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SOME IMPROVEMENTS OF JORDAN-STE�KIN AND

BECKER-STARK INEQUALITIES

Marija Nenezi¢, Ling Zhu ∗

The aim of this article is to propose some improvements of the Jordan-Ste£kin
and Becker-Stark inequalities discussed in L. Debnath, C. Mortici, L.

Zhu: Re�nements of Jordan-Ste£kin and Becker-Stark inequalities, Results
Math. 67(1-2)(2015), 207�215.

1. INTRODUCTION

L. Debnath, C. Mortici and L. Zhu discuss in [1] Jordan's inequality:

(1)
sinx

x
≥ 2

π
, x ∈ (0, π/2]

and its improvements

(2)
2

π
+

1

π3

(
π2 − 4x2

)
≤ sinx

x
≤ 2

π
+
π − 2

π3

(
π2 − 4x2

)
, x ∈ (0, π/2],

and

(3)
2

π
+

1

2π5

(
π4 − 16x4

)
≤ sinx

x
≤ 2

π
+
π − 2

π5

(
π4 − 16x4

)
, x ∈ (0, π/2].
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They conclude that the equalities in (2) and (3) hold if and only if x = π/2.
In the case where x→ 0+, we have equalities on the right-hand side of (2) and (3),
and strict inequalities on the left-hand side of (2) and (3).

In [1] (Theorem 1, Theorem 2 ), the left-hand side of (2) and (3) near zero
was improved.

The following inequality:

(4) tanx ≥ 4

π
· x

π − 2x
, x ∈ [0, π/2).

well known as Ste£kin's inequality, was also analysed in [1].

As noted in [1], this inequality becomes an equality for x = 0, and

lim
x→(π/2)−

(
tanx− 4

π
· x

π − 2x

)
=

2

π
.

Some improvements of (4), in the left neighbourhood of π/2, were presented
in [1] (Theorem 3, Theorem 4 ).

M. Becker and L. E. Stark present in [2] the inequality

(5)
8

π2 − 4x2
<

tanx

x
<

π2

π2 − 4x2
, 0 < x <

π

2
.

Certain double inequalities of the Becker-Stark type were proposed in [1]
(Theorem 5, Theorem 6 ).

In this paper, we generalise and improve the inequalities stated in Theorem
1, Theorem 2, Theorem 3, Theorem 4, Theorem 5 and Theorem 6 from [1]. They
are cited below for readers' convenience.

Statement 1 ([1],Theorem 1) For every x ∈ (0, π/2), it holds that

2

π
+

1

π3

(
π2 − 4x2

)
+

(
1− 3

π

)
−
(
1

6
− 4

π3

)
x2 <

<
sinx

x
<(6)

<
2

π
+

1

π3

(
π2 − 4x2

)
+

(
1− 3

π

)
−
(
1

6
− 4

π3

)
x2 +

1

120
x4.

Statement 2 ([1],Theorem 2) For every x ∈ (0, π/2), it holds that

2

π
+

1

2π5

(
π4 − 16x4

)
+

(
1− 5

2π

)
− 1

6
x2 <

<
sinx

x
<(7)

<
2

π
+
π − 2

π5

(
π4 − 16x4

)
+

(
1− 5

2π

)
− 1

6
x2 +

(
8

π5
+

1

120

)
x4.
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Statement 3 ([1],Theorem 3) For every x ∈ (0, π/2), it holds that

2

π
− 1

2

(π
2
− x
)
< tanx− 4

π
· x

π − 2x
<

2

π
− 1

3

(π
2
− x
)
.(8)

Statement 4 ([1],Theorem 4) For every x ∈ (0, 1), it holds that(
1− 4

π2

)
x− 8

π3
x2 < tanx− 4

π
· x

π − 2x
<

(
1− 4

π2
x

)
.(9)

Statement 5 ([1],Theorem 5) For every x ∈ (0.373, π/2) on the left-hand side
and every x ∈ (0.301, π/2) on the right-hand side, the following inequalities hold
true:

8 + a(x)

π2 − 4x2
<

tanx

x
<

8 + b(x)

π2 − 4x2
,(10)

where

a(x) =
8

π

(π
2
− x
)
+

(
16

π2
− 8

3

)(π
2
− x
)2

and

b(x) = a(x) +

(
32

π3
− 8

3π

)(π
2
− x
)3
.

