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A GENERALIZED DISCRETE FRACTIONAL
GRONWALL INEQUALITY AND ITS APPLICATION ON
THE UNIQUENESS OF SOLUTIONS FOR NONLINEAR

DELAY FRACTIONAL DIFFERENCE SYSTEM

Jehad Alzabut∗ and Thabet Abdeljawad

In this paper, we state and prove a new discrete fractional version of the
generalized Gronwall inequality. Based on this, a particular version expressed
by means of discrete Mittag–Lefler functions is provided. As an application,
we prove the uniqueness and obtain an estimate for the solutions of nonlinear
delay Caputo fractional difference system. Numerical example is presented
to demonstrate the applicability of the main results.

1. INTRODUCTION

The theory of fractional differential equations has been extensively investigated
over the last years due to widespread applications in various fields of science and
engineering. For more details, see the the remarkable monographs [1–3] and the
references cited therein.

It has been realized that the discrete analogue of ordinary differential equa-
tions has tremendous applications in computational analysis and computer simula-
tions [4]. Motivated by this reality, the study of the discrete analogue of fractional
differential equations has become pressing and compulsory. In recent years, few
mathematicians have taken the lead to develop the theory of fractional difference
equations which is the discrete analogue of fractional differential equations. We cite
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here the papers [5–16] whose authors initiated the study of the theory of fractional
difference equations. For more comprehensive details about this subject, the reader
is recommended to consult the new survey paper [17].

Mathematical inequalities play an essential role in the investigation of many
properties of differential and difference equations. Gronwall inequality, which is
our main concern herein, has been studied for fractional differential equations [18–
22]. Nevertheless, the investigation of Gronwall inequality for fractional difference
equations is comparably seldom [23–25]. The existence and uniqueness of solutions,
which is a main application of Gronwall inequality, has been the object of many
researchers prior to the study of the qualitative properties for different types of
differential or difference equations. Recently, there have appeared many results
about the existence and uniqueness of solutions for fractional differential equations
[26–32]. For fractional difference equations, however, the authors claim that there
is few literature on the existence and uniqueness of solutions [33–38].

In parallel to the development of fractional difference equations in the recent
years, we state and prove a new discrete fractional version of the generalized Gron-
wall inequality. A particular version expressed by means of discrete Mittag–Lefler
functions is also provided. As an application, we prove the uniqueness and obtain
an estimate for the solutions of nonlinear delay Caputo fractional difference sys-
tem. Numerical example is presented to demonstrate the applicability of the main
results. Our result is different and generalize some existing results in the literature.

2. PRELIMINARIES

Let Rm be the m–dimensional Euclidean space and define N0 = {0, 1, 2, 3, . . .},
I−τ = {−τ,−τ + 1, . . . , 0} and N−τ = {−τ,−τ + 1, . . .} where τ ∈ N0. We prove
our main results for the system

(1)

{
c∇α0x(t) = A0x(t) +A1x(t− τ) + f(t, x(t), x(t− τ)), t ∈ N0

x(t) = ϕ(t), t ∈ I−τ ,

where c∇αt denotes the Caputo’s fractional difference of order α ∈ (0, 1), the state
vector x : N−τ → Rm, the constant matrices A0 and A1 are of appropriate di-
mensions, the nonlinearity f : N0 × Rm × Rm → Rm and the initial function
ϕ : I−τ → Rm.

For the convenience of the reader, we recall some definitions of∇–based fractional
operators which will facilitate the analysis of system (1). For any α, t ∈ R, the α
rising function is defined by

(2) tα =
Γ(t+ α)

Γ(t)
, t ∈ R\{. . . ,−2,−1, 0}, 0α = 0,

where Γ is the Gamma function satisfying the property Γ(α+ 1) = αΓ(α).

Definition 1. [11, 12] Let x : N0 → R and define ρ(s) = s− 1. For α ∈ (0, 1), we
have
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1. The nabla backward difference of x is defined by ∇x(t) = x(t)− x(t− 1), t ∈
N1 = {1, 2, . . .}.

2. The Riemann–Liouville’s sum operator of x is defined by

(3) ∇−α0 x(t) =
1

Γ(α)

t∑
s=1

(t− ρ(s))α−1x(s), t ∈ N1.

3. The Riemann–Liouville’s difference operator of x is defined by

(4) ∇α0x(t) = ∇
(
∇−(1−α)

0 x(t)
)

=
∇

Γ(1− α)

t∑
s=1

(
t− ρ(s)

)−α
x(s), t ∈ N1.

