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APPLICATIONS OF DERIVATIVE AND DIFFERENCE

OPERATORS ON SOME SEQUENCES

Ayhan Dil∗ and Erkan Muniroğlu

In this study, depending on the upper and the lower indices of the hyperhar-
monic number h

(r)
n , nonlinear recurrence relations are obtained. It is shown

that generalized harmonic numbers and hyperharmonic numbers can be ob-
tained from derivatives of the binomial coefficients. Taking into account of
difference and derivative operators, several identities of the harmonic and hy-
perharmonic numbers are given. Negative-ordered hyperharmonic numbers
are defined and their alternative representations are given.

1. INTRODUCTION

Harmonic numbers are longstanding subject of study and they are significant
in various branches of analysis and number theory. The n-th harmonic number is
the n-th partial sum of the harmonic series:

Hn :=

n∑
k=1

1

k
, (n ∈ N := {1, 2, 3, . . .}) ,

where the empty sum H0 is conventionally understood to be zero. As a matter
of fact, various generalizations of these numbers are also widely studied. Among
many other generalizations we are interested in two important generalizations of
these numbers, namely generalized harmonic numbers and hyperharmonic numbers.

For a positive integer n and an integer m the n-th generalized harmonic
number of order m is defined by

H(m)
n :=

n∑
k=1

1

km
.
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It is convenient to set H
(m)
n = 0 for n ≤ 0. Hence for m > 1, H

(m)
n is the n-th

partial sum of the Riemann zeta function ζ (m) .

Hyperharmonic numbers are another important generalization of harmonic
numbers. For r ∈ N, the n-th hyperharmonic number of order r is defined by
[10, 18]

(1) h(r)
n =

n∑
k=1

h
(r−1)
k , h(1)

n := Hn.

Here we assume that h
(0)
n := 1/n, (n ≥ 1) and h

(r)
0 := 0, (r ≥ 0). Hyperharmonic

numbers are closely related to analytic number theory (see [2, 5, 11, 13, 19]),
discrete mathematics and combinatorial analysis (see [3, 8, 10, 12]).

These numbers have an expression in terms of binomial coefficients and har-
monic numbers [10, 18, 19]:

(2) h(r)
n =

(
n+ r − 1

r − 1

)
(Hn+r−1 −Hr−1).

Also we have the following representation [3, 12]:

h(r)
n =

n∑
k=1

(
n+ r − 1− k

r − 1

)
1

k
.

In Subsection 2.1, recurrence relations for both upper and lower indices of hyper-
harmonic numbers are given. Properties of the coefficients of these relations are
examined.

For a function f (x) that can be differentiated n-times define the derivative
operator Dx by

Dn
xf (x) =

dn

dxn
f (x) .

In Subsection 2.2 we focus on the following simple equation [16, 21]:

(3) Dx

(
x+ n

n

)
|x=0= Hn

which provides a connection between analysis and combinatorics. Paule and Schnei-
der used (3) in [21] as a starting point, and they dealt with some important har-
monic number identities. Also Chu and Donno [9] used the classical hypergeometric
summation theorems to derive numerious identities involving harmonic numbers. In
the paper [25], Sofo used the idea of the consecutive derivative operator of binomial
coefficients to give integral representation for series containing binomial coefficients
and harmonic numbers. Choi [8] showed how one can obtain identities about cer-
tain finite series involving binomial coefficients, harmonic numbers and generalized
harmonic numbers by applying the usual differential operator to a known identity.
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In [31], in terms of the telescoping method, Yan and Liu constructed a binomial
identity first; then by applying the derivative operator to that identity, authors
derived numerous interesting harmonic number identities.

In this subsection, we first obtain generalization of (3) for generalized har-
monic numbers

Dx

(
x+ nm

nm

)
m

|x=0= H(m)
n .

For this generalization, the concept of “leaping binomial coefficients”(
x+ nm

nm

)
m

=
1

(n!)
m

n∏
i=1

(x+ im)

are defined and the relationship between the leaping binomial coefficients and the
classical binomial coefficients are obtained. After that, the generalization of (3) for
hyperharmonic numbers

Dx

(
x+ n+ r − 1

n

)
|x=0= h(r)

n

is also obtained. Using this generalization, dozens of new formulas containing
harmonic, hyperharmonic and generalized harmonic numbers are given in the light
of H. W. Gould’s book [16] about binomial coefficients.