Statement 6 ([1],Theorem 6) For every real number x ∈ (0, 1.371), the following
inequality holds true:

tanx

x
<
π2 −

(
4− 1

3π
2
)
x2 − ( 43 −

2
15π

2)x4

π2 − 4x2
.(11)

2. PRELIMINARIES

Let Tϕ,an (x) be the Taylor polynomial of the order n ∈ N , associated to
the function ϕ(x) at the point x = a. T

ϕ,a

n (x) and Tϕ,an (x) represent the Taylor
polynomial of the order n ∈ N , associated to the function ϕ(x) at the point x = a,
in the case Tϕ,an (x) ≥ ϕ(x), respectively Tϕ,an (x) ≤ ϕ(x), for every x ∈ (a, b). We
call T

ϕ,a

n (x) and Tϕ,an (x) an upward and a downward approximation of ϕ on (a, b),
respectively.

As discussed in [4], for the sine function the following inequalities hold:

(12)
T sin,0

3 (x) < T sin,0
7 (x) < T sin,0

11 (x) < T sin,0
15 (x) < . . . < sinx < . . .

< T
sin,0

13 (x) < T
sin,0

9 (x) < T
sin,0

5 (x) < T
sin,0

1 (x),
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for x ∈ (0,
√
20) = (0, 4.472...).

We have the following Taylor series of sincx:

(13) sincx =
sinx

x
=

∞∑
k=0

(−1)k x2k

(2k + 1)!

for x 6= 0.

According to [6], for x ∈ (0, π/2) we have the following series representations:

(14) tanx =

∞∑
k=1

22k(22k − 1)

(2k)!
|B2k| x2k−1

and

(15) cotx =
1

x
−
∞∑
k=1

22k |B2k|
(2k)!

x2k−1

where Bi (i ∈ N) are Bernoulli's numbers.

Suppose that f(x) is a real function on (a, b), and that n is a positive integer
such that f (k)(a+), f (k)(b−), (k ∈ 0, 1, 2, . . . , n− 1) exist. Let us denote:

T
f ;b,a
n (x) =

n−1∑
k=0

f (k)(b−)
k!

(x− b)k+

+
1

(a− b)n

(
f(a+)−

n−1∑
k=0

(a− b)kf (k)(b−)
k!

)
(x− b)n

and

T
f ;a,b

n (x) =

n−1∑
k=0

f (k)(a+)

k!
(x− a)k+

+
1

(b− a)n

(
f(b−)−

n−1∑
k=0

(b− a)kf (k)(a+)

k!

)
(x− a)n.

S. Wu and L. Debnath proved the following theorem in [7]:

Theorem WD Suppose that f(x) is a real function on (a, b), and that n is
a positive integer such that f (k)(a+), f (k)(b−), (k ∈ 0, 1, 2, . . . , n) exist.

(i) Supposing that (−1)(n)f (n)(x) is increasing on (a, b), then for all x ∈ (a, b)
the following inequality holds :

T
f ;b,a
n (x) < f(x) < T

f,b

n (x)(16)

Furthermore, if (−1)nf (n)(x) is decreasing on (a, b), then the reverse inequal-
ity holds.
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(ii) Supposing that f (n)(x) is increasing on (a, b), then for all x ∈ (a, b) the fol-
lowing inequality holds:

T
f ;a,b

n (x) > f(x) > T f,an (x).(17)

Furthermore, if f (n)(x) is decreasing on (a, b), then the reverse inequality
holds.

Some interesting applications of the previous theorem can be found in [5, 19,
20, 32].

3. MAIN RESULTS

3.1 IMPROVEMENTS OF INEQUALITIES IN STATEMENT 1

According to (12), we can approximate the sincx function as follows:

(18)
T sinc,0

2 (x) < T sinc,0
6 (x) < T sinc,0

10 (x) < T sinc,0
14 (x) < . . . < sincx < . . .

