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A DIAGONAL RECURRENCE RELATION FOR THE

STIRLING NUMBERS OF THE FIRST KIND

Feng Qi∗ and Bai-Ni Guo

In the paper, the authors present an explicit form for a family of inhomoge-
neous linear ordinary differential equations, find a more significant expression
for all derivatives of a function related to the solution to the family of inhomo-
geneous linear ordinary differential equations in terms of the Lerch transcen-
dent, establish an explicit formula for computing all derivatives of the solution
to the family of inhomogeneous linear ordinary differential equations, acquire
the absolute monotonicity, complete monotonicity, the Bernstein function
property of several functions related to the solution to the family of inhomo-
geneous linear ordinary differential equations, discover a diagonal recurrence
relation of the Stirling numbers of the first kind, and derive an inequality for
bounding the logarithmic function.

1. MAIN RESULTS

In [7, Section 3, Theorem 1], by inductive argument, it was proved that the
family of inhomogeneous linear ordinary differential equations

(1)
(√

1− 4t − 1
)
F (n)(t) +

n∑
i=1

an,i
(1− 4t)n−i+1/2

F (i−1)(t) =
an,0

(1− 4t)n

for n ∈ N have a solution

(2) F (t) =


1

2

ln(1− 4t)√
1− 4t − 1

, 0 6= t <
1

4
;

1, t = 0,
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where

an,0 = −22n−1(n− 1)!, an,1 = −2n(2n− 3)!!, an,n = −2n,

an,i = −Sn−i+2,i−22n−i+1(2n− 2i− 1)!!, 2 ≤ i ≤ n− 1,

Sn,0 = n, Sn,j =

n∑
`=1

S`,j−1, j ≥ 1.

This is a core conclusion in the paper [7].

It is obvious that the above sequence an,i for n ∈ N and 0 ≤ i ≤ n is given
recursively. It is natural to ask for a question: can one find an explicit expression
of the above sequence an,i for n ∈ N and 0 ≤ i ≤ n? In other words, can one
find an explicit form for the family of inhomogeneous linear ordinary differential
equations (1)? Our answer to this question can be stated as Theorem 1 below.

Theorem 1. For n ∈ N, the family of inhomogeneous linear ordinary differential
equations(

1−
√

1− 4t
)
(1− 4t)nF (n)(t) + 2n(1− 4t)n−1/2F (n−1)(t)

+ 2n
n−2∑
r=0

(
n

r

)
(2n− 2r + 1)!!

2r
(1− 4t)r+1/2F (r)(t) = 22n−1(n− 1)!

has the solution (2).

We observe that the function F (t) is a composite of the functions

f(x) =


lnx

x− 1
, 0 < x 6= 1

1, x = 1

and x = h(t) =
√

1− 4t . By the Leibniz theorem for differentiation of a product,
it is not difficult to obtain

(3) f (n)(x) =
(−1)nn!

(x− 1)n+1

[
lnx−

n∑
k=1

1

k

(
x− 1

x

)k
]
, n ≥ 0.

Recall from [3, Chapter 14], [8, Chapter XIII], [28, Chapter 1], and [30,
Chapter IV] that a function f is said to be completely monotonic on an interval
I ⊆ R if f has derivatives of all orders on I and (−1)nf (n)(t) ≥ 0 for all t ∈ I
and n ∈ {0} ∪ N. Recall from [22, p. 1161] and [28, Chapter 3] that a function
f : I ⊆ (−∞,∞)→ [0,∞) is called a Bernstein function on I if f(t) has derivatives
of all orders and f ′(t) is completely monotonic on I.

The second main result of this paper is to present a more significant expres-
sion than (3) for the nth derivative of the function f(x) in terms of the Lerch
transcendent

Φ(z, s, a) =

∞∑
k=0

zk

(a + k)s
, a 6= 0,−1, . . . .
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From the more significant expression, we obtain complete monotonicity of the func-
tions f(x) and xn+1f (n)(x) and derive an inequality of the logarithmic function lnx.

Theorem 2. For n ≥ 0, the nth derivative of the function f(x) can be expressed
by

(4) f (n)(x) =


(−1)n

n!

xn+1
Φ

(
x− 1

x
, 1, n + 1

)
, 0 < x 6= 1;

(−1)n
n!

n + 1
, x = 1.

