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Let P(z) = >__, a,z” be a polynomial of degree n. Then as a generalization
of a well-known result of Turén [18], it was proved by Govil [5] that if P(z)
is a polynomial of degree n having all its zeros in |z| < K, K > 1, then

. ()] > —2 .
0.1) max |P/(2)] 2 " max | PC2)

In this paper, we prove a polar derivative generalization of this inequality,
which as a corollary gives a sharpening of this inequality (0.1).

1. INTRODUCTION AND STATEMENT OF RESULTS

If P(z) = >.I'_,a,z" is a polynomial of degree n then from a well-known
inequality due to Bernstein [3], we have
(1.2) max |P'(2)] < n max |P(2)].
z|=1 z|=1
The Inequality (1.2) is best possible and equality holds, if P(z) has all its zeros

at the origin. In case the polynomial P(z) has no zeros in |z| < 1, then Erdés
conjectured and later Lax [12] proved that

(1.3) max | P'(2)| < J max | P(2)].

|z|= 2 Iz|
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The Inequality (1.3) is also best possible and equality holds for P(z) = a + bz™,
where |a| = |b|. The generalization of the Inequality (1.3) to class of polynomials
having no zeros in |z| < K, K > 1 was done by Malik [14] (See also Govil and
Rahman [10, Theorem 4]), who proved that, if a polynomial P(z) of degree n has
no zeros in |z| < K, K > 1, then

n
1.4 max |P/(2)] < —— max |P(2)|.
(14) max |P'(2)| < 11z max |P(:)

In the other direction, it was proved by Turdn [18] that if P(z) is a polynomial of
degree n, having all its zeros in |z| < 1, then

(1.5) max |P'(z)] > gmzl)i IP(2)].

[z]=1 |2l

The Inequality (1.5) is also best possible and equality holds if the polynomial P(z)
has all its zeros on |z| = 1.

The Inequality (1.5) of Turdn [18] has been of considerable interest and ap-
plications, and so it would obviously be of interest to generalize it for polynomials
having all their zeros in |z| < K,K > 0. The case when 0 < K < 1 was set-
tled by Malik [14], while the case when K > 1 by Govil [5], who proved that if
P(z) = Y. _gayz” is a polynomial of degree n having all its zeros in |z| < K,
K > 1, then

n max |P(z)|, for K > 1.

1. P >
(16) mi}i‘ @)= 14+ K" |z|=1

|z|=

As is easy to see that the Inequality (1.6) is sharp and becomes equality
if P(z) = 2™ 4+ K™. From this, one would expect that if we exclude the class of
polynomials having zeros on |z| = K, then it may be possible to improve upon the
above Inequality (1.6). In this direction, it was proved by Govil [6], that if P(z) =
>y ayz” is a polynomial of degree n having all its zeros in |z| < K, K > 1, then

(1.7) max |P'(z)] >

n
max |P(z)| + min |P(z .
i e (maxlPE)+ min 1P()])

=1
Govil [7] also proved that, if P(z) = >_I'_ a,z", is a polynomial of degree n > 2,
having all its zeros in |z] < K, K > 1, then

n
P/ > P
\z\i)ﬂ () 2 1+ K™ |z|i)§| (2)]

(1.8) +

nlan_1] (K”—l Kn=2 -1

(1+ KMK n n—2 >+|a1|(1—1/K2).

Although the Inequality (1.7) sharpens Inequality (1.6) but it has a draw-
back that if there is even one zero on |z| = K, then min,—x |P(z)| = 0, and
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so the Inequality (1.7) fails to give any improvement over (1.6). Similarly, if
la1| = |an—1] = 0, then Inequality (1.8) also fails to give any improvement over
the Inequality (1.6). Therefore it is quite natural to ask now; is there any way to
overcome these deficiencies, for example, can the bound be expressed in terms of
coefficients of the polynomial under consideration, which is more informative than
the one given in (1.6)? By intuition, one may try to answer this question in differ-
ent ways at different levels. In this paper we approach this problem by using the
information on the leading and constant coefficients of the underlying polynomial,
and our result thus obtained sharpens Inequality (1.6) even when Inequalities (1.7),
and (1.8) fail.

We will do this by first proving a polar derivative generalization of (1.6) and
then use the result so proved to obtain the desired sharpening of (1.6).

If P(z) is a polynomial of degree n, then the polar derivative of P(z) with
respect to a complex number « is defined as

DoP(2) =nP(z) + (o — 2) P'(2).