< T
sinc,0

12 (x) < T
sinc,0

8 (x) < T
sinc,0

4 (x) < T
sinc,0

0 (x),

for x ∈ (0, π/2) ⊂ (0,
√
20).

Based on approximation (18), we have the following theorem

Theorem 1 For every x ∈ (0, π/2) we have:

T sinc,0
2 (x) =

2

π
+

1

π3

(
π2 − 4x2

)
+

(
1− 3

π

)
−
(
1

6
− 4

π3

)
x2 ≤

≤ T sinc,0
4k1−2(x) < sincx < T

sinc,0

4k2 (x) ≤ 2

π
+

1

π3

(
π2 − 4x2

)
+(19)

+

(
1− 3

π

)
−
(
1

6
− 4

π3

)
x2 +

1

120
x4 = T

sinc,0

4 (x) < T
sinc,0

0 (x),

for k1, k2 ∈ N .

Remark 1 It is obvious that Statement 1 is a special case of Theorem 1.



Some Improvements of Jordan - Ste£kin and Becker - Stark Inequalities 249

3.2 IMPROVEMENTS OF INEQUALITIES IN STATEMENT 2

Consider the following polynomials in inequality (7) from Statement 2 :

Q4(x) =
2

π
+

1

2π5

(
π4 − 16x4

)
+

(
1− 5

2π

)
− 1

6
x2 = −8x4

π5
− x2

6
+ 1

and

R4(x) =
2

π
+
π − 2

π5

(
π4 − 16x4

)
+

(
1− 5

2π

)
− 1

6
x2 +

(
8

π5
+

1

120

)
x4

=

(
−16

π4
+

40

π5
+

1

120

)
x4 − x2

6
− 5

2π
+ 2.

We have the following theorem:

Theorem 2 For every x ∈ (0, π/2) we have:

Q4(x)<T
sinc,0
6 (x)≤T sinc,0

4k1−2(x)<sincx<T
sinc,0

4k2 (x)≤T sinc,0

4 (x)<R4(x),(20)

for k1, k2 ∈ N .

Proof In order to prove (20), it is su�cient to prove that for every x ∈ (0, π/2)

the inequalities Q4(x) < T sinc,0
6 (x) and T

sinc,0

4 (x) < R4(x) are true.

According to (13) we have:

T
sinc,0

4 (x) = 1− x2

6
+

x4

120
,

T sinc,0
6 (x) = 1− x2

6
+

x4

120
− x6

5040
.

It is obvious that

T sinc,0
6 (x)−Q4(x) >

(
1− x2

6
+

x4

120
− x6

5040

)
−
(
−8x4

π5
− x2

6
+ 1

)
=

=

(
1

120
+

8

π5

)
x4 − x6

5040
> 0

and

R4(x)− T
sinc,0

4 (x) >

(
−16

π4
+

40

π5
+

1

120

)
x4 − x2

6
− 5

2π
+ 2

−
(
1− x2

6
+

x4

120

)
=

(
−16

π4
+

40

π5

)
x4 − 5

2π
+ 1 > 0

hold for x ∈ (0, π/2).

Remark 2 Statement 2 is a special case of Theorem 2.
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3.3 IMPROVEMENTS OF INEQUALITIES IN STATEMENT 3

In a monography [3], D. S. Mitrinovi¢ discussed about Ste£kin's inequality:

tanx >
4

π
· x

π − 2x
,

for x ∈ (0, π/2). Let us denote:

f(x) = tanx− 4x

π (π − 2x)
,(21)

for x ∈ (0, π/2) and let us notice:

lim
x→π/2−

f(x) =
π

2
.

In [1], inequalities (8) are proposed as adequate approximations of the func-
tion f(x) in the left neighbourhood of the point x = π/2.

