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REVISITING SIMULATION FUNCTIONS VIA

INTERPOLATIVE CONTRACTIONS

Erdal Karapınar

This paper is dedicated to Professor Gradimir V. Milovanovic on the occasion of
his 70th anniversary.

In this paper, introduce the notion of an interpolative Hardy-Rogers type
Z-contraction and we revisit the renowned Hardy-Rogers contraction in the
framework of interpolation. We investigate the existence of fixed points for
such mappings in the context of metric spaces and list immediate conse-
quences that covers some existing results in the literature.

1. Introduction and Preliminaries

In 2015 Khojasteh et al. [16], introduced an auxiliary function, simulation
function, that covers and involves several existing contraction types in the literature.
On the other hand, very recently, in [14], an interpolative contraction mappings are
introduced to enrich fixed point theory. Interpolation theory is very deep theory
and has been used widely in several research fields, see e.g. [17]. In this paper, we
want to combine these two approaches and investigate the existence of fixed points
that forms interpolative contractions in the framework of simulation functions in
the context of complete metric spaces.

First of all, for the sake of completeness we recollect some basic definitions
and results.

Definition 0.1. (See [16]) A simulation function is a mapping ζ : [0,∞)×[0,∞)→
R satisfying the following conditions:
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(ζ1) ζ(t, s) < s− t for all t, s > 0;

(ζ2) if {tn}, {sn} are sequences in (0,∞) such that lim
n→∞

tn = lim
n→∞

sn > 0, then

(1) lim sup
n→∞

ζ(tn, sn) < 0.

(ζ3) ζ(0, 0) = 0;

Due to the axiom (ζ1), we have

(2) ζ(t, t) < 0 for all t > 0.

The definition above was refined by omitting the condition ζ(0, 0) = 0 Ar-
goubi et al. [4]. Throughout the paper, the letter Z denotes the family of all
functions ζ : [0,∞)× [0,∞)→ R that satisfies only (ζ1) and (ζ2). From now on, a
function ζ is called simulation function if ζ ∈ Z.

The following example is derived from [1].

Example 0.1. Let φi : [0,∞)→ [0,∞) be continuous functions such that φi(t) = 0
if and only if, t = 0. For i = 1, 2, 3, 4, 5, 6, we define the mappings ζi : [0,∞) ×
[0,∞)→ R, as follows

(i) ζ1(t, s) = φ1(s)−φ2(t) for all t, s ∈ [0,∞), where φ1, φ2 : [0,∞)→ [0,∞) are
two continuous functions such that φ1(t) = φ2(t) = 0 if and only if t = 0 and
φ1(t) < t ≤ φ2(t) for all t > 0.

(ii) ζ2(t, s) = s − f(t, s)

g(t, s)
t for all t, s ∈ [0,∞), where f, g : [0,∞)2 → (0,∞) are

two continuous functions with respect to each variable such that f(t, s) >
g(t, s) for all t, s > 0.

(iii) ζ3(t, s) = s− φ3(s)− t for all t, s ∈ [0,∞).

(iv) ζ4(t, s) = s ϕ(s)− t for all s, t ∈ [0,∞), where ϕ : [0,∞)→ [0, 1) is a function
such that lim sup

t→r+
ϕ(t) < 1 for all r > 0.

(v) ζ5(t, s) = η(s) − t for all s, t ∈ [0,∞), where η : [0,∞) → [0,∞) is an upper
semi-continuous mapping such that η(t) < t for all t > 0 and η(0) = 0.

(vi) ζ6(t, s) = s −
∫ t

0
φ(u)du for all s, t ∈ [0,∞), where φ : [0,∞) → [0,∞) is a

function such that
∫ ε

0
φ(u)du exists and

∫ ε
0
φ(u)du > ε, for each ε > 0.

It is clear that each function ζi (i = 1, 2, 3, 4, 5, 6) forms a simulation function.

One can find more interesting examples of simulation functions in [1–3,5,11–
13,16,18].
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Suppose (X, d) is a metric space, T is a self-mapping on X and ζ ∈ Z. We
say that T is a Z-contraction with respect to ζ [16], if

(3) ζ(d(Tx, Ty), d(x, y)) ≥ 0 for all x, y ∈ X.

Again (ζ2), we have the following inequality

(4) d(Tx, Ty) 6= d(x, y) for all distinct x, y ∈ X.

Thus, we conclude that T cannot be an isometry whenever T is a Z-contraction.
In other words, if a Z-contraction T in a metric space has a fixed point, then it is
necessarily unique.

Theorem 0.1. Every Z-contraction on a complete metric space has a unique fixed
point.