The difference operator

(4) ∆f (x) = f (x+ 1)− f (x) and ∆0f (x) = f (x)

has a wide range of applications, in particular in discrete mathematics and differ-
ential equations theory (see [1, 6, 24]). This is the finite analog of the derivative
operator [17]. In Subsections 2.3 and 2.4, the difference operator is primarily used
to investigate the properties of harmonic and hyperharmonic numbers. Meanwhile,
negative-ordered hyperharmonic numbers are presented and various representations
are obtained.

In Subsection 2.5, Fibonacci numbers

Fn = Fn−1 + Fn−2 with F0 := 0, F1 := 1

are examined with the help of the difference operator. We also encounter the
Fibonacci numbers of negative indexed and give representation of these numbers.

In Subsection 2.6, results for hyperbolic functions are given to illustrate the
prevalence of the difference operator in practice.

Finally, in the Appendix the reader can find two tables of summation formulas
related to harmonic, hyperharmonic and generalized harmonic numbers. These
formulas are applications of the results that we obtained in Subsection 2.2.
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2. MAIN RESULTS

2.1 A symmetric identity and nonlinear first-order recurrences for
hyperharmonic numbers

The following proposition shows a balance between the upper and the lower
indices of hyperharmonic numbers.

Proposition 1. We have

(5)

n∑
s=1

h(r−1)
s −

r∑
k=1

h
(k)
n−1 =

1

n
= h(0)

n .

Proof. From (1) we obtain

(6) h(r−1)
n = h(r)

n − h
(r)
n−1.

Telescoping sum on r of (6) gives the statement.

Remark 2. We can write the result (5) in the equivalent form

h(r)
n =

r∑
k=1

h
(k)
n−1 +

1

n

which is already obtained in [3]. In the light of this equation we get the following
general result

h(r+s)
n − h(s)

n =

r∑
k=1

h
(k+s)
n−1 ,

where s ∈ N.

Since the hyperharmonic numbers of order r is an r-fold sum, some calcula-
tions involving these numbers can be difficult. For this reason, various studies have
been performed in which some other representations of hyperharmonic numbers are
given and recurrences are obtained. Now we give recurrence relations for the lower

and the upper indices of h
(r)
n .

Proposition 3. A recurrence with respect to the lower index n is

(7) h(r+1)
n = αh

(r+1)
n−1 + β,

and a recurrence with respect to the upper index r is

(8) (α− 1)h(r+1)
n = αh(r)

n − β,

where α = α (n, r) = 1 + r
n and β = β (n, r) = 1

n+r

(
n+r
r

)
.
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Proof. Using the fact that Hn+r = Hn+r−1 + 1
n+r and (2) it follows that

h(r+1)
n =

1

n+ r

(
n+ r

r

)
+

(
n+ r

r

)
(Hn+r−1 −Hr).

Considering the summation identity
(

n
r−1

)
+
(
n
r

)
=
(
n+1
r

)
we get

h(r+1)
n =

1

n+ r

(
n+ r

r

)
+ h

(r+1)
n−1 +

(
n+ r − 1

r − 1

)
(Hn+r−1 −Hr).

Now, the following identity combines with (2) to give (7):(
n+ r − 1

r − 1

)
=
r

n

(
n+ r − 1

r

)
.

For the second recurrence we start with the equation

(9) h(r+1)
n = h(r)

n + h
(r+1)
n−1 .

On the other hand (7) gives

(10) h
(r+1)
n−1 =

1

α
h(r+1)
n − β

α
.

Considering (10) in (9) gives

h(r+1)
n = h(r)

n +
1

α
h(r+1)
n − β

α
,

which can equally well be written

h(r+1)
n =

α

α− 1
h(r)
n −

β

α− 1
.