By replacing x with π/2− t in the function f(x), we obtain:

g(t) = f
(π
2
− t
)
= cot t− 1

t
+

2

π
,

for t ∈ (0, π/2). According to (15), we have that

cot t < T
cot,0

n (t) =
1

t
−

n∑
k=1

22k |B2k |
(2k)!

t2k−1

for t ∈ (0, π/2] and n ∈ N . Further, we have the following:

g(t) < T
cot,0

n (t)− 1

t
+

2

π
(22)

and according to Theorem WD

cot t > Tcot;0,π/2
n (t) = T cot,0

n−1 (t) +
(
2

π

)n(
g
(
π

2

)
− T cot,0

n−1

(
π

2

))
tn,(23)

for t ∈ (0, π/2] and n ∈ N . According to (22) and (23), we have:

g(t) > Tcot;0,π/2
n (t)− 1

t
+

2

π
(24)

for t ∈ (0, π/2]. Let us denote:

F gn(t) = T
cot,0

n (t)− 1

t
+

2

π

and

F
g
n(t) = T

cot;0,π/2
n (t)− 1

t
+

2

π
.

Returning replacement t = π/2−x in (22) and (24), we have the following theorem:
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Theorem 3 For x ∈ (0, π/2) and n ∈ N , we have:

F
g
n

(π
2
− x
)
< f(x) < F gn

(π
2
− x
)

(25)

Corollary 1 We have the following improvements for inequality (8) given in State-
ment 3.

1. For n = 1 and for x ∈ (0, π/2), we have:

Q1(x) < F
g
1

(π
2
− x
)
=

=
2

π
− 4

π2

(π
2
− x
)
< f(x) <

2

π
− 1

3

(π
2
− x
)
=

= F g1

(π
2
− x
)
= R1(x).

2. For n = 3 and for x ∈ (0, π/2), we have:

Q1(x)<F
g
1

(π
2
−x
)
<Fg3

(π
2
−x
)
=

2

π
− 1

3

(π
2
−x
)
−
(
2

π

)3(
2

π
− π

6

)(π
2
−x
)3

<f(x)<
2

π
− 1

3

(π
2
−x
)
−
(
π
2−x

)
45

=F g3

(π
2
−x
)
<F g1

(π
2
−x
)
=R1(x).

3.4 IMPROVEMENTS OF INEQUALITIES IN STATEMENT 4

For the function f(x) de�ned in (21), and according to the Taylor series of
the tanx function in (14) and the binomial expansion of 1

1−( 2
π x)

over the interval

(0, π/2), we have:

(26)

f(x) = tanx− 4

π
· x

π − 2x

=

∞∑
i=1

22i
(
22i − 1

)
|B2i|

(2i)!
x2i−1 − 4

π2
· x

1−
(
2

π
x
)

=

∞∑
i=1

22i
(
22i − 1

)
|B2i|

(2i)!
x2i−1 −

∞∑
j=1

2j+1

πj+1
xj

=

∞∑
k=1

(−1)k−1αkxk,

where

αk =


2k+1

πk+1
: k=2`

22k+1
(
22k+1 − 1

)
|Bk+1|

(k + 1)!
− 2k+1

πk+1
: k=2`−1
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for ` ∈ N . It is not hard to check that:

αk > 0, lim
k→∞

αk = 0 and
(
αk
)
↓ ,(27)

for k ∈ N . Finally, based on (26) and (27) and based on Leibnitz theorem, we
have the following theorem:

Theorem 4 For every x∈(0, 1) and `∈N , the following holds:

(28) T f,02` (x) < f(x) < T
f,0

2`−1(x) .

Remark 3 Inequality (28) for ` = 1 represents inequality (9) from Statement 4.

3.5 IMPROVEMENTS OF INEQUALITIES IN STATEMENT 5

Consider the following function:

ϕ(x) =
(
π2 − 4x2

) tanx
x

,

for x ∈ (0, π/2).