Consequently,

1. the function f(x) is completely monotonic on (0,∞);

2. the functions xn+1f (n)(x) for all n ≥ 0 are Bernstein functions on (0,∞);

3. the inequality

(5) lnx >

n∑
k=1

1

k

(
x− 1

x

)k

, n ∈ N

(a) holds

i. either for x > 1 and all n ∈ N,

ii. or for 0 < x < 1 and odd n;

(b) reverses for 0 < x < 1 and even n.

Recall from [5] and [30, Chapter IV] that a function f is said to be absolutely
monotonic on an interval I if it has derivatives of all orders and f (k−1)(t) ≥ 0 for
t ∈ I and k ∈ N.

The third main result of this paper is an explicit formula for the nth derivative
of F (t). From the explicit formula, we deduce the absolute monotonicity of the
function F (t).

Theorem 3. The nth derivative of the function F (t) can be expressed by

F (n)(t) =
2n

(1− 4t)n+1/2

n∑
`=0

`![2(n−`)−1]!!

(
2n− `− 1

`− 1

)
Φ

(√
1− 4t − 1√

1− 4t
, 1, `+1

)
.

Consequently, the function F (t) is absolutely monotonic on
(
−∞, 1

4

)
and, equiva-

lently, the function F (−t) is completely monotonic on
(
− 1

4 ,∞
)
.

In combinatorics [4, 11, 13], the Stirling number of the first kind s(n, k)
can be defined such that the number of permutations of n elements which contain
exactly k permutation cycles is the nonnegative number |s(n, k)| = (−1)n−ks(n, k).

In [11, 12], diagonal recurrence relations for the Stirling numbers of the first
and second kinds were discovered.

The fourth main result of this paper is a diagonal recurrence relation of the
Stirling numbers of the first kind s(n, k).



156 Feng Qi and Bai-Ni Guo

Theorem 4. The Stirling numbers of the first kind s(n, k) satisfy the diagonal
recurrence relation

(6)
s(n + k, k)(

n+k
k

) =

n∑
`=0

(−1)`
〈k〉`
`!

∑̀
m=1

(−1)m
(
`

m

)
s(n + m,m)(

n+m
m

) ,

where

〈x〉n =

n−1∏
k=0

(x− k) =

{
x(x− 1) · · · (x− n + 1), n ≥ 1

1, n = 0

is the falling factorial.

2. LEMMAS

In order to prove our main results, we recall several lemmas below.

Lemma 1 ([4, p. 134, Theorem A] and [4, p. 139, Theorem C]). For n ≥ k ≥ 0,
the Bell polynomials of the second kind, or say, partial Bell polynomials, denoted
by Bn,k(x1, x2, . . . , xn−k+1), are defined by

Bn,k(x1, x2, . . . , xn−k+1) =
∑

1≤i≤n,`i∈{0}∪N∑n
i=1 i`i=n∑n
i=1 `i=k

n!∏n−k+1
i=1 `i!

n−k+1∏
i=1

(xi

i!

)`i
.

The Faà di Bruno formula can be described in terms of the Bell polynomials of the
second kind Bn,k(x1, x2, . . . , xn−k+1) by

(7)
dn

d tn
f ◦ h(t) =

n∑
k=0

f (k)(h(t))Bn,k

(
h′(t), h′′(t), . . . , h(n−k+1)(t)

)
.

The Faà di Bruno formula (7) and the Bell polynomials of the second kind
Bn,k(x1, x2, . . . , xn−k+1) are useful tools in combinatorics and mathematical analy-
sis and they were often used to compute the higher-order derivatives for a composite
function. For example, see [31, 32].

Lemma 2 ([4, p. 135]). For complex numbers a and b, we have

(8) Bn,k

(
abx1, ab

2x2, . . . , ab
n−k+1xn−k+1

)
= akbnBn,k(x1, x2, . . . , xn−k+1).

Lemma 3 ([4, p. 135, Theorem B] and [11, Theorem 1.1]). For n ≥ k ≥ 0, we
have

(9) Bn,k(1!, 2!, . . . , (n− k + 1)!) =

(
n− 1

k − 1

)
n!

k!

and

(10) Bn,k

(
1!