4. The Caputo’s difference operator of x is defined by

(5) c∇α0x(t) = ∇−(1−α)
0 ∇x(t) =

1

Γ(1− α)

t∑
s=1

(
t− ρ(s)

)−α∇x(s), t ∈ N1.

5. The relation

(6) ∇−α0
c∇α0x(t) = x(t)− x(0).

6. The power rule is defined for t ∈ Na = {a, a+ 1, a+ 2, . . .}, a ∈ R by

(7) ∇−αa (t− a)µ =
Γ(µ+ 1)

Γ(µ+ α+ 1)
(t− a)α+µ, µ > −1,

and hence

∇αa (t− a)µ =
Γ(µ+ 1)

Γ(µ− α+ 1)
(t− a)µ−α.

7. The relation between Riemann–Liouville and Caputo’s difference operators is
defined by

(8) ∇α0x(t) =c ∇α0x(t) + x(0)
t−α

Γ(1− α)
.

3. A GENERALIZED DISCRETE FRACTIONAL GRONWALL
INEQUALITY

We state and prove a new discrete fractional version of the generalized Gronwall’s
inequality that will be valid for systems involving delay term.



Discrete Fractional Gronwall Inequality 39

Theorem 1. (Generalized Gronwall Inequality) Let α > 0, u(t), v(t) be nonnega-
tive functions and w(t) be nonnegative and nondecreasing function for t ∈ N0 such
that w(t) ≤M where M is a constant. If

(9) u(t) ≤ v(t) + w(t)Γ(α)∇−α0 u(t),

then

(10) u(t) ≤ v(t) +

∞∑
k=1

(
w(t)Γ(α)

)k
∇−kα0 v(t).

Proof. Define

Bφ(t) = w(t)

t∑
s=1

(t− ρ(s))α−1φ(s), t ∈ N0.

It follows that
u(t) ≤ v(t) +Bu(t),

which implies that u(t) ≤
∑n−1
k=0 B

kv(t) +Bnu(t). We claim that

(11) Bnu(t) ≤
t∑

s=1

(
w(t)Γ(α)

)n
Γ(nα)

(t− ρ(s))nα−1u(s)

and Bnu(t)→ 0 as n→∞ for t ∈ N0. It is easy to see that (11) is valid for n = 1.
Assume that it is true for n = k, that is,

Bku(t) ≤
t∑

s=1

(
w(t)Γ(α)

)k
Γ(kα)

(t− ρ(s))kα−1u(s).

If n = k + 1 and by virtue of the assumption that w is a nondecreasing function,
we have

Bk+1u(t) = B(Bku(t)) ≤ wk+1(t)

t∑
s=1

(t− ρ(s))α−1
s∑

ν=1

(
Γ(α)

)k
Γ(kα)

(s− ρ(ν))kα−1u(ν)

= wk+1(t)

t∑
ν=1

t∑
s=ν

(
Γ(α)

)k
Γ(kα)

(t− ρ(s))α−1(s− ρ(ν))kα−1u(ν)

=
wk+1(t)

(
Γ(α)

)k+1

Γ(kα)

t∑
ν=1

1

Γ(α)

t∑
s=ν

(t− ρ(s))α−1(s− ρ(ν))kα−1u(ν)

=

(
w(t)Γ(α)

)k+1

Γ(kα)

t∑
ν=1

1

Γ(α)

t∑
s=ν

(t− ρ(s))α−1(s− ρ(ν))kα−1u(ν)

=

(
w(t)Γ(α)

)k+1

Γ(kα)

t∑
ν=1

∇−αρ(ν)(s− ρ(ν))kα−1u(ν),
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where ∇−αρ(ν)u(t) = 1
Γ(α)

∑t
s=ν(t − ρ(s))α−1u(s) has been used. It follows from (7)

that

Bk+1u(t) ≤
(
w(t)Γ(α)

)k+1

Γ(kα)

t∑
ν=1

(s− ρ(ν))kα+α−1 Γ(kα)

Γ(kα+ α)
u(ν)

=

t∑
ν=1

(
w(t)Γ(α)

)k+1

Γ(kα+ α)
(s− ρ(ν))kα+α−1u(ν).

Therefore, relation (11) is obtained. Furthermore, one can figure out that

Bnu(t) ≤
t∑

s=1

(
MΓ(α)

)n
Γ(nα)

(t− ρ(s))nα−1u(s)→ 0 as n→∞, t ∈ N0.