By replacing x with π/2− t in the function ϕ(x), we obtain:

ψ(t) = ϕ
(
π

2
− t
)
=

8 t (π − t) cot t
π − 2 t

for t ∈ (0, π/2). The improvement or inequalities from (10) are given with the
following theorem:

Theorem 5 For every x∈(0, π/2), the following holds:

T ψ,0
4

(
π

2
−x
)
= 8 +

8

π

(
π

2
−x
)
+
(
16

π2
− 8

3

)(
π

2
−x
)2

+
(
32

π3
− 8

3π

)(
π

2
−x
)3

+
(
64

π4
− 16

3π2
− 8

45

)(
π

2
−x
)4
<

< ϕ(x) <

< T
ψ,0

5

(
π

2
−x
)
= 8 +

8

π

(
π

2
−x
)
+
(
16

π2
− 8

3

)(
π

2
−x
)2

+
(
32

π3
− 8

3π

)(
π

2
−x
)3

+
(
64

π4
− 16

3π2
− 8

45

)(
π

2
−x
)4

+
(
128

π5
− 32

3π3
− 8

45π

)(
π

2
−x
)5
.

One proof of this statement is based on equivalent mixed trigonometric polynomial
inequalities:

f(x)=
(
π2 − 4x2

)
sinx− xT ψ,0

4

(
π

2
−x
)
cosx > 0
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and
g(x)=

(
π2 − 4x2

)
sinx− xT ψ,0

5

(
π

2
−x
)
cosx < 0,

for x∈ (0, π/2). References [15, 16] show that problem of proving mixed trigono-
metric polynomial inequalities is a decidable problem. In these two references are
presented appropriate algorithms that follow mentioned inequalities. Some inter-
esting applications of the algorithmic approach in proving mixed trigonometric
inequalities can be found in [21, 31]; see also [17, 18]. G. Bercu in [33, 34]
presented some interesting approximations of trigonometric functions using Pade
approximant.

Remark 4 It is obvious that Statement 5 is a consequence of Theorem 5.

Further, let us observe the array (αk)k∈N de�ned by:

α1=1, α2j=0, α2j+1=−
22j |B2j |
(2j)!

for j∈N . Then based on [6], we have the following series representations:

ψ(t) =
8

π
t (π − t) 1

1−
(
2 t
π

) cot t
=

8

π
t (π − t)

( ∞∑
i=0

(
2 t

π

)i)( ∞∑
j=0

α2j+1t
2j−1

)
for t ∈ (0, π/2). Let r2(m) be the remainder after division of the natural number
m by 2. We are posing the following conjecture:

Conjecture 1

1. For the function ψ(t) on t∈(0, π/2), the following equality holds:

(29) ψ(t) =

∞∑
m=0

(
8αm+1−r2(m)

πr2(m)
+

[m/2]∑
i=1

22i+2+r2(m)αm+1−2i−r2(m)

π2i+r2(m)

)
tm.

2. For the function ψ(t) on t∈(0, π/2) and ` ∈ N , the following inequalities are
true:

(30) T ψ,0
2` (t) < ψ(t) < T

ψ,0

2`+1(t) ( t∈(0, π/2) ∧ `∈N ) .

3.6 IMPROVEMENTS OF INEQUALITY IN STATEMENT 6

Let us denote the following function:

f(x) =
(
π2 − 4x2

) tanx
x

for x ∈ (0, π/2).
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According to [6] and (14), we have:

f(x) =

∞∑
k=1

Ckx
2k−2(31)

where

Ck =
π2 · 22k(22k − 1) |B2k |

(2k)!
− 4 · 22k−2(22k−2 − 1) |B2k−2 |

(2k − 2)!
,(32)

and x ∈ (0, c) and 0 < c < π/2. It is not hard to check Ck < 0 for k ∈ N .

Finally, based on Theorem WD we get the following theorem:

Theorem 6 For every x ∈ (0, c), where 0<c<π/2, the following inequalities hold:

T
f ;0,c
m1

(x) =

m1−1∑
k=1

Ckx
2k−2 +

(
1

c

)2m1−2
(
f(c)−

(
m1−1∑
k=1

Ckc
2k−2

))
x2m1−2

< f(x) <

m2∑
k=1

Ckx
2k−2 = T

f,0

m2
(x) ,

for m1,m2 ∈ N .

Remark 5 It is obvious that Statement 6 is a consequence of Theorem 6 for m2 =
3.

The approximations discussed in this paper can be of great signi�cance for po-
tential application of analytic inequalities in engineering. Some speci�c inequalities
of a similar type are considered in [11, 12, 13].
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