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THE p-SPECTRAL RADIUS OF THE LAPLACIAN

MATRIX

Elizandro Max Borba∗, Eliseu Fritscher, Carlos Hoppen and
Sebastian Richter

The p-spectral radius of a graph G = (V,E) with adjacency matrix A is de-
fined as λ(p)(G) = max‖x‖p=1 x

TAx. This parameter shows connections with
graph invariants, and has been used to generalize some extremal problems.
In this work, we define the p-spectral radius of the Laplacian matrix L as
µ(p)(G) = max‖x‖p=1 x

TLx. We show that µ(p)(G) relates to invariants such
as maximum degree and size of a maximum cut. We also show properties of
µ(p)(G) as a function of p, and a upper bound on maxG : |V (G)|=n µ

(p)(G) in
terms of n = |V | for p > 2, which is attained if n is even.

1. INTRODUCTION AND MAIN RESULTS

Let G = (V,E) be a simple n-vertex graph with at least one edge, and with
adjacency matrix A and Laplacian matrix L. We recall that L = D −A, where D
is the diagonal matrix of vertex degrees.

It is well known that obtaining the least and the largest eigenvalues (which
we denote λ1 and λn, respectively) of a real symmetric matrix M ∈ Rn×n can be
viewed as an optimization problem using the Rayleigh-Ritz Theorem [8, Theorem
4.2.2]:

λ1(M) = min
‖x‖=1

xTMx ≤ xTMx

xTx
≤ max
‖x‖=1

xTMx = λn,
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where x ∈ Rn. Using the fact that xTAx = 2
∑

ij∈E xixj , Keevash, Lenz and
Mubayi [10] replaced the Euclidean norm ‖x‖ by the p-norm ‖x‖p, where p ∈ [1,∞],
and defined the p-spectral radius λ(p)(G):

λ(p)(G) = max
‖x‖p=1

2
∑
ij∈E

xixj .

This parameter shows remarkable connections with some graph invariants.
For instance, λ(1)(G) is equal to the Lagrangian LG of G, which was defined by
Motzkin and Straus [14] and satisfies 2LG − 1 = 1/ω(G), where ω(G) is the clique
number of G. Obviously λ(2)(G) is the usual spectral radius, and it can be shown
that λ(∞)(G)/2 is equal to the number of edges of G.

An interesting result involving this parameter is about Kr-free graphs, that
is, graphs that do not contain a complete graph with r vertices as a subgraph.
Turán [18] proved that, for all positive integers n and r, the balanced complete
r-partite graph, known as a Turán graph Tr(n), is the only graph with maximum
number of edges among all Kr+1-free graphs of order n. Kang and Nikiforov [9]
proved that, for p ≥ 1, the graph Tr(n) is also the only graph that maximizes
λ(p)(G) over Kr+1-free graphs of order n, thus generalizing Turán’s result (which
is the case p =∞). Other results were obtained and extended to hypergraphs [15].

This motivates us to extend this approach to the Laplacian matrix L. As
xTLx =

∑
ij∈E(xi − xj)2, we define the p-spectral radius of the Laplacian matrix

as follows:

Definition 1. Let G = (V,E). The p-spectral radius of the Laplacian matrix of G
is given by

µ(p)(G) = max
‖x‖p=1

∑
ij∈E

(xi − xj)2.

According to Mohar [13], the Laplacian matrix is considered to be more
natural than the adjancency matrix. It is a discrete analog of the Laplace operator,
which is present in many important differential equations. The Kirchhoff Matrix-
Tree theorem is an early example of the use of L in Graph Theory. The largest
eigenvalue (spectral radius) of L has been associated, for example, with degree
sequences of a graph [2,7,11,16]. The second smallest eigenvalue and its associated
eigenvectors have also been studied since the seminal work by Fiedler [6]. These
and new results led to an extensive literature in spectral clustering and graph
partitioning. For more information about this area, see the survey [12] and the
references therein.