Example 4. Let us show the usefulness of the Proposition 3. Fixing n = 2 in (7)
gives

h
(r+1)
2 =

(
1 +

r

2

)
h

(r+1)
1 +

r + 1

2
.

Remembering that h
(r)
1 = 1 for any order r, we get a general formula for h

(r)
2 as

h
(r+1)
2 = r + 1 +

1

2
.

On the other hand if we fix r = 1 in (8), then we get a general formula for h
(2)
n in

terms of Hn as

h(2)
n = (n+ 1)Hn − n.
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Remark 5. Let us observe

nα (n, r) = rα (r, n)

and

β (n, r) =
1

n+ r

(
n+ r

r

)
= β (r, n) .

With the help of the equality

β (n, r) =
1

n+ r

(
n+ r

r

)
=

1

r

(
n+ r − 1

n

)
,

we have the ordinary generating function of β (k, r)

∞∑
k=0

β (k, r)xk =
1

r

∞∑
k=0

(
k + r − 1

k

)
xk =

1

r (1− x)
r ,

and also the ordinary generating function of α (k, r)

∞∑
k=1

α (k, r)xk =
x

1− x
− r ln (1− x) .

The next proposition enables us to get a closed form evaluation for the finite
sum of β (k, r) in terms of α and β. Proof of it can be directly seen from the
following basic properties of the binomal coefficients [17, p. 174]:

(11)

(
k + r

r

)
=
k + r

r

(
k + r − 1

r − 1

)
and

(12)

n∑
k=0

(
k + r − 1

k

)
=

(
n+ r

n

)
.

Proposition 6. Let n, r ∈ N. Then

n∑
k=0

β (k, r) =
α (n, r)β (n, r)

α (n, r)− 1

or equally
n∑

k=0

1

k + r

(
k + r

r

)
=

1

r

(
n+ r

n

)
.

It is possible to generalize Proposition 6 by considering the concept of “falling
factorial”. Recall that falling factorial is defined with the equation [17]:

xn = x (x− 1) (x− 2) ...(x− n+ 1).
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Proposition 7. Let m, r ∈ N, then

n∑
k=0

1

(k + r)
m

(
k + r

r

)
=

1

rm

(
n+ r −m+ 1

n

)
.

Proof. Because of (11) we have

1

k + r

(
k + r

r

)
=

1

r

(
k + r − 1

r − 1

)
and also

1

(k + r)
2

(
k + r

r

)
=

1

r2

(
k + r − 2

r − 2

)
.

Hence, in general we can write

1

(k + r)
m

(
k + r

r

)
=

1

rm

(
k + r −m
r −m

)
.

Summing both sides as

n∑
k=0

1

(k + r)
m

(
k + r

r

)
=

1

rm

n∑
k=0

(
k + r −m
r −m

)
and employing (12) give the statement.

2.2 Hyperharmonic and generalized harmonic numbers via derivative
operator

Here we generalize the identity (3) both for generalized harmonic numbers
and hyperharmonic numbers.

The following definition plays a key role in generalizing (3) for generalized
harmonic numbers.

Definition 8. For any parameter x and positive integers m and n “leaping binomial
coefficients” are defined by(

x+ nm

nm

)
m

=
(x+ nm) (x+ (n− 1)

m
) · · · (x+ 2m) (x+ 1m)

(n!)
m

=
1

(n!)
m

n∏
i=1

(x+ im) .

Now we are ready to give a generalization of (3) for generalized harmonic
numbers.

Proposition 9. For any m, n ∈ N we have

Dx

(
x+ nm

nm

)
m

|x=0= H(m)
n .
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Proof. Let us observe the following equation

Dx

(
x+ nm

nm

)
m

=
(x+ nm) (x+ (n− 1)

m
) · · · (x+ 2m) (x+ 1m)

(n!)
m ×{

1

(x+ nm)
+

1

(x+ (n− 1)
m

)
+ · · ·+ 1

(x+ 1m)

}
.

Here evaluating both sides at x = 0 gives the statement.

Relation between the classical binomial coefficients and the leaping binomial
coefficients is given by the following proposition.