2
,

2!

3
, . . . ,

(n− k + 1)!

n− k + 2

)
= (−1)n−k

1

k!

k∑
m=0

(−1)m
(
k

m

)
s(n + m,m)(

n+m
m

) .
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Lemma 4 ([1, p. 40]). Let p = p(x) and q = q(x) 6= 0 be two differentiable
functions. Then

(11)

[
p(x)

q(x)

](k)

=
(−1)k

qk+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

p q 0 · · · 0 0
p′ q′ q · · · 0 0

p′′ q′′
(

2
1

)
q′ · · · 0 0

...
...

...
...

...
...

p(k−2) q(k−2)
(
k−2

1

)
q(k−3) · · · q 0

p(k−1) q(k−1)
(
k−1

1

)
q(k−2) · · ·

(
k−1
k−2

)
q′ q

p(k) q(k)
(
k
1

)
q(k−1) · · ·

(
k

k−2

)
q′′

(
k

k−1

)
q′

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
for k ≥ 0. In other words, the formula (11) can be rewritten as

(12)
dk

dxk

[
p(x)

q(x)

]
=

(−1)k

qk+1(x)

∣∣W(k+1)×(k+1)(x)
∣∣,

where |W(k+1)×(k+1)(x)| denotes the determinant of the (k + 1)× (k + 1) matrix

W(k+1)×(k+1)(x) =
(
U(k+1)×1(x) V(k+1)×k(x)

)
,

the quantity U(k+1)×1(x) is a (k+ 1)×1 matrix whose elements u`,1(x) = p(`−1)(x)
for 1 ≤ ` ≤ k + 1, and V(k+1)×k(x) is a (k + 1)× k matrix whose elements

vi,j(x) =


(
i− 1

j − 1

)
q(i−j)(x), i− j ≥ 0

0, i− j < 0

for 1 ≤ i ≤ k + 1 and 1 ≤ j ≤ k.

Remark 1. The formula (12) in Lemma 4 has been applied in the papers [6, 10, 14,
15, 16, 17, 18, 19, 21, 23, 24, 25, 26, 27, 29] to express the Apostol–Bernoulli
polynomials, the Cauchy product of central Delannoy numbers, the Bernoulli poly-
nomials, the Schröder numbers, the (generalized) Fibonacci polynomials, the Cata-
lan numbers, derangement numbers, and the Euler numbers and polynomials in
terms of the Hessenberg and tridiagonal determinants. This implies that Lemma 4
is an effectual tool to express some mathematical quantities in terms of the Hes-
senberg and tridiagonal determinants.

Lemma 5 ([2, p. 222, Theorem] and [27, Remark 3]). Let M0 = 1 and

Mn =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

m1,1 m1,2 0 · · · 0 0
m2,1 m2,2 m2,3 · · · 0 0
m3,1 m3,2 m3,3 · · · 0 0

...
...

...
...

...
...

mn−2,1 mn−2,2 mn−2,3 · · · mn−2,n−1 0
mn−1,1 mn−1,2 mn−1,3 · · · mn−1,n−1 mn−1,n

mn,1 mn,2 mn,3 · · · mn,n−1 mn,n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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for n ∈ N. Then the sequence Mn for n ≥ 0 satisfies M1 = m1,1 and

(13) Mn = mn,nMn−1 +

n−1∑
r=1

(−1)n−rmn,r

(
n−1∏
j=r

mj,j+1

)
Mr−1, n ≥ 2.

Lemma 6. The Lerch transcendent Φ(z, s, a) satisfies

(14) Φ(z, s, a) =
1

Γ(s)

∫ ∞
0

xs−1e−ax

1− ze−x
dx, <(s),<(a) > 0, z ∈ C \ [1,∞)

and

(15) Φ(t, 1, n + 1) = − ln(1− t)

tn+1
−

n∑
k=1

1

n− k + 1

1

tk
, n ≥ 0,

where

Γ(z) =

∫ ∞
0

tz−1e−t d t, <(z) > 0

denotes the classical Euler gamma function. Consequently, the Lerch transcendent
Φ(x, s, a) for s, a > 0 is an absolutely monotonic function of x ∈ (−∞, 1) and the
function Φ

(
x−1
x , 1, n + 1

)
is a Bernstein function of x ∈ (0,∞).