Therefore we hope that the definition of µ(p) will shed some light on classical
parameters of graph theory. In fact, we show that, in the same fashion as λ(p)(G),
the parameter µ(p)(G) relates to graph invariants, such as the maximum degree and
the size of a maximum cut. We also show some properties of µ(p)(G) as a function
of p. The main results are:

Theorem 1. Let G = (V,E) be a graph with at least one edge. Then
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(a) µ(1)(G) is equal to the maximum degree of G;

(b) µ(∞)(G)/4 is equal to the size of a maximum cut of G.

(c) The function fG : [1,∞)→ R defined by fG(p) = µ(p)(G) is strictly increasing,
continuous and converges when p→∞;

It seems to be the case that, by varying p, the vector x that achieves µ(p)(G)
defines a maximum cut of the graph under different restrictions. For instance,
µ(1)(G) leads to a maximum cut with the constraint that one of the classes is a
singleton, while µ(∞)(G) is gives a maximum cut with no additional constraint. A
rigorous basis for this statement remains a question for further investigation.

From the computational complexity point of view, it is interesting to note that
computing µ(1)(G) is easy (can be done in linear time), while computing µ(∞)(G)
is an NP-complete problem, it is equivalent to finding the size of a maximum cut
of G. For λ(p), the opposite happens: finding λ(1)(G) is NP-complete (equivalent
to finding the clique number of G), while λ(∞)(G) can be found in linear time.

We also present an upper bound on µ(p)(G) if p ≥ 2, which is attained for
even n.

Theorem 2. Let G = (V,E) be a graph with n = |V |. Then for p > 2,

µ(p)(G) ≤ n2−2/p.

If n is even, equality holds if and only if G contains Kn/2,n/2 as subgraph.

Note that this means that, for even n, the value of µ(p)(Kn) is the same as
the value for the balanced complete bipartite graph with n vertices. We conjecture
that this holds for all n.

This paper is organized as follows. In the remainder of the section we intro-
duce some notation. In sections 2 and 3 we prove Theorems 1 and 2, respectively. In
section 4 we present some additional remarks, conjectures and questions for future
research.

Before proving our results, we set the notation used throughout the paper.
The objective function of our optimization problems is

FG(x) = xTLx =
∑

ij∈E(G)

(xi − xj)2.

We may drop the subscript of FG if G is clear from context. It can be readily
seen that FG′(x) ≤ FG(x) for a subgraph G′ of G, and so FG(x) ≤ FKn

(x) for
any n-vertex graph G. Furthermore, FG(x) = 0 if x is constant in each connected
component of G.

Finally, given an n-vertex graph G = (V,E) and a vector x ∈ Rn, the vertex
sets P,N and Z are those on which xi is positive, negative, or equal to zero,
respectively. We write di for the degree of vertex i, and dij is the number of edges
between vertices i and j (so dij ∈ {0, 1}). The all-ones vector in Rn is e and the
i-th vector of the canonical basis of Rn is ei.
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2. PROOF OF THEOREM 1

In this section, we prove Theorem 1, which relates µ(p)(G) to graph invariants
and gives properties of µ(p)(G) as a function of p. Item (a) states that µ(1)(G) is
equal to the maximum degree of G. In order to prove it, we need two lemmas.

Lemma 2.1. Let x ∈ Rn such that ‖x‖1 = 1 and FG(x) = µ(1)(G). Then at most
one entry of x and of −x is positive.

Proof. Let x be as above, and assume that x or −x has at least two positive
coordinates. Without loss of generality, suppose a, b ∈ P and define x′ and x′′ as

x′k =


xa + xb if k = a;

0 if k = b;

xk otherwise.

and x′′k =


0 if k = a;

xa + xb if k = b;

xk otherwise.

We can separate the sum in FG(x) into four edge sets: those not incident to a nor
b; those incident to a but not to b; those incident to b but not to a; and the edge
ab. Then

FG(x) =
∑
ij∈E

i,j 6=a,b

(xi − xj)2 +
∑
aj∈E
j 6=b

(xa − xj)2 +
∑
bj∈E
j 6=a

(xb − xj)2 + dab(xa − xb)2.

Similarly,

FG(x′) =
∑
ij∈E

i,j 6=a,b

(xi − xj)2 +
∑
aj∈E
j 6=b

(xa + xb − xj)2 +
∑
bj∈E
j 6=a

(xj)
2 + dab(xa + xb)

2.