Recently an interesting fixed point result via interpolation was reported in
[14]. More precisely, in [14], the notion of interpolative Kannan contraction was
introduced as follows: For a metric space (X, d), a mapping T : X → X is called
an interpolative Kannan contraction if

(5) d (Tx, Ty) ≤ λ [d (x, Tx)]
α · [d (y, Ty)]

1−α
,

for all x, y ∈ X with x, y ∈ X\Fix(T ), where Fix(T ) is the set of all fixed point of
T , λ ∈ [0, 1) and α ∈ (0, 1). The main result in [14] is the following.

Theorem 0.2 ( [14]). Let (X, d) be a complete metric space and T be an inter-
polative Kannan type contraction. Then T has a fixed point in X.

For sake of completeness, we shall recollect one of the renowned general-
izations of the Banach Contraction Principle [6] which is know as Hardy-Rogers
contraction:

Theorem 0.3. [8]. Let (X, d) be a complete metric space. Let T : X → X be a
given mapping such that

d (Tx, Ty) ≤ αd(x, y) + βd(x, Tx) + γd(y, Ty) + δ[
1

2
(d (x, Ty) + d (y, Tx))],

for all x, y ∈ X, where α, β, γ, δ are non-negative reals such that α+ β+ γ+ δ < 1.
Then T has a unique fixed point in X.

In this paper, we investigate interpolative type contractions by using the
simulation function in the context of complete metric spaces. More precisely, we
revisit the renowned Hardy-Rogers contraction in the framework of interpolation
via simulation function.

2. Main results
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We start with the following definition that is belong to Browder and Petrsyn
[7].

Definition 0.2. We say that a self-mapping T : X → X on a metric space (X, d)
is asymptotically regular at a point x ∈ X if lim

n→∞
d(Tnx, Tn+1x) = 0

On what follows we introduce the notion of the interpolative Hardy-Rogers
type Z-contraction.

Definition 0.3. Let T be a self-mapping defined on a metric space (X, d). If there
exist α, β, γ ∈ (0, 1) with α+ β + γ < 1, and ζ ∈ Z such that

(6) ζ(d(Tx, Ty), C(x, y)) ≥ 0,

for all x, y ∈ X\Fix(T ), where Fix(T ) is the set of all fixed point of T , and

C(x, y) := [d (x, y)]
β · [d (x, Tx)]

α · [d (y, Ty)]
γ ·
[

1

2
(d (x, Ty) + d (y, Tx))

]1−α−β−γ

then we say that T is an interpolative Hardy-Rogers type Z-contraction with respect
to ζ.

Lemma 0.1. On a metric space (X, d), every Hardy-Rogers type Z-contraction
with respect to ζ is asymptotically regular

Proof. Let x be an arbitrary point of a metric space (X, d) and let T : X → X be a
Hardy-Rogers type Z-contraction with respect to ζ ∈ Z. If there exists some p ∈ N
such that T px = T p−1x, then y = T p−1x is a fixed point of T , that is, Ty = y.
Consequently, we have that Tny = y for all n ∈ N, so

d(Tnx, Tn+1x) = d(Tn−p+1T p−1x, Tn−p+2T p−1x) = d(Tn−p+1y, Tn−p+2y)

= d(y, y) = 0,

for sufficient large n ∈ N. Thus, we conclude that

lim
n→∞

d(Tnx, Tn+1x) = 0.

So T is asymptotically regular at x. On the contrary, suppose that Tnx 6= Tn−1x
for all n ∈ N, that is,

d(Tnx, Tn−1x) > 0 for all n ∈ N.

On what follows, from (6) and (ζ1), we have that, for all n ∈ N,

0 ≤ ζ(d(Tn+1x, Tnx), C(Tnx, Tn−1x)) < C(Tnx, Tn−1x)− d(Tn+1x, Tnx).

In particular,

(7) d(Tn+1x, Tnx) < C(Tnx, Tn−1x) for all n ∈ N, where
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(8)

C(Tnx, Tn−1x) =
[
d
(
Tnx, Tn−1x

)]β · [d (Tnx, Tn+1x
)]α · [d (Tn−1x, Tnx

)]γ
·
[

1
2 (d (Tnx, Tnx) + d

(
Tn−1x, Tn+1x

)
)
]1−α−β−γ

≤
[
d
(
Tnx, Tn−1x

)]β · [d (Tnx, Tn+1x
)]α · [d (Tn−1x, Tnx

)]γ
·
[

1
2 (d

(
Tn−1x, Tnx

)
+ d

(
Tnx, Tn+1x

)
)
]1−α−β−γ

.