Proof. The integral representation (14) can be found in [9, p. 612, Entry 25.14.5].

From (14), it follows that

∂n

∂zn
Φ(z, s, a) =

n!

Γ(s)

∫ ∞
0

xs−1e−(a+n)x

(1− ze−x)n+1
dx

for <(s),<(a) > 0 and z ∈ C \ [1,∞). Hence, the Lerch transcendent Φ(x, s, a) for
s, a > 0 is an absolutely monotonic function of x ∈ (−∞, 1).

Since

ln(1− t) = −
∞∑
k=1

tk

k
, |t| < 1,

we have

− ln(1− t)

tn+1
−

n∑
k=1

1

n− k + 1

1

tk
=

∞∑
k=1

1

k

1

tn−k+1
−

n∑
`=1

1

`

1

tn−`+1

=

∞∑
k=n+1

1

k

1

tn−k+1
=

∞∑
k=0

1

n + k + 1

1

tk
= Φ(t, 1, n + 1).

The identity (15) is thus proved.

A direct computation by employing (7), (8), and (9) gives

∂k

∂xk
Φ

(
x− 1

x
, 1, n + 1

)
=

k∑
`=0

∂`

∂u`
Φ(u, 1, n + 1)
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× Bk,`

(
1!

x2
,− 2!

x3
, . . . , (−1)k−`

(k − ` + 1)!

xk−`+2

)
=

k∑
`=0

∂`

∂u`
Φ(u, 1, n + 1)

(−1)k+`

xk+`
Bk,`(1!, 2!, . . . , (k − ` + 1)!)

=
(−1)k

xk

k∑
`=0

`!

Γ(1)

∫ ∞
0

e−(n+`+1)t

(1− ue−t)`+1
d t

(−1)`

x`

(
k − 1

`− 1

)
k!

`!

=
(−1)kk!

xk

∫ ∞
0

e−(n+1)t
k∑

`=0

e−`t

(1− ue−t)`+1

(−1)`

x`

(
k − 1

`− 1

)
d t

=
(−1)k+1k!

xk

∫ ∞
0

e−(n+1)t et

(et − 1)(etx− x + 1)

[
(et − 1)x

(et − 1)x + 1

]k
d t

= (−1)k+1k!

∫ ∞
0

(et − 1)k−1

[(et − 1)x + 1]k+1ent
d t

for k ∈ N, where u = 1 − 1
x . Thus, the function Φ

(
x−1
x , 1, n + 1

)
is a Bernstein

function on (0,∞). The proof of Lemma 6 is complete.

Lemma 7 ([25, Theorem 4]). Let ha,b(x) =
√
a + bx for a, b ∈ R and b 6= 0 and

let n ∈ N. Then the Bell polynomials of the second kind Bn,k satisfy

(16) Bn,k

(
h′a,b(x), h′′a,b(x), . . . , h

(n−k+1)
a,b (x)

)
= (−1)n+k[2(n− k)− 1]!!

(
b

2

)n(
2n− k − 1

2(n− k)

)
1

(a + bx)n−k/2
.

3. PROOFS OF MAIN RESULTS

We now start out to prove our main results.

Proof of Theorem 1. By virtue of Lemma 4, we have

2F (n)(t) =

[
ln(1− 4t)√
1− 4t − 1

](n)

=
(−1)n

(
√

1− 4t − 1)n+1
Mn+1 ,

(−1)n

(
√

1− 4t − 1)n+1

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ln(1− 4t)
√

1− 4t − 1 0 · · · 0
−4

1−4t
−2

(1−4t)1/2

√
1− 4t − 1 · · · 0

−421!
(1−4t)2

−221!!
(1−4t)3/2

(
2
1

) −2
(1−4t)1/2

· · · 0
−432!

(1−4t)3
−233!!

(1−4t)5/2

(
3
1

) −221!!
(1−4t)3/2

· · · 0

...
...

...
...

...
−4n−2(n−3)!