Note that D,{P(z)} is a polynomial of degree atmost n — 1, and it is a ’general-
ization’ of the ordinary derivative in the sense that

lim Da{P(2)} = P'(2),

a—00 o
uniformly with respect to z for |z2|] < R, R > 0. For more information on polar
derivatives of polynomials, one can refer to monographs by Marden [14], Rahman
and Schmeisser [17], or Milovanovi¢ et al. [15].

Inequalities have been extended widely in the literature from ’ordinary deriva-
tive’ to 'polar derivative’ of complex polynomials, and for some of the papers in
this direction, we refer to a recently published book chapter by Govil and Kumar
[8] (see also Govil and Kumar [9], and Kumar [11]).

We begin, by presenting the following result involving polar derivative of a
polynomial having all its zeros in |z| < K, K > 1. As will be shown, this result
generalizes Inequality (1.6), and will be used to obtain a sharpening of it.
Theorem 1.1. If P(2) = 2™(ag + a1z + -+ + @p—mz™ ™), 0 < m < n, is a
polynomial of degree n having all its zeros in |z| < K, K > 1, then for any complex
number o with |a| > K,

max |Daf{P(2)}]

n+m (lan—m[K™™™ — lao|)
(1.9) 2 (o] = K) (1 T K" + 1+ E™)(an_m| K™ m0+ |a0|)> I?i x|P(z)|.

If we divide (1.9) by |«| and make |a| — oo, we easily get

Corollary 1.2. If P(z) = 2™(ap + a1z + -+ + ap—mz"" ™), 0 is a

polynomial of degree n which has all its zeros in the disk |z| < K,

<

K

( n+m (|ap—m|K™™™ — |ag]) >
1+ K (14 K")(Jap—m|K"™ + |aol)

m < n,
> 1, then

(1.10) max|P'(z)| >

max
|z|=1 |=1
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The result is best possible and equality in (1.10) holds for the polynomial P(z) =
2"+ K",

The case m = 0 of the above Corollary 1.2 is also of some interest and the
same is presented below.

Corollary 1.3. If P(2) = ag + a1z + -+ + an_12"" 1 + a,z™ is a polynomial of
degree n which has all its zeros in the disk |z| < K, K > 1, then

2| K™ — |ao))
1.11 max |P'(z)| > ( i + (Jan] max |P(2)].
(1) max [P 2 | T 7m + G R (anlie + Jagp ) S P

The result is best possible and equality in (1.11) holds for the polynomial P(z) =
2"+ K",

Remark 1.4. It may be remarked that the coefficient a,, cannot be zero, because
otherwise the polynomial P(z) will not be of degree n. It is clear that, in general
for any polynomial the Inequalities (1.10) and (1.11) would give an improvement
over the bound obtained from Inequality (1.6), and for the class of polynomials
having a zero on |z| = K, the Inequalities (1.10) and (1.11) will give bound that
is sharper than obtainable from Inequality (1.7). Also, for all polynomials P(z)
with |a1]| = |an—1| = 0 and |a,|K™ — |ag| # 0, the Inequality (1.11) gives a bound
that is better than obtainable from the Inequality (1.8). One can also observe that
for larger values of m > 0, Inequality (1.10) improves inequality (1.8) considerably
when |a1| = |an—1| = 0 and |ap—m|K™*™™ — |ag| # 0.

Example 1.5. Let P(z) = 22(22 — 4). Then P(z) is a polynomial of degree n = 4
having all its zeros in |z| < 2. For this polynomial P(z), we have |ag| = 0, |a,| =
las| = 1, max|,|—; |P(2)| = 5, and min;|—5 |P(2)| = 0. Then it is easy to see that
by Inequalities (1.6), (1.7), and (1.8), we have max,— [P'(z)| > 20/17, while our
Inequality (1.10) gives max,;—; |P'(z)| > 35/17, an improvement of 75% over the
bounds obtained from inequalities (1.6), (1.7) and (1.8). Also, the Inequality (1.11)
gives max|,|= |P'(z)| > 25/17, an improvement of 25% over the bounds obtained
from inequalities (1.6), (1.7) and (1.8).

If we take K =1 in Corollary 1.3, we get
Corollary 1.6. If P(z) = ag + a1z + -+ + ap_12"" 1 4+ an2™ is a polynomial of

degree n which has all its zeros in the disk |z| < 1, then

y o (L (aul — lao)
(1.12) max| P()] 2 3 (1 " M) max | P(2)|.