The expression for FG(x′′) can be readily obtained switching the roles of a and b.
Consider the differences ∆′ = F (x′)− F (x) and ∆′′ = F (x′′)− F (x). Then

∆′

xb
= (da − dab)(2xa + xb)−

∑
aj∈E
j 6=b

2xj − (db − dab)xb +
∑
bj∈E
j 6=a

2xj + 4dabxa.

The expression for ∆′′/xa can be readily obtained switching the roles of a and b.
As xa, xb > 0 we can take

∆′

xb
+

∆′′

xa
= (da + db + 2dab)(xa + xb) > 0,

so that at least one of the differences ∆′ and ∆′′ is positive. This contradicts the
maximality of x.

In particular, Lemma 2.1 implies that the vector x ∈ Rn that achieves µ(1)(G)
satisfies max{|P |, |N |} ≤ 1. Now we consider the case |P | = |N | = 1.
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Lemma 2.2. Let x ∈ Rn such that ‖x‖1 = 1, P = {a}, N = {b} and da ≥ db.
Then da = F (ea) ≥ F (x), with equality if and only if da = db = dab.

Proof. Note that x2
a + x2

b < 1, because |xa|+ |xb| = 1. Then

F (x) = dax
2
a + dbx

2
b + dab(1− x2

a − x2
b)

≤ da(x2
a + x2

b) + dab(1− x2
a − x2

b) ≤ da = F (ea).

The first and second inequalities become equalities if and only if da = db and
da = dab, respectively.

Since for x = ea we have
∑

ij∈E(xi − xj)2 = da, it follows that µ(1)(G) is
attained for a vector ea for a vertex a with maximum degree. That proves item
(a) of Theorem 1. Note that the solutions are always of this form if the maximum
degree is at least 2, because the equality situation of Lemma 2.2 is of interest only
if the maximum degree is one. For instance, for G = K2, any feasible vector attains
the maximum.

Now we proceed to prove item (b), which states that µ(∞)(G)/4 is equal to
the size of a maximum cut of G. In this case, the problem is of the form

µ(∞)(G) = max
maxi |xi|=1

∑
ij∈E

(xi − xj)2.

Lemma 2.3. Let x ∈ Rn such that maxi |xi| = 1 and FG(x) = µ(∞)(G). If i ∈ V
is not an isolated vertex, then |xi| = 1.

Proof. Let x be as stated above. Suppose that there is a ∈ V with −1 < xa < 1.
Define x′, x′′ ∈ Rn as

x′i =

{
1 if i = a;

xi otherwise.
and x′′i =

{
−1 if i = a;

xi otherwise.

Consider the differences ∆′ = F (x′)− F (x) and ∆′′ = F (x′′)− F (x). Then

∆′ = da(1− x2
a)− 2(1− xa)

∑
aj∈E

xj

and similarly

∆′′ = da(1− x2
a) + 2(1 + xa)

∑
aj∈E

xj ,

and therefore
∆′

1− xa
+

∆′′

1 + xa
= 2da > 0,

because i is not isolated. So at least one of the differences ∆′ and ∆′′ is positive.
This contradicts the maximality of x.
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Now for a vector x in the form given by Lemma 2.3 let S = {i ∈ V : xi = 1}
and T = {i ∈ V : xi = −1}. If cut(S, T ) denotes the number of edges with one
endpoint in S and the other in T , we have

F (x) =
∑
i∈S
j∈T

(xi − xj)2 = 4cut(S, T ).

Then of course FG(x) = µ(∞)(G) if cut(S, T ) is a maximum cut. That proves item
(a) of Theorem 1. Also, the maximum value of µ(∞)(G) among graphs of order n
is

µ(∞)(Kn) = µ(∞)(Kbn/2c,dn/2e) =

{
n2 if n is even;

n2 − 1 if n is odd.

Finally we prove item (c), which shows properties of the function fG : [1,∞)→
R defined by fG(p) = µ(p)(G). Namely, the function is strictly increasing (Lemma
2.6), continuous (Lemma 2.7) and converges when p→∞ (Lemma 2.8). We denote
the p-th power mean of x ∈ Rn as

Mp(x) =

(
1

n

n∑
i=1

|xi|p
)1/p

and recall the Power Mean Inequality [4, p. 202, Theorem 1] that states that, for
r, s ∈ R,

r > s =⇒Mr(x) ≥Ms(x),

with equality if and only if |x1| = |x2| = · · · = |xn|.
First we state two technical lemmas that will be useful.