To complete the proof, we let n→∞ in

u(t) ≤
n−1∑
k=0

Bkv(t) +Bnu(t) = v(t) +

n−1∑
k=1

Bkv(t) +Bnu(t)

to reach at u(t) ≤ v(t) +
∑∞
k=1B

kv(t). By the help of the semigroup property

(∇−α0 ∇
−µ
0 v)(t) = (∇−(α+µ)

0 v)(t)

and the definition of B we get (10). This completes the proof.

Let Eα(λ, z) =
∑∞
k=0

λkzkα

Γ(αk+1) be the Mittage–Leffler function in one parame-

ter which was introduced in [12, 39]. Based on Theorem 1, we provide a particular
version expressed by means of the discrete Mittag–Lefler functions.

Corollary 1. Under the hypothesis of Theorem 1, assume further that v(t) is a
nondecreasing function for t ∈ N0, then

(12) u(t) ≤ v(t)Eα
(
w(t)Γ(α), t

)
, t ∈ N0.

Proof. From (10) and the assumption that v(t) is a nondecreasing function for
t ∈ N0, we may write

u(t) ≤ v(t)
[
1 +

∞∑
k=1

t∑
s=1

(
w(t)Γ(α)

)k
Γ(kα)

(t− ρ(s))kα−1
]

or

u(t) ≤ v(t)
[
1 +

∞∑
k=1

∇−kα0

(
w(t)Γ(α)

)k]
.
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It follows that

u(t) ≤ v(t)
[
1 +

∞∑
k=1

(
w(t)Γ(α)

)k
∇−kα0 1

]
= v(t)

[
1 +

∞∑
k=1

(
w(t)Γ(α)

)k tkα

Γ(kα+ 1)

]
= v(t)

∞∑
k=0

(
w(t)Γ(α)

)k
tkα

Γ(kα+ 1)
= v(t)Eα

(
w(t)Γ(α), t

)
.

The proof is complete.

For more comprehensive details on the properties of Mittage–Leffler function
in one parameter, one can consult the papers [40, 41].

4. APPLICATIONS AND AN EXAMPLE

Based on the results obtained in the previous section, we prove the uniqueness and
obtain an estimate for the solutions of system (1). Moreover, numerical example is
presented to demonstrate the applicability of the main results.

Let | · | be any Euclidean norm and ‖ · ‖ be the matrix norm induced with
this vector. Let D = D(N0 × Rm × Rm,Rm) be the set of all bounded functions
(sequences). Clearly, the space D is a Banach space induced with the norm ‖z‖D :=
supt∈I−τ |z(t)|.

We make use of the following assumptions:

(H.1) f ∈ D(N0×Rm×Rm,Rm) is a Lipschitz–type function. That is, there exists
a positive constant L1 > 0 such that∥∥f(t, x(t), x(t−τ))−f(t, y(t), y(t−τ))

∥∥ ≤ L1

(
‖x(t)−y(t)‖+‖x(t−τ)−y(t−τ)‖

)
,

for t ∈ N0.

(H.2) There exists a positive constant L2 such that ‖f(t, x(t), x(t− τ))‖ ≤ L2.

The first result in this section provides a representation for the solutions of system
(1) that will be useful in the subsequent analysis.

Theorem 2. x : N−τ → Rm is a solution of system (1) if and only if

(13)


x(t) = ϕ(0) + 1

Γ(α)

∑t
s=1

(
t− ρ(s)

)α−1
[
A0x(s) +A1x(s− τ)

+f(s, x(s), x(s− τ))
]
, t ∈ N0

x(t) = ϕ(t), t ∈ I−τ ,
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Proof. For t ∈ I−τ , it is clear that x(t) = ϕ(t) is the solution of (1). For t ∈ N0, we
apply ∇α0 on both sides of equation (??) to obtain

∇α0x(t) = ϕ(0)
t−α

Γ(1− α)
+A0x(t) +A1x(t− τ) + f(t, x(t), x(t− τ)),

where (∇α0∇−α0 u)(t) = u(t) have been used. By using relation (8), we end up with
the desired form

c∇α0x(t) = A0x(t) +A1x(t− τ) + f(t, x(t), x(t− τ)), t ∈ N0.

From system (1), we can see that x(t) = ϕ(t) for t ∈ I−τ . For t ∈ N0, we apply
∇−α0 on both sides of equation (1) to get

∇−α0 [c∇α0x(t)] =
1

Γ(α)

t∑
s=1

(
t−ρ(s)

)α−1
[
A0x(s)+A1x(s−τ)+f(s, x(s), x(s−τ))

]
.