(1−4t)n−2

−2n−2(2n−7)!!
(1−4t)(2n−5)/2

(
n−2

1

)−2n−3(2n−9)!!
(1−4t)(2n−7)/2 · · · 0

−4n−1(n−2)!
(1−4t)n−1

−2n−1(2n−5)!!
(1−4t)(2n−3)/2

(
n−1

1

)−2n−2(2n−7)!!
(1−4t)(2n−5)/2 · · ·

√
1− 4t − 1

−4n(n−1)!
(1−4t)n

−2n(2n−3)!!
(1−4t)(2n−1)/2

(
n
1

)−2n−1(2n−5)!!
(1−4t)(2n−3)/2 · · ·

(
n

n−1

) −2
(1−4t)1/2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.
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Further applying the recurrence relation (13) to the above determinant yields

Mn+1 =

(
n

n− 1

)
−2

(1− 4t)1/2
Mn + (−1)n

−4n(n− 1)!

(1− 4t)n
(√

1− 4t − 1
)n

+

n∑
r=2

(−1)n−r+1

(
n

r − 2

)
−2n−r+2[2(n− r) + 1]!!

(1− 4t)[2(n−r)+3]/2

(√
1− 4t − 1

)n−r+1
Mr−1

for n ∈ N. This equality can be rewritten as

(−1)n

(
√

1− 4t − 1)n+1
Mn+1 =

1√
1− 4t − 1

[(
n

n− 1

)
2

(1− 4t)1/2

(−1)n−1

(
√

1− 4t − 1)n
Mn

− 4n(n− 1)!

(1− 4t)n
+

n∑
r=2

(
n

r − 2

)
2n−r+2[2(n− r) + 1]!!

(1− 4t)[2(n−r)+3]/2

(−1)r−2

(
√

1− 4t − 1)r−1
Mr−1

]
for n ∈ N. In a word, we obtain

2F (n)(t) =
1√

1− 4t − 1

[(
n

n− 1

)
2

(1− 4t)1/2
2F (n−1)(t)

+

n∑
r=2

(
n

r − 2

)
2n−r+2[2(n− r) + 1]!!

(1− 4t)[2(n−r)+3]/2
2F (r−2)(t)− 4n(n− 1)!

(1− 4t)n

]
, n ∈ N.

Theorem 1 is thus proved.

Proof of Theorem 2. Applying p(x) = lnx and q(x) = x−1 to Lemma 4, expanding
the obtained determinant according to the last row consecutively, and making use
of (15) yield(

lnx

x− 1

)(n)

=
(−1)n

(x− 1)n+1

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

lnx x− 1 0 0 · · · 0 0
1
x 1 x− 1 0 · · · 0 0
− 1

x2 0 2 x− 1 · · · 0 0
2
x3 0 0 3 · · · 0 0
...

...
...

...
...

...
...

(−1)n−2 (n−2)!
xn−1 0 0 0 · · · n− 1 x− 1

(−1)n−1 (n−1)!
xn 0 0 0 · · · 0 n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
(−1)nn

(x− 1)n+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

lnx x− 1 0 0 · · · 0 0
1
x 1 x− 1 0 · · · 0 0
− 1

x2 0 2 x− 1 · · · 0 0
2
x3 0 0 3 · · · 0 0
...

...
...

...
...

...
...

(−1)n−3 (n−3)!
xn−2 0 0 0 · · · n− 2 x− 1

(−1)n−2 (n−2)!
xn−1 0 0 0 · · · 0 n− 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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+ (−1)n−1 (n− 1)!

xn(x− 1)

=
(−1)nn(n− 1)

(x− 1)n+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

lnx x− 1 0 0 · · · 0 0
1
x 1 x− 1 0 · · · 0 0
− 1

x2 0 2 x− 1 · · · 0 0
2
x3 0 0 3 · · · 0 0
...

...
...

...
...

...
...