Lemma 2.4. Let r > s ≥ 1. Then for x ∈ Rn,

‖x‖r ≤ ‖x‖s ≤ n
1
s−

1
r ‖x‖r.

Furthermore, for a nonzero vector x∗ that attains the upper bound, we must have
|x∗i | = n−1/r‖x‖r for all i.

Proof. Without loss of generality, we can assume that x has positive entries and
‖x‖r = 1. The lower bound holds because the p-norm is nonincreasing in p, and it
is only achieved by ei. The upper bound comes from the fact that, by the power
mean inequality, Mr(x) ≥ Ms(x), or alternatively n−1/r‖x‖r ≥ n−1/s‖x‖s, with
equality if and only if all entries are equal to n−1/r.

Lemma 2.5. Let G = (V,E) be a graph, p > 2 and x ∈ Rn with ‖x‖p = 1. Then
FG(x) ≤ n1−2/pµ(2)(G).

Proof. By the Rayleigh-Ritz theorem, we have FG(x) ≤ ‖x‖22µ(2)(G) for x 6= 0 ∈
Rn. Using Lemma 2.4 with r = p and s = 2, we obtain maxx:‖x‖p=1 ‖x‖2 =

n1/2−1/p, and therefore FG(x) ≤ n1−2/pµ(2)(G).
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The remainder of the proof will be broken down into three lemmas, one for
each claim in (c).

Lemma 2.6. For a graph G with at least one edge and p ≥ 1, µ(p)(G) is strictly
increasing in p.

Proof. First assume that p′ > p > 1, and let x ∈ Rn such that ‖x‖p = 1 and
F (x) = µ(p)(G). Define x′ := x/‖x‖p′ . As ‖x‖p′ ≤ 1, we have

(2.1) µ(p′)(G) ≥ F (x′) =
1

‖x‖2p′
F (x) ≥ µ(p)(G).

As G has at least one edge ij, µ(p)(G) > 0; pick x such that xi = −xj = 2−1/p, and
xi = 0 otherwise. Equality holds in equation (2.1) if and only if x = ei for some
i. We argue now that for p > 1, ei never attains the maximum, so that µ(p)(G) is
strictly increasing.

For p > 1, the KKT stationarity conditions of the problem are Lx = λ∇x(|x1|p+
· · ·+ |xn|p − 1). Note that x→ |x|p is differentiable for p > 1. The condition cor-
responding to ∂/∂xj is

(2.2) djxj −
∑
jk∈E

xk =

{
p|xj |p−1sign (xj) , if xj 6= 0;

0, if xj = 0.

If i is an isolated vertex, then F (ei) = 0 and optimality is not attained.
Now assume that i has a neighbour j. Taking x = ei, then xk = 0 if k 6= i; in
particular, xj = 0. Then the right hand side of (2.2) is 0, and the left hand side
is djxj −

∑
jk∈E xk = 0 − xi = −1. Therefore, ei does not satisfy the optimality

conditions of the problem, so that, for any i ∈ V , F (ei) < µ(p)(G) for p > 1.

With this last statement in mind, recall that, by the proof of item (a) of
Theorem 1, µ(1)(G) = F (ei) for i with maximum degree. Therefore, we conclude
that µ(1)(G) < µ(p)(G) for p > 1. This completes the proof.

Lemma 2.7. For any graph G and p ≥ 1, the function p→ µ(p)(G) is continuous.

Proof. Let p′ > p ≥ 1, and let x′ ∈ Rn such that ‖x′‖p′ = 1 and F (x′) = µ(p′)(G).