Note that for the assumption d
(
Tn−1x, Tnx

)
< d

(
Tnx, Tn+1x

)
, the expression (7)

turns into

(9)
C(Tnx, Tn−1x) ≤

[
d
(
Tnx, Tn−1x

)]β · [d (Tnx, Tn+1x
)]α

·
[
d
(
Tn−1x, Tnx

)]γ · [d (Tnx, Tn+1x
)]1−α−β−γ

.

Thus, the inequality (7) together with (9) yields that

(10)
[
d
(
Tnx, Tn+1x

)]β+γ
<
[
d
(
Tn−1x, Tnx

)]β+γ
.

It is a contradiction with assumption. Hence, we have

d
(
Tn−1x, Tnx

)
< d

(
Tnx, Tn+1x

)
for all n ∈ N

On account of the inequality above, we deduce that the sequence {d(Tnx, Tn−1x)}
is a monotonically decreasing of non-negative real numbers. Thus, there exists ` ∈
[0,∞) such that limn→∞ d(Tnx, Tn+1x) = ` ≥ 0. We shall prove that ` = 0. Sup-
pose, on the contrary, that ` > 0. It is easy to see that limn→∞ C(Tnx, Tn+1x) = `.

Since T is Hardy-Rogers type Z-contraction with respect to ζ ∈ Z, by (ζ2),
we have

0 ≤ lim sup
n→∞

ζ(d(Tn+1x, Tnx), C(Tnx, Tn−1x)) < 0,

which is a contradiction. Thus, ` = 0 and this proves that

lim
n→∞

d(Tnx, Tn+1x) = 0.

Hence, T is an asymptotically regular mapping at x.

Remark 0.1. In the proof of the previous result we have proved that if T : X → X
is a Hardy-Rogers type Z-contraction on a metric space (X, d) and {xn+1 = Tnx0}
is a Picard sequence of T , then

either there exists k0 ∈ N such that xk0 is a fixed point of T

or 0 < d(Tn+1x, Tnx) < d(Tnx, Tn−1x) for all n ∈ N.(11)

Now, we show that every Picard sequence {xn} generated by a Hardy-Rogers
type Z-contraction is always bounded.

Lemma 0.2. Let a self-mapping T on a metric space (X, d) form a Hardy-Rogers
type Z-contraction with respect to ζ. If {xn} is a Picard sequence generated by T ,
then {d(xn, xm) : n,m ∈ N} is bounded.
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Proof. Start with an arbitrary initial point x0 ∈ X we built a iterative sequence
{xn} which is defined recursively by xn+1 = Txn for all non-negative integer n. If
there exists some n ≥ 0 and p ≥ 1 such that xn+p = xn, then the set {xn : n ∈ N}
is finite, so it is bounded. Hence, assume that xn+p 6= xn for all n ≥ 0 and p ≥ 1.
In this case, by Remark 0.1, we have that:

(12) 0 < d(xn+1, xn) < d(xn, xn−1) for all n ∈ N.

Notice that by Lemma 0.1,

(13) lim
n→∞

d(xn+1, xn) = 0.

In particular, there exists n0 ∈ N such that

d(xn+1, xn) < 1 for all n ≥ n0.

We shall prove that {xn : n ∈ N} is bounded by the method of Reductio ad
Absurdum. We assume that the set

D = {d(xm, xn) : m > n} .

is not bounded. Thus, one can find a subsequence {xnk
} of {xn} such that

limk→∞ d(xnk+1
, xnk

) 6= 0. Indeed, since D is unbounded, there exist n1, n0 with
n1 > n0 such that d(xn1

, xn0
) > 1. If n1 is the smallest natural number, greater

than n0, verifying this property, then we can suppose that

d(xp, xn0) ≤ 1 for all p ∈ {n0, n0 + 1, . . . , n1 − 1}.

Again, as D is not bounded, there exists n2 > n1 such that

d(xn2
, xn1

) > 1 and d(xp, xn1
) ≤ 1 for all p ∈ {n1, n1 + 1, . . . , n2 − 1}.

Recursively, we can get a partial subsequence {xnk
} of {xn} such that, for all k ≥ 1,

d(xnk+1
, xnk

) > 1 and d(xp, xnk
) ≤ 1 for all p ∈ {nk, nk + 1, . . . , nk+1 − 1}.

Hence, by the triangular inequality, we have that, for all k,
(14)
1 < d(xnk+1

, xnk
) ≤ d(xnk+1

, xnk+1−1) + d(xnk+1−1, xnk
) ≤ d(xnk+1

, xnk+1−1) + 1.

