=0 J Y Y ’fl'

Comparing the coefficients of % on both sides of the above equation, we get the
desired result. O

By using (7) and (19), we obtain the following functional equation:

Fr(t,k;1)Fy,(t, k; 1) = Fr(2t,k; 1).

(2k)!
Combining the above equation with (7) and (19), we get
s tn el t2n

4"t2
T( T .
2k o Z n, k) —— Zyg n,k)— (n, k) )l

.nO

Therefore

|3

t2n x [ ] n

2k'24” nk o)) Z (Z)yg(n—Qj,k)T(j,k) %

n=0 \ j=0

Comparing the coefficients of -4 ( 57 on both sides of the above equation, we obtain a
relationship between the central factorlal numbers T'(n, k) and the numbers ys(j, k)
by the following theorem:
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Theorem 20. If n is even an integer, then we have

2
n n . .
T,k = 4@ (5 )t —2507G.0)
j=
If n is an odd integer, then we have
5,
z( ¢ )yz(n—%k)T(j,k) —o.
j=0

Remark 5. In [3], Alayont et al. have studied the rook polynomials, which count
the number of ways of placing non-attacking rooks on a chess board. By using
generalization of these polynomials, they gave the rook mumber interpretations of
generalized central factorial and the Genocchi numbers.

In [2], Alayont and Krzywonos gave the following result for the classical cen-
tral factorial numbers:

The number of ways to place k rooks on a size m triangle board in three
dimensions is equal to T(m +1,m+ 1 —k), where 0 < k < m.

6. Application: in the binomial distribution and in the Bernstein
polynomials

Let n be a nonnegative integer. For every function f : [0,1] — R and the n'"
Bernstein polynomial of f is defined by

mar =3 (1)1 (%) Bew,

k=0

where B}!(z) denotes the Bernstein basis functions:

Bp) = ()t ort

and =z € [0,1]. Let (Ug)r>1 be a sequence of independent distributed random
variable having the uniform distribution on [0, 1] and defined by Adell et al. [1]:

Sp(z) = Z 110,2) (Ug)-
k=1

In [1], it is well-know that, Sy, (x) is a binomial random variable. That is the theory
of Probability and Statistics, the binomial distribution is very useful. This distribu-
tion, with parameters n and probability z, is the discrete probability distribution.
This distribution is defined as follows:

Psa) =) =} ) a1 -or
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where £ =0,1,2,--- ,n. Let E denote mathematical expectation. Than

£y (242 = b, (1.0

(cf. [1]). For any = € (0,1), n > 2, and r > 1, Adel et al. [1] defined
. n n i .
(24) E(Sn(z)) = kzo( . ) KTk (1 — 2)n 7k,

Substituting z = 1 into (24), we get

(25) E(Sn (;)y:;;( Z )kr.

By combining (9) with (25), we arrive at the following theorem:

Theorem 21. Let n € N\ {1}. Let r € N. Then

oo ()

Integrating (24) from 0 to 1, we get

1
1 n
E(S "dx = E".
[EG @) do= 7>
By substituting (2) into the above equation, after some elementary calculations, we
get the following theorem:

Theorem 22. The following identity holds:

/ 1 NS A | +1-j
r n r —J l
E (S, dr= ——— . By,
[Eer i 2 () (7 )
0

j=0 1=0

where By denotes the Bernoulli numbers.

7. Computation of the Euler numbers of negative order

In this section, we not only give elementary properties of the first and second
kind Euler polynomials and numbers, but also compute the first kind of Apostol
type Euler numbers associated with the numbers y1(n, k; A) and ya(n, k; A).
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The second kind Apostol type Euler polynomials of order k, E;:(k)(x; A) are
given by means of the following generating function:

n

2 k ') ¢
. _ tr __ *(k .
Fp(t,z;k,\) = ()\et " Alet> e’ = E Ex )(3;7)\)—71!.
n=0

Substituting z = 0 into the above equation, we get the second kind Apostol type
Euler numbers of order k, with & > 0, o (M) by means of the following generating

function: .
2 o0
vtk N =(—20 :E Exk)
vk (Aefﬂ—le—t) =

If we substitute £k = XA = 1 into the above generating function, then we have
Er = EXM(1).

Substituting = 0 into the equation (3) with —k, we get the first kind Apostol-
Euler numbers of order —k, Effk) (M) are given by means of the following generating

function:

(26) Grlt,—k; \) = <A6 H) ZE )=

The second kind Apostol type Euler numbers of order —k are defined by means of
the following generating function:

Aet + A" lemt\ "
(27) FN(t§ —k, )\) = (2) = Z En( k)()\)m.

n=0

The numbers Ez(fk)(/\) are related to the numbers Er(fk)()\) and the Apos-
tol Bernoulli numbers Bﬁfk)()\) of the negative order. By using (27), we get the

following functional equation:

k
j=0

where

Hp(t, —k;)\) = <A6 1) ZB L

(cf. [25], [27], [39]). By using this equation, we get

k

N (k) P B\ i bk i o= t > (—t)"

Jj=0
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Therefore
0o m oo k k n—k+j n k+]
NSNS L q\ntji—k—1 -
SEwh = X3 () T e ()
o n=0j=0 1=0
i (—7) —k+i) -1yt
X297 (), By BT O Dor

Comparing the coefficients of % on both sides of the above equation, we arrive at
the following theorem.