In view of relation (6), one can easily see that

x(t) = ϕ(0) +
1

Γ(α)

t∑
s=1

(
t− ρ(s)

)α−1
[
A0x(s) +A1x(s− τ) + f(s, x(s), x(s− τ))

]
.

The first main application in this paper is provided in the following theorem.

Theorem 3. Let condition (H.1) hold. If x(t) and y(t) are two solutions for the
system (1), then x(t) = y(t).

Proof. Let x and y be two solutions of system (1). Denote z by z(t) = x(t)− y(t).
Then, one can easily figure out that z(t) = 0 for t ∈ I−τ . This implies that system
(1) has a unique solution for t ∈ I−τ .

For t ∈ N0, however, we have

z(t) =
1

Γ(α)

t∑
s=1

(
t− ρ(s)

)α−1[
A0z(s) +A1z(s− τ) + f(s, x(s), x(s− τ))

−f(s, y(s), y(s− τ))
]
.

If t ∈ Iτ = {0, 1, . . . , τ}, then z(t− τ) = 0. Therefore,

z(t) =
1

Γ(α)

t∑
s=1

(
t− ρ(s)

)α−1
[
A0z(s) + f(s, x(s), x(s− τ))

−f(s, y(s), y(s− τ))
]
.(14)
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This implies

‖z(t)‖ ≤ 1

Γ(α)

t∑
s=1

(
t− ρ(s)

)α−1[‖A0‖‖z(s)‖

+ ‖f(s, x(s), x(s− τ))− f(s, y(s), y(s− τ))‖
]

≤ 1

Γ(α)

t∑
s=1

(
t− ρ(s)

)α−1[‖A0‖‖z(s)‖

+ L1

(
‖x(s)− y(s)‖+ ‖x(s− τ)− y(s− τ)‖

)]
=

1

Γ(α)

t∑
s=1

(
t− ρ(s)

)α−1[
(‖A0‖+ L1)‖z(s)‖+ L1‖z(s− τ)‖

]
=
‖A0‖+ L1

Γ(α)

t∑
s=1

(
t− ρ(s)

)α−1‖z(s)‖.(15)

By applying the result of Corollary 1, we have

(16) ‖z(t)‖ ≤ 0 · Eα
[∥∥A0‖+ L1, t

]
,

which implies that x(t) = y(t) for t ∈ Iτ .

For t ∈ Nτ = {τ, τ + 1, . . .}, we get

z(t) =
1

Γ(α)

t∑
s=1

(
t− ρ(s)

)α−1[
A0z(s) + f(s, x(s), x(s− τ))− f(s, y(s), y(s− τ))

]
+

1

Γ(α)

t∑
s=1

(
t− ρ(s)

)α−1
A1z(s− τ).(17)

It follows that

‖z(t)‖ ≤ 1

Γ(α)

t∑
s=1

(
t− ρ(s)

)α−1[‖A0‖‖z(s)‖

+ ‖f(s, x(s), x(s− τ))− f(s, y(s), y(s− τ))‖
]

+
‖A1‖
Γ(α)

t∑
s=1

(
t− ρ(s)

)α−1‖z(s− τ)‖

≤ ‖A0‖+ L1

Γ(α)

t∑
s=1

(
t− ρ(s)

)α−1‖z(s)‖(18)

+
‖A1‖+ L1

Γ(α)

t∑
s=1

(
t− ρ(s)

)α−1‖z(s− τ)‖.
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Let z̄(t) = supθ∈I−τ ‖z(t+ θ)‖, then we get

z̄(t) ≤ ‖A0‖+ L1

Γ(α)

t∑
s=1

(
t− ρ(s)

)α−1
z̄(s) +

‖A1‖+ L1

Γ(α)

t∑
s=1

(
t− ρ(s)

)α−1
z̄(s)

≤ ‖A0‖+ ‖A1‖+ 2L1

Γ(α)

t∑
s=1

(
t− ρ(s)

)α−1
z̄(s).(19)

By applying the result of Corollary 1, we obtain

(20) ‖z(t)‖ ≤ z̄(t) ≤ 0 · Eα
[(
‖A0‖+ ‖A0‖+ 2L1

)
Γ(α), t

]
,

Hence, we end up with x(t) = y(t) for t ∈ N−τ .

In the following theorem, we provide an estimate for the solution of system
(1).