Proposition 10. For any positive integers m and n ≥ 2 we have(
x+ nm

nm

)
m

=

(nm)!
(n!)m

(
x+nm

nm

)
n∏

i=2

(
x+im−1

im−(i−1)m−1

)
(im − (i− 1)

m − 1)!

.

Proof. We start with the definition of the leaping binomial coefficients, and replace
the terms

(x+ im) (x+ (i− 1)
m

)

by

(x+ im) (x+ im − 1) (x+ im − 2) · · · (x+ (i− 1)
m

+ 1) (x+ (i− 1)
m

)

(x+ im − 1) (x+ im − 2) · · · (x+ (i− 1)
m

+ 1)

for i = 2, 3, ..., n. Reorganizing these terms we get(
x+ nm

nm

)
m

=
(nm)!

(n!)
m

(nm − (n− 1)
m − 1)!... (2m − 1m − 1)!

×(
x+nm

nm

)(
x+nm−1

nm−(n−1)m−1

)(
x+(n−1)m−1

(n−1)m−(n−2)m−1

)
...
(

x+2m−1
2m−1m−1

) ,
which completes the proof.

Some preparation is needed to generalize (3) for hyperharmonic numbers.
With the help of the operator Dx and the classical gamma function

Γ(z) =

∞∫
0

e−ttz−1dt, Re (z) > 0,

the digamma function is defined by [1]:

ψ (z) = Dz log (Γ(z)) =
Γ′(z)

Γ(z)
, (z ∈ C\ {0,−1,−2,−3, . . .}) .
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The rising factorial is defined by

zn = z (z + 1) (z + 2) ...(z + n− 1).

The rising factorial zn is sometimes denoted by (z)n [1, 17]. It is closely related
to the Euler’s gamma function by the relation

zn =
Γ (z + n)

Γ (z)
.

Derivative of zn turns out to be

(13) Dzz
n = zn (ψ (z + n)− ψ (z)) .

Actually one can easily prove (13) by considering the equation

ψ (z + 1) = ψ (z) +
1

z
.

Evaluating ψ at positive integers gives

(14) ψ (n) = Hn−1 − γ.

We recall that γ = −ψ (1) is Euler-Mascheroni constant.

Considering (2) and (14) we also have generalization of (14) for hyperhar-
monic numbers as [14, 20]

(15) h(r)
n =

rn

n!
(ψ (n+ r)− ψ (r)) .

Now we are ready to give a generalization of (3) for hyperharmonic numbers.

Proposition 11. Let n ∈ N∪{0} and r ∈ N. Then

(16) Dx

(
x+ n+ r − 1

n

)
|x=0= h(r)

n .

Proof. In the light of (13) we write

Dx

(
x+ n+ r − 1

n

)
= Dx

(x+ r)
n

n!
=

(x+ r)
n

n!
(ψ (x+ n+ r)− ψ (x+ r)) .

Setting x = 0 in the above equation and considering (15) we get the desired result.

Remark 12. Let us consider the binomial formula

∞∑
n=0

(
x+ n

n

)
zn =

1

(1− z)x+1
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and in general
∞∑

n=0

(
x+ n+ r − 1

n

)
zn =

1

(1− z)x+r ,

where |z| < 1 and for any x ∈ C, r ∈ N. Hence the generating functions of
harmonic and hyperharmonic numbers are direct consequences of (16):

∞∑
n=0

Hnz
n = − ln (1− z)

1− z
,

(17)

∞∑
n=0

h(r)
n zn = − ln (1− z)

(1− z)r
.

Remark 13. Considering (16) with the following binomial equation [17, p. 174]

n∑
k=0

(
x+ k + r − 2

k

)
=

(
x+ n+ r − 1

n

)
gives (1).

Remark 14. Let us recall the following binomial equation (see [17, p. 174]):

(18)

n∑
j=0

(
x+ j + r − 1

j

)
=

(
1 +

n

x+ r

)(
x+ n+ r − 1

n

)
.

Applying Dx both sides of (18) and remembering that(
n+ r

r

)
=
n+ r

r

(
n+ r − 1

r − 1

)
,

we get

(α− 1)h
(r+1)
n−1 = h(r)

n − β
which is an alternative proof of (8).