By Lemma 2.4, we have ‖x′‖p ≤ n
1
p−

1
p′ ‖x′‖p′ . Define x := x′/‖x′‖p. Then

µ(p′)(G) = F (x′) = ‖x′‖2pF (x) ≤ n
2
p−

2
p′ ‖x′‖p′µ(p)(G) = n

2
p−

2
p′ µ(p)(G)

By Lemma 2.6, we know that µ(p′)(G) > µ(p)(G) > 0. It is well-known (check for
example [5]) that µ(2)(G) ≤ µ(2)(Kn) = n. Combining this with Lemma 2.5, we
have µ(p)(G) ≤ n2−2/p for p ≥ 2; as µ(p)(G) is strictly increasing in p (Lemma 2.6),
this bound holds for p ≥ 1. So
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µ(p′)(G)− µ(p)(G) ≤ n
2
p−

2
p′ µ(p)(G)− µ(p)(G)

≤
(
n

2
p−

2
p′ − 1

)
n2−2/p

< (n2(p′−p) − 1)n2.

So we have µ(p′)(G)− µ(p)(G) < ε if p′ − p < 1
2 logn(ε/n2 + 1).

Lemma 2.8. For any graph G,

lim
p→∞

µ(p)(G) = µ(∞)(G).

Proof. For a given p, let x such that ‖x‖p = 1 and F (x) = µ(p)(G). By the proof
of Lemma 2.6, we know that x 6= ei, so maxi |xi| < 1. Define x′ := x/max |xi|. We
can choose N = N(x′) ∈ N such that

µ(p)(G) = F (x) = (max |xi|)2F (x′) > (max |xi|)Nµ(∞)(G),

because (max |xi|)N can be made arbitrarily small. Therefore we have 0 < µ(∞)(G)−
µ(p)(G) < (1−(max |xi|)N )µ(∞)(G). One can check that max |xi| ≥ n−1/p. We con-
clude the proof noting that

0 < µ(∞)(G)− µ(p)(G) < (1− n−N/p)µ(∞)(G),

and n−N/p → 1 when p→∞.

3. PROOF OF THEOREM 2

In this section we prove Theorem 2, which establishes the upper bound
µ(p)(G) ≤ n2−2/p for p ≥ 2, as well as a necessary and sufficient condition for
equality. We denote G = (S, T,E) a bipartite graph with vertex classes S and T
and edge set E. First we state three auxiliary lemmas.

Lemma 3.9. Let G = (S, T,E) be a bipartite graph, and x ∈ Rn such that ‖x‖p = 1
and F (x) = µ(p)(G). Then for x or −x we have P ⊆ S and N ⊆ T .

Proof. Let x be as stated above. Note that we can freely change the signs of the
entries preserving feasibility. Without loss of generality, if we change the signs of
negative entries in S and positive entries in T , we are replacing, in the sum of F ,
terms of the form (|xi| − |xj |)2 by (|xi|+ |xj |)2, thus increasing F .

Lemma 3.10. Let G = (S, T,E) be a complete bipartite graph, p > 2, and x ∈ Rn

such that ‖x‖p = 1 and F (x) = µ(p)(G). If i and j are in the same class of the
bipartition, then xi = xj.
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Proof. By Lemma 3.9 we can assume, without loss of generality, that the entries of x
corresponding to vertices in S and T are respectively nonnegative and nonpositive.
Suppose that there are i, j ∈ S with xi 6= xj . As G is complete bipartite,

F (x) =
∑
k∈T

∑
i∈S

(xi − xk)2.

Let Mp denote the power mean of {xi : i ∈ S}. Consider the vector x′ ∈ Rn such
that x′i = Mp if i ∈ S and x′i = xi if i ∈ T . One can check that ‖x′‖p = 1. We
claim that F (x′) > F (x), contradicting the maximality of x. We have

F (x′)− F (x) =
∑
k∈T

∑
i∈S

(x′i
2 − x2

i ) + 2xk(x′i − xi).

For any fixed k ∈ T , by the power mean inequality,∑
i

x′i
2
+2
∑
i

x′ix
′
k = |S|M2

p +2|S|Mpxk > |S|M2
2 +2|S|M1xk =

∑
i

x2
i +2

∑
i

xixk.

This allows us to obtain a formula for complete bipartite graphs.

Lemma 3.11. Let G = (S, T,E) be a complete bipartite graph. For p > 2,

µ(p)(G) = |S||T |(a+ b)2,

where

a =

(
|S|+ |T |

(
|S|
|T |

) p
p−1

)−1/p

, b =

(
|S|
|T |

) 1
p−1

a.