Theorem 4. Let condition (H.2) hold. Then, the following estimate for the solu-
tion x(t) of system (1) is valid:

(21) ‖x(t)‖ ≤
[
‖ϕ‖+

L2 + ‖ϕ‖
(
‖A0‖+ ‖A1‖

)
Γ(α+ 1)

tα
]
Eα
[(
‖A0‖+ ‖A1‖

)
, t
]
.

Proof. For t ∈ N0, the solution of system (1) has the form

(22) x(t) = ϕ(0)+
1

Γ(α)

t∑
s=1

(
t−ρ(s)

)α−1
[
A0x(s)+A1x(s−τ)+f(s, x(s), x(s−τ))

]
.

It follows that

‖x(t)‖ ≤ ‖ϕ(0)‖+
1

Γ(α)

t∑
s=1

(
t− ρ(s)

)α−1∥∥A0x(s) +A1x(s− τ)

+ f(s, x(s), x(s− τ))
∥∥

≤ ‖ϕ‖+
‖A0‖
Γ(α)

t∑
s=1

(
t− ρ(s)

)α−1‖x(s)‖

+
‖A1‖
Γ(α)

t∑
s=1

(
t− ρ(s)

)α−1‖x(s− τ)‖

+
1

Γ(α)

t∑
s=1

(
t− ρ(s)

)α−1‖f(s, x(s), x(s− τ))‖.
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By the assumption (H.2), the above inequality can be rewritten as

‖x(t)‖ ≤ ‖ϕ‖+
‖A0‖+ ‖A1‖

Γ(α)

t∑
s=1

(
t− ρ(s)

)α−1
[

sup
θ∈I−τ

‖x(s+ θ)‖+ ‖ϕ‖
]

+
L2

Γ(α)

t∑
s=1

(
t− ρ(s)

)α−1
(23)

= ‖ϕ‖+
L2 + ‖ϕ‖

(
‖A0‖+ ‖A1‖

)
Γ(α+ 1)

tα

+
‖A0‖+ ‖A1‖

Γ(α)

t∑
s=1

(
t− ρ(s)

)α−1
sup
θ∈I−τ

‖x(s+ θ)‖,(24)

where the power rule (7) has been used. Let v(t) = ‖ϕ‖ +
L2+‖ϕ‖

(
‖A0‖+‖A1‖

)
Γ(α+1) tα,

then v is nondecreasing function. Therefore, Corollary 1 with w(t) = ‖A0‖+ ‖A1‖
implies that

(25) ‖x(t)‖ ≤ sup
θ∈I−τ

‖x(t+ θ)‖ ≤ v(t)Eα
[(
‖A0‖+ ‖A1‖

)
Γ(α), t

]
.

Hence, the solution x of (1) satisfies the estimate

(26) ‖x(t)‖ ≤
[
‖ϕ‖+

L2 + ‖ϕ‖
(
‖A0‖+ ‖A1‖

)
Γ(α+ 1)

tα
]
Eα
[(
‖A0‖+ ‖A1‖

)
Γ(α), t

]
.

The proof is complete.

Example 1. Consider the nonlinear delay fractional difference equation of the form

(27) c∇
1
2
t x(t) = 2x(t) + 3x(t− 3)− sinx(t) + 3 sinx(t− 3), t ∈ N0

with the initial function x(t) = cos 2t, t ∈ I−3. Clearly, equation (27) is a scalar
equation and A0 = 2 and A1 = 3. The nonlinearity has the form f(t, x(t), x(t −
τ)) = − sinx(t) + 3 sinx(t− 3). Therefore, we have∥∥f(t, x(t), x(t− τ)) − f(t, y(t), y(t− τ))

∥∥
=

∥∥− sinx(t) + 3 sinx(t− 3) + sin y(t)− 3 sin y(t− 3)
∥∥

≤ 3
(∥∥ sinx(t)− sin y(t)

∥∥+
∥∥ sinx(t− 3)− sin y(t− 3)

∥∥).
Thus, condition (H.1) holds with L1 = 3. By the consequence of Theorem 2, equa-
tion (27) has a unique solution. Moreover,∥∥f(t, x(t), x(t− τ))

∥∥ =
∥∥− sinx(t) + 3 sinx(t− 3)

∥∥ ≤ 4,

which implies that condition (H.2) is satisfied with L2 = 4. By Theorem 4, the
solution has the estimate∥∥x(t)

∥∥ ≤ [1 +
9

Γ( 3
2 )
t
1
2

] ∞∑
k=0

(5
√
π)kt

k
2

Γ(k2 + 1)
.
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Remark 1. Solving equation (27) is not an easy task. However, getting a bound
for the solution could be considered as a substantial step.
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