Letting k →∞ in (14) and taking (13) into account, we obtain

lim
k→∞

d(xnk+1
, xnk

) = 1.

By (12), we have d(xnk+1
, xnk

) ≤ d(xnk+1−1, xnk−1). Therefore using the triangular
inequality we obtain

1 < d(xnk+1
, xnk

) ≤ d(xnk+1−1, xnk−1) ≤ d(xnk+1−1, xnk
) + d(xnk

, xnk−1)
≤ 1 + d(xnk

, xnk−1).
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Letting k →∞ and using (13) we obtain

lim
k→∞

d(xnk+1−1, xnk−1) = 1.

Since T is a Hardy-Rogers type Z-contraction with respect to ζ ∈ Z, for all k, we
have

0 ≤ ζ(d(Txnk+1−1, Txnk−1), C(xnk+1−1, xnk−1)) < C(xnk+1−1, xnk−1)− d(xnk+1
, xnk

)

which is equivalent to

(15) d(xnk+1
, xnk

) < C(xnk+1−1, xnk−1),

where

C(xnk+1−1, xnk−1) =
[
d
(
xnk+1−1, xnk−1

)]β · [d (xnk+1−1, Txnk+1−1

)]α
· [d (xnk−1, Txnk−1)]

γ

·
[

1
2 (d

(
xnk+1−1, Txnk−1

)
+ d

(
xnk−1, Txnk+1−1

)
)
]1−α−β−γ .

Letting k →∞ in the inequality (15), we find that

(16) 1 = lim
k→∞

d(xnk+1
, xnk

) ≤ 0

is a contradiction. This proves that D = {d(xm, xn) : m > n} is bounded.

We can now state the main result of this paper.

Theorem 0.4. Let (X, d) be a complete metric metric space and T be an interpola-
tive Hardy-Rogers type Z-contraction with respect to ζ. Then there exists u ∈ X
such that Tu = u.

Proof. Start with an arbitrary initial point x0 ∈ X, we construct the Picard se-
quence {xn = Tnx0}n≥0. Incase of a sequence {xn} contains a fixed point of T , the
proof is completed. So, we assume that {xn} has no fixed point of T . Accordingly,
due to Lemma 0.1 together with Remark 0.1 we derive that

0 < d(xn+1, xn) < d(xn, xn−1) for all n ∈ N.(17)

lim
n→∞

d(xn+1, xn) = 0.(18)

We assert that the sequence {xn} is Cauchy. On account that Lemma 0.2, we
guarantee that {d(xm, xn) : m,n ∈ N} is bounded. Consider the sequence {Sn} ⊂
[0,∞) given by:

Sn = sup ({d(xi, xj) : i ≥ j ≥ n}) for all n ∈ N.

It is easy to notice that the sequence {Sn} is a monotonically non-increasing of
non-negative real numbers. Thus, we conclude that this sequence is convergent,
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that is, there exists S ≥ 0 such that limn→∞ Sn = S. We claim that S = 0. We
shall use the method of Reductio ad Absurdum to prove our claim. Suppose, on
the contrary, that S > 0. Then, by definition of Sn, for every k ∈ N there exists
nk,mk ∈ N such that mk > nk ≥ k and

Sk −
1

k
< d(xmk

, xnk
) ≤ Sk.

Hence, we find

(19) lim
k→∞

d(xmk
, xnk

) = S.

By using (17) and the triangular inequality, we have, for all k,

d(xmk
, xnk

) ≤ d(xmk−1, xnk−1) ≤ d(xmk−1, xmk
) + d(xmk

, xnk
) + d(xnk

, xnk−1).

Letting k →∞ in the above inequality and using (18) and (19), we derive that

(20) lim
k→∞

d(xmk−1, xnk−1) = S.

Hence, we have Due to fact that T is a Hardy-Rogers type Z-contraction with
respect to ζ ∈ Z we have

0 ≤ ζ(d(Txmk
, Txnk

), C(xmk
, xnk

))
= ζ(d(xmk−1, xnk−1), C(xmk

, xnk
)) < 0,

which implies

(21) d(xmk−1, xnk−1) ≤ C(xmk
, xnk

)

where

C(xmk
, xnk

) = [d (xmk
, xnk

)]
β · [d (xmk

, Txmk
)]
α

· [d (xnk
, Txnk

)]
γ

·
[

1
2 (d (xmk

, Txnk
) + d (xnk

, Txmk
))
]1−α−β−γ

.