Proof. By Lemma 3.10, we can assume that xi = a for i ∈ S and xi = −b for
i ∈ T . Then apply the method of Lagrange multipliers to the function g(a, b) =
|S||T |(a+ b)2 constrained by h(a, b) = |S|ap + |T |bp = 1.

Now we state a useful bound for the usual spectral radius.

Lemma 3.12. Let G be a graph. Then µ(2)(G) ≤ n, with equality if and only if
Ḡ, the complement graph of G, is disconnected.

Proof. The proof is straightforward and may be found in [11]. We remark that Ḡ
being disconnected is equivalent to G containing a complete bipartite graph as a
spanning subgraph.

In the proof of item (c) of Theorem 1, the balanced complete bipartite graph
is the only bipartite graph that attains the maximum for µ(∞)(G) among graphs
G of order n. We now show that the same holds for µ(p) if 2 < p <∞ if n is even.
Note that this is not the case for p = 2 in light of Lemma 3.12.
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Proof of Theorem 2. As µ(2)(Kn) = n, the bound µ(p)(G) ≤ n2−2/p is a direct
consequence of Lemma 2.5. By Lemma 3.11, one can check that µ(p)(Kn/2,n/2) =

n2−2/p. Furthermore, if Kn/2,n/2 ⊆ G, we trivially have µ(p)(G) = n2−2/p because
FG(x) will not decrease if we add edges to G.

Now let G and x ∈ Rn such that FG(x) = µ(p)(G) = n2−2/p. By Lemma
2.5, this implies that µ(2)(G) = n. Also by Lemma 2.5, as p > 2, we must have
|xi| = |xj | for all i, j ∈ V . Consider the sets P and N associated with G and x, and
observe that V = P ∪N . Since xi− xj = 0 if i and j lie in the same class, we have
µ(p)(G) =

∑
i∈P

∑
j∈N (xi − xj)2. This implies that {i, j} ∈ E(G) for all i ∈ P

and j ∈ N , otherwise FG∪{i,j}(x) > FG(x) = n2−2/p, contradicting Lemma 2.5.
Finally, the formula in Lemma 3.11 ensures that |xi| = |xj | if and only if |P | = |N |,
therefore |P | = |N | = n/2.

Although we conjecture that the equality condition of Theorem 2 also holds
for odd n (of course with a different bound, given by Lemma 3.11), the reasoning
used in the proof does not work in this case, because then the balanced complete
bipartite graph does not attain the bound given by Lemma 2.5.

4. CONCLUDING REMARKS

As already mentioned in the introduction, when we study the p-spectral ra-
dius of the Laplacian matrix, we seem to obtain maximum cuts under different
restrictions in the graph by varying p. That motivates the following broad question
for further investigation:

Question 4.13. For p ≥ 1, which relation possibly exists between µ(p)(G) and cuts
(or other parameters) of G?

There are other approaches that seek to generalize eigenvalues via the in-
troduction of the p-norm. Amghibech [1] introduced a non-linear operator, which
he called the p-Laplacian ∆p, that induces a functional of the form 〈x,∆p〉 =∑

ij∈E |xi − xj |p instead of the quadratic form of the Laplacian. This functional
is unbounded for p = ∞ over the p-norm unit ball, and the case p = 1 cannot
be treated directly. However, the eigenvalue formulation used allows to explore
eigenvalues other than the largest and the smallest: λ is said to be a p-eigenvalue
of M if there is a vector v ∈ Rn such that

(∆px)i = λφp(vi), φp(x) = |x|p−1sign (x) .

The vector v is called a p-eigenvector of M associated to λ. Using this formulation,
Bühler and Hein [3] proved that the cut obtained by “thresholding” (partitioning
according to entries greater than a certain constant) an eigenvector associated to
the second smallest eigenvalue of ∆p converges to the optimal Cheeger cut when
p → 1; in practice, the case p = 2 is used to obtain an approximation to this
cut [12,17].



The p-spectral radius of the Laplacian matrix 465

It may be possible to adapt this method to the standard Laplacian operator,
which would allow us to explore a p-norm version of the second smallest eigenvalue
of L, which could potentially also lead to different cuts according to the value of p.
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