(−1)n−4 (n−4)!
xn−3 0 0 0 · · · n− 3 x− 1

(−1)n−3 (n−3)!
xn−2 0 0 0 · · · 0 n− 2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
+ (−1)n−1 (n− 2)!n

xn−1(x− 1)2
+ (−1)n−1 (n− 1)!

xn(x− 1)

=
(−1)n〈n〉n−1

(x− 1)n+1

∣∣∣∣lnx x− 1
1
x 1

∣∣∣∣+ (−1)n−1
n−1∑
k=1

(n− k)!〈n〉k−1

xn−k+1(x− 1)k

=
(−1)n〈n〉n−1

(x− 1)n+1

(
lnx− x− 1

x

)
+ (−1)n−1

n−1∑
k=1

(n− k)!〈n〉k−1

xn−k+1(x− 1)k

=
(−1)n〈n〉n
(x− 1)n+1

lnx + (−1)n−1
n∑

k=1

(n− k)!〈n〉k−1

xn−k+1(x− 1)k

= (−1)n−1n!

[
n∑

k=1

1

(n− k + 1)xn−k+1(x− 1)k
− 1

(x− 1)n+1
lnx

]

= (−1)n
n!

xn+1
Φ

(
x− 1

x
, 1, n + 1

)
.

The formula (4) is thus proved.

From absolute monotonicity and Bernstein function property in Lemma 6, it
is immediate to obtain that the function f(x) is completely monotonic on (0,∞)
and the functions xn+1f (n)(x) for all n ≥ 0 are Bernstein functions on (0,∞).

The inequality (5) follows from the complete monotonicity of f(x) and the
formula (3). The proof of Theorem 2 is complete.

Proof of Theorem 3. By (7), (16) in Lemma 7, and (4) in sequence, we obtain

F (m)(t) = [f(h1,−4(t))](m)

=

m∑
`=0

f (`)(x)Bm,`

(
h′1,−4(t), h′′1,−4(t), . . . , h

(m−`+1)
1,−4 (t)

)
= 2m

m∑
`=0

`!

x`+1
Φ

(
x− 1

x
, 1, ` + 1

)
[2(m− `)− 1]!!

(
2m− `− 1

2(m− `)

)
1

(1− 4t)m−`/2

=
2m

(1− 4t)m+1/2

m∑
`=0

`![2(m− `)− 1]!!

(
2m− `− 1

`− 1

)
Φ

(√
1− 4t − 1√

1− 4t
, 1, ` + 1

)
.
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The absolute monotonicity of F (t) on
(
−∞, 1

4

)
follows from the absolute monotonic-

ity of the Lerch transcendent Φ(x, s, a) for s, a > 0 with respect to x ∈ (−∞, 1).

Proof of Theorem 4. It is well known that the Stirling numbers of the first kind
s(n, k) for n ≥ k ≥ 1 can be generated [4, 11, 13] by

[ln(1 + x)]k

k!
=

∞∑
n=k

s(n, k)
xn

n!
, |x| < 1.

It can be rewritten as[
ln(1 + x)

x

]k
=

∞∑
n=0

s(n + k, k)(
n+k
k

) xn

n!
, |x| < 1.

This means that

s(n + k, k)(
n+k
k

) = lim
x→0

dn

dxn

[
ln(1 + x)

x

]k
= lim

x→0

dn

dxn
[f(x + 1)]k

= lim
x→0

n∑
`=0

(
uk
)(`)

Bn,`

(
f ′(x + 1), f ′′(x + 1), . . . , f (n+`−1)(x + 1)

)
= lim

x→0

n∑
`=0

〈k〉`uk−`Bn,`

(
f ′(x + 1), f ′′(x + 1), . . . , f (n+`−1)(x + 1)

)
=

n∑
`=0

〈k〉`fk−`(1)Bn,`

(
f ′(1), f ′′(1), . . . , f (n+`−1)(1)

)
=

n∑
`=0

〈k〉`Bn,`

(
−1!

2
,

2!

3
, . . . , (−1)n+`−1 (n + `− 1)!

n− ` + 2

)

= (−1)n
n∑

`=0

〈k〉`Bn,`

(
1!

2
,

2!

3
, . . . ,

(n + `− 1)!

n− ` + 2

)

=

n∑
`=0

(−1)`
〈k〉`
`!

∑̀
m=1

(−1)m
(
`

m

)
s(n + m,m)(

n+m
m

) ,

where u = f(x + 1) and we used the identity (10) in the last step. The recurrence
relation (6) is thus proved.

Remark 2. This paper is a slightly revised version of the preprint [20].
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