The result is best possible and equality in (1.12) holds for polynomials having all
their zeros on |z| = 1.

Clearly, the above Corollary 1.6 sharpens Inequality (1.5) due to Turdn [18]
in all cases excepting when P(z) has all its zeros on |z| = 1.
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Also, it may be remarked that by using Lemma 2.8, we can, in fact, obtain
the following inequality which holds for every z on |z| = 1, and so is more general
than (1.12).

(1.13) 1P'(2)] > 2 (1 o {an] ~ Jaol).

|P(z)], for every z on |z| = 1.
n(lan| + GO))

2. LEMMAS

For the proof of our theorem, we will need the following lemmas.
Lemma 2.7. If0<z <1, 0<y <1, then

1 1 1 1
+ - —->0.
1+ 14y 14+zy 2

Proof. For any x,y such that 0 < x < 1,0 <y <1, a simple verification yields
1 1 1 1 (I-2)1—-y)(1—azy)

+ - - )
T4z  14+y l14zy 2 2(0+2)1+y)(1+ay)
which is clearly > 0, and the proof of the lemma is complete. O

Lemma 2.8. If P(z) = ag+a1z+--+a,_12"" 1 +a,2" is a polynomial of degree
n > 1 having all its zeros in |z| < 1, then for all z on |z| =1 for which P(z) # 0

2P (z) n lan| — |ao]
(2.14) Re( P(2) ) =3 3{an [+ o)’

Proof. It may be remarked that this result is also mentioned in a paper of Dubinin
[4], where it has been proved by using the Boundary Schwarz Lemma [16, Lemma
1, p. 3514]. Here we present a proof which we believe is new, direct and does not
make use of the Boundary Schwarz Lemma [16, Lemma 1, p. 3514]. It only makes
use of the principle of mathematical induction.

To prove (2.14), it suffices to establish its equivalent form

2P'(z) n—1 1
2.1 > .
(215) Re<P(Z))_ 2 +1+%
Clearly, without loss of generality, we can assume a, = 1. We will prove the

above Inequality (2.15) with the assumption a,, = 1, by the use of the principle of
mathematical induction on the degree n, and for this, we first verify the result for
n=1.

If n =1, then P(z) = z—w with |w| < 1, and therefore for |z| = 1 and z # w,

we have P’( ) )
z z zZ
p— >
Re(P(z)) Re(z—w)—1+|w|’
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which is nothing but (2.15) when n = 1.

Let Q(z) := (2 — w)P(z) with |w| < 1, where P(2) = >_7_;a,2" is a poly-
nomial of degree n having all its zeros in |z| < 1. Then for all z on |z| = 1 where
Q(2) # 0, we get by using induction hypothesis

() = (50) e (5)

S 1 n n—1 n 1 -
14 |wl 2 1+ |ag]
To complete the induction principle, we need to show that on |z| = 1,
2Q'(z) n 1
(210 Re(%G6) > B+ Tt
Clearly, the Inequality (2.16) holds if
1 n—1 1 n 1

+ + > s,
14+ |w| 2 1+aol = 2 14 |wl|aog]
which is equivalent to
1 1 1 1
— -+ - > 0.
L+fwl 2 I+4]a] 1+ |wllaol
But Inequality (2.17) follows from Lemma 2.7, since 0 < |w| <1, and 0 < |ag| < 1.

Hence (2.16) is also true, and with this, the proof becomes complete on using
induction hypothesis. O

(2.17)

Our next result is a generalization of Lemma 2.8. However, it was necessary
for us to prove Lemma 2.8 because the same will be needed to prove Lemma 2.9,
given below.

Lemma 2.9. If P(z) = z™(ag+a1z2+ - -+ an—mz"" ™), 0 < m < n, is a polynomial
of degree n > 1 having all its zeros in |z| < 1, then for all z on |z| = 1 for which

P(z) #0,

zP'(2) n+m  |an_m|—|ao
(2.18) Re( P(2) ) =2 annl t Jao)

Proof. Let P(z) = 2™Q(z) where Q(z) := ap + a12 + -+ + ap—mz"" ™. Then on
2| =1,

(2.19) Re (f;i?) = m+ Re (zg;i’;)) .

Therefore by applying Lemma 2.8 to the polynomial @Q(z) in (2.19), and noting
that Q(z) is of degree (n —m), we get on |z| =1,

zP’(z)) n—m | —m| — |ao]
Re >m+ + ;
( P(2) 2 2(lan—m| + laol)

which is equivalent to the desired inequality. O
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Lemma 2.10. If P(z) is a polynomial of degree n which has all its zeros in the
disk |z| < K, K > 1, then

n

2.2 P >
(220) PO T

[P (2)].

Proof. This result appears in Aziz [2], however for the sake of completeness we
present here its proof. It may be noted that our proof is different from the one
given in Aziz [2], and is much shorter.

Since P(z) is a polynomial of degree n having all its zeros in the disk |z] <
K, K > 1, the polynomial R(z) = P(Kz) is of degree n, and has all its zeros in
|z| < 1. Let Q(z) := 2"R(1/z). Then Q(z) is a polynomial of degree at most n
having no zeros in |z| < 1 and therefore by an inequality due to Ankeny and Rivlin
[1, Theorem 1], we have

K"+1
max |Q(z2)] < max |Q(z)],
max [Q(2)] < S5 max |Q(:)
which is equivalent to
2.21 > .
(2.21) max |Q(2)| 2 g7 max [Q(2)]

Since Q(z) = 2"R(1/z) = 2" P(K/z), the above Inequality (2.21) clearly gives

n

2.22 max |P(z)| > max
(2.22) ‘Z‘:KI (2) = R

[P (2)],

which is the Inequality (2.20), and the proof of Lemma 2.10 is thus complete. [

Lemma 2.11. If P(z) = 2™(ap + a1z + -+ + apn—mz™ ™), 0 < m < n, is a
polynomial of degree n having all its zeros in |z| < 1, then for any complex number
a with |a] > 1, and on |z| =1,

n+m (lan—m| — laol) )
2.23 D AP(2)} > (la] — 1 + P(z)].
223)  IDuPEY 2 (fal - 1) (T ¢ el Rh g
Proof. Since P(z) is a polynomial of degree n having all its zeros in |z| < 1, and
Q(z) :=2"P (1), then with the fact that |P’(z)| > |Q'(z)| on |z| = 1, we have for
|| > 1, and on |z| =1,
|DaP(2)] = [nP(z) + (a — 2)P'(2)]

> |al|P(2)] = [nP(z) — 2P'(2)|

= lal[P'(2)] = |Q'(2)] = (lo] = DIP'(2)].

Therefore

(2.24) [DaP(2)] = (Jo| = 1)|P'(2)]



718 N. K. Govil, P. Kumar

on |z| =1, and also on using Lemma 2.9, we get that on |z| =1,

n+m |an—m| - ‘a0|
2.25 P'(2)] > < + P(2)|.
The equations (2.24) and (2.25) gives the Inequality (2.23). O

3. PROOF OF THEOREM 1.1

Since P(z) has all its zeros in |z| < K, K > 1, hence all the zeros of P(Kz)
lie in |z| < 1. Now, noting that by hypotheses we have |a|/K > 1, hence on taking
P(z) = P(K~z) and using Lemma 2.11, we get

max |P(Kz)|,
1

|z|=

max |Do P(Kz)| >

2|

(lo] — K) {Tﬂrm o Uan—m K" — |ao|) }
K 2 2(|an—m|Kn7m + |a0|)

which is nothing but

max [nP(Kz) + (a/K — 2) KP'(Kz)|

|21=1

(3.26) > max |P(Kz)|.

|z|=1

(lo| = K) [n+ m . (|an—m|K"™ — |ao|) ]
K 2 2(|an—m‘Kn7m + |a0|)

From the fact that lmla}i InP(Kz) 4+ (/K — z)KP'(Kz)| = Inlla)f( |DoP(z)], and
zZ|l= z|l=

using Lemma 2.10, the above expression (3.26) gives

D,P
max [DaP(2)]
(ol = K) [n+m  (anmlK"™ —lao)) ] (2K
3.27 > P .
G2 2 T2 " 2am  faey | \T3 5 ) I IPE)

Since D, P(z) is a polynomial of degree n — 1 and K > 1, hence by Bernstein

Inequality, we have ‘n‘la);( |D,P(2)] < K"! lmlax |DoP(z)]. By making use of this,
z|= z|=1

the above inequality (3.27) clearly gives
Kt ‘m‘ax | Do P(2)
z|=1

2 (la] = K) max |P(z)],

n+m  (|an_m|K"™™ —|ag) ] (QK”I)
|z|=1

2 2(Jan—m|K™™™ + lag|) | \ 1+ K™

which on simplification and rearrangement of terms yields the desired inequality
(1.9), and the proof of the Theorem 1.1 is thus complete. O
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