Letting k →∞ in the inequality (21), we find that

(22) S = lim
k→∞

d(xmk−1, xnk−1) ≤ lim
k→∞

C(xmk
, xnk

) = 0,

is a contradiction. Thus, we deduce that S = 0 and, hence, {xn} is a Cauchy
sequence. Since (X, q) is a complete metric space, there exists u ∈ X such that
limn→∞ xn = u.

We shall show that the point u is a fixed point of T reasoning by contradiction.
Suppose that Tu 6= u, that is, d(u, Tu) > 0. Hence we have

lim
n→∞

d(Txn, Tu) = lim
n→∞

d(xn+1, Tu) = d(u, Tu) > 0.
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Therefore, there is n0 ∈ N such that

d(Txn, Tu) > 0 for all n ≥ n0.

In particular, Txn 6= Tu. This also means that xn 6= u for all n ≥ n0. As
d(Txn, Tu) > 0 and d(xn, u) > 0, axiom (ζ2) and property (6) imply that, for all
n ≥ n0,

0 ≤ ζ(d(Txn, Tu), d(xn, u)) < d(xn, u)− d(Txn, Tu).

In particular, 0 ≤ d(Txn, Tu) ≤ d(xn, u) for all n ≥ n0, which means that

lim
n→∞

d(xn+1, Tu) = lim
n→∞

d(Txn, Tu) = 0.

Therefore, {xn} converges, at the same time, to u and to Tu. By the uniqueness of
the limit, u = Tu, which contradicts Tu 6= u. As a consequence, u is a fixed point
of T .

3. Consequences

In this section, we give some immediate consequence of our main result. The
following corollary is the main result of [10].

Corollary 0.1. [10] Let (X, d) be a complete metric space and T : X → X be a
mapping such that

d(Tx, Ty) ≤ λC(x, y) for all x, y ∈ X,

where (C(x, y)) is defined as in Definition 0.3 and λ ∈ [0, 1). Then T has a unique
fixed point in X.

Proof. The result follows from Theorem 0.1 taking into account that T is a Z-
contraction with respect to ζB ∈ Z, where ζB is defined by ζB(t, s) = λs− t for all
s, t ∈ [0,∞) . (see Example 0.1).

Corollary 0.2. Let (X, d) be a complete metric space and let T : X → X be a
mapping satisfying the following condition:

d(Tx, Ty) ≤ C(x, y)− ϕ(C(x, y)) for all x, y ∈ X,

where (C(x, y)) is defined as in Definition 0.3 and ϕ : [0,∞) → [0,∞) is a lower
semi continuous function and ϕ−1(0) = {0}. Then T has a unique fixed point in
X.

Proof. The result follows from Theorem 0.1 taking into account that T is a Z-
contraction with respect to ζR ∈ Z, where ζR is defined by ζR(t, s) = s− ϕ(s)− t
for all s, t ∈ [0,∞) (see Example 0.1).
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Corollary 0.3. Let (X, d) be a complete metric space and T : X → X be a
mapping. Suppose that for every x, y ∈ X,

d(Tx, Ty) ≤ η(C(x, y))

for all x, y ∈ X, where (C(x, y)) is defined as in Definition 0.3 and η : [0,+∞)→
[0,+∞) be an upper semi continuous mapping such that η(t) < t for all t > 0 and
η(0) = 0. Then T has a unique fixed point.

Proof. The result follows from Theorem 0.1 taking into account that T is a Z-
contraction with respect to ζBW ∈ Z, where ζBW is defined by ζBW (t, s) = η(s)− t
for all s, t ∈ [0,∞) (see Example 0.1).

Corollary 0.4. Let (X, d) be a complete metric space and let T : X → X be a
mapping satisfying the following condition:∫ d(Tx,Ty)

0

φ(t)dt ≤ C(x, y) for all x, y ∈ X,

where (C(x, y)) is defined as in Definition 0.3 and φ : [0,∞)→ [0,∞) is a function
such that

∫ ε
0
φ(t)qt exists and

∫ ε
0
φ(t)dt > ε, for each ε > 0. Then T has a unique

fixed point in X.

Proof. The result follows from Theorem 0.1 taking into account that T is a Z-
contraction with respect to ζK ∈ Z, where ζK is defined by

ζK(t, s) = s−
∫ t

0

φ(u)qu for all s, t ∈ [0,∞)

(see Example 0.1).

Conclusion

It is clear that the list of consequences in the above section is not complete. In
the section above, we give only the fundamental consequences. On the other hand,
regarding Example 0.1, one can deduce more results. Furthermore, by changing
the terms in (C(x, y)) in Definition 0.3, we get more consequences.
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