Remark 15. Before closing this subsection let us remind you that many equations
can be obtained as the application of the results given in this section, you can find
some of them in the Appendix.

2.3 Harmonic numbers via difference operator

The difference operator ∆ (see (4)) is a linear operator, hence

∆ [af (x) + bg (x)] = a∆f (x) + b∆g (x)

holds for any constants a and b. Applying ∆ operator n−times to a suitable function
f , we get [1, 6, 17, 22]:

(19) ∆nf (x) =

n∑
i=0

(−1)
n−i

(
n

i

)
f (x+ i) .



Applications of derivative and difference operators on some sequences 416

Proposition 16. We have

∆n (xf (x)) = x∆nf (x) + n∆n−1f (x+ 1) .

Proof. By induction on n.

Now, we use this result as a tool to investigate the properties of harmonic
numbers.

Proposition 17. For any k ∈ N we have

(20)

k∑
i=0

(−1)
i+1

(
k

i

)
Hn+i =

(k − 1)!

(n+ 1)
k
.

Proof. Setting f (n) = Hn in (19) gives

∆kHn =

k∑
i=0

(−1)
k−i
(
k

i

)
Hn+i.

On the other hand considering Hn with the difference operator gives

∆kHn =
(−1)

k+1
(k − 1)!

(n+ 1)
k

.

Equality of these two equations completes the proof.

As a result of Proposition 17 we have the following well-known equation [6,
p. 34].

Corollary 18. For k ∈ N

(21)

k∑
i=1

(−1)
i+1

(
k

i

)
Hi =

1

k
.

Proof. Choosing n = 0 in Proposition 17 gives the result.

Remark 19. Let us consider the binomial transform [6, 26, 29]

(22) ak =

k∑
i=0

(
k

i

)
bi ⇔ bk =

k∑
i=0

(−1)
k+i

(
k

i

)
ai.

In the light of (21) we can fix ak = Hk and

bk =

{
(−1)k+1

k , k ∈ Z+

0 , k = 0
.
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Then from (22) we have the well-known formula (see [16, (1.45)] or [23, p. 53])

(23)

k∑
i=1

(−1)
i+1

(
k

i

)
1

i
= Hk

where a0 = H0 = 0 = b0.

Now we give an identity for the binomial sum of harmonic numbers.

Proposition 20. Let k ≥ 2 be an integer. Then

k∑
i=0

(−1)
i

(
k

i

)
(n+ i)Hn+i =

(k − 2)!

(n+ 1)
k−1

.

Proof. Choosing f (n) = Hn in Proposition 16 we get

∆k (nHn) = n∆kHn + k∆k−1Hn+1.

Here by employing (20) we obtain RHS as

∆k (nHn) = n
(−1)

k+1
(k − 1)!

(n+ 1)
k

+ k
(−1)

k
(k − 2)!

(n+ 2)
k−1

.

For the LHS we consider nHn in (19) and proof follows.

Now we give a special case of Proposition 20 which is worth mentioning. This
identity is known [28].

Corollary 21. For an integer k ≥ 2

(24)

k∑
i=1

(−1)
i

(
k

i

)
iHi =

1

(k − 1)
.

Remark 22. Considering (24) with (22) we choose ak = kHk and

bk =


(−1)k

(k−1) , k ≥ 2

1, k = 1
0, k = 0

to get

k (Hk − 1) =

k∑
i=2

(
k

i

)
(−1)

i

(i− 1)
.

Corollary 23. We have the following alternate sum of harmonic numbers and
binomial coefficients

(25)

n−1∑
i=1

(−1)
i+1

(
n+ 1

i+ 1

)
Hi =

{
2Hn, n even
0, n odd
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Proof. From Corollary 18 we have

k∑
i=1

(−1)
i+1

(
k

i

)
Hi =

1

k
.

Here summing both sides from 1 to n we get

n∑
k=1

k∑
i=1

(−1)
i+1

(
k

i

)
Hi =

n∑
k=1

1

k
= Hn.

By changing the order of sums this becomes

n∑
i=1

(−1)
i+1

Hi

n∑