Theorem 23. The following identity holds:

BP0 = fﬁ(?)nfj<—1>”“’”(”";” )W(n)m

j=0 1=0

i k _
< B BLER (.

_k)

We observe that the second kind Euler numbers of negative order E;( have

been computed by Liu [24].

By using the numbers y; (n, k; \), we are ready to compute the first kind Euler
numbers of negative order.

Combining (8) and (26), we get

k12" Zylnk)\ ZE( R\

n=0

Comparing the coefficients of % on both sides of the above equation, we arrive at
the following theorem.

Theorem 24. Let k € Ng. Then
(28) ER(A) = k27 gy (n, ks ).

Remark 6. Substituting A = 1 into (28), we obtain the following explicit formula
for the first kind Fuler numbers of order —k:

(29) ECR =27k B(n, k).
From the equation (29), we see that
EY =1.

Fork =0,1,2,...,7and n € N, we use (29) to compute a few values of the numbers
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E,(fk) as follows:

E® = o,
1
ECY = 3 1
EC?D = on2y 3
ECY = % +3.2"73 4 g,
ECY = % +4m72 4 3.2m73 4 i,
ECY = Z—Z + 33‘2” + 51?! + 154773 4152776 ¢ %
n n n n n—3

ECD = 1778 + 71'268 + 211;; + 3?;; + 35’2 +21.2"77 4

7

128’

That is for n =0,1,2,...,9 and £k =0,1,2,...,9, we compute a few values of the

(=F)

numbers Ey, "/, given by the above relations, as follows:
n\k 0 1 2 3 4 5 6 7
0 11 1 1 1 1 1 1 1
1 3 5 7
1 o 2 1 3 2 5 3 z 4
2 0 3 3 3 5 2 2 14 18
3 0 3 3 % 14 25 8l 2 88
4 0 4 5 B & 90 168 287 459
5 o 4 i 1 37 13 738 1421 2524
6 o i 3 21 925 5505 13387 7364 14508
7 0 3 % 12T 9619 5725 G007 TS 8GE(8
8 0 1 129 1833 11665 49155 160671 441469 1068453
2 2 2 2 2 2 2 2
1 257 10611 433225 816561 5055869
9 0 1 2T 16U 91497 433 . - 3390874

Table 5: Some numerical values of the numbers ES®).

Theorem 25. Let k € Ng. Then

k

k
ya(n, k; N) = (22k)' Z( ]; )E;(—Z)()\).

=0

173664

1173240
32620563
4
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Proof. By using (16) and (27), we get the following functional equation:

F,,(t k) = o ( ) —1,A).

From this equation, we obtain

Zygnk‘/\ Z<2k'z< >2kE;;(—z)(,\)> %"'

Comparing the coefficients of %‘ on both sides of the above equation, we obtain the
desired result. O

Theorem 26. Let k € Ny. Then

ya(n, ks \) é:( ) “EER (—p ).

Proof. By using (16) and (3), we get the following functional equation:

Fy,(t, ks ) = P ( ) “Fpy (t,—1;—k,\) .

From this equation, we obtain
k) — = ALECR () | =,
S kN 7;%((%)!;( D) i)

Comparing the coefficients of % on both sides of the above equation, we obtain the
desired result. O

By applying derivative operator to the generating function in (8), we give
a relationship between the numbers y;(n, k; A) and gY (M) as in the following
theorem:

Theorem 27. Let n,k € Ng. Then

(30)  m(n+2.k)) = Ey(nkN)
k(2k—=3)~{( n .
+# £ ( I ) yl(n — l, k, )\)El ()\)
k(k—1) " n (2) "
+74 2 < ) )E Ny ( Lk ).

Let n € N\ {1}. Then
(B1)  yi(n+2,kA) = EPya(n, ks A) + yi(n,k — 2;0) = (2k — Dya(n, k — 1;A).
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Proof of (30). By applying derivative operator to (8) with respect to ¢, we obtain
the following partial differential equation:

2 k(2k—3
TPtk = kB, k0 + P2 e 001 N k)
+MFPI(75 0,2, )y, (t, ks ).

4
Combining (8) and (3) with the above equation, we get

e tn—2
ZZ: nk)\ﬁ

oo n

t" 2k 3) tn
_ 2 .
= k E y1(n, k; )\ g:o 2 ( )yl(n—l,la)\)El (A oy
_1 E E < >E(2) )\)yl(nfl,k;)\)%'.

n=0 [=0

We make a suitable arrangement of the series and then compare the coefficients of
L5 on both sides of the above equation, and we obtain the first assertion (30). [

Proof of (31). Similarly, by applying derivative operator to (8) with respect to t,
we obtain the following partial differential equation:

2
%Fyl(tvk;A) :k2Fyl(tvk;)‘)_(2k—1)Fy1(t7k_1;)‘)+Fy1(tvk_2;)‘)'

Combining (8) with the above equation, we get

x tn—Q

n;yl(”’ BN G2

oo m
n=0

Comparing the coefficients of % on both sides of the above equation, we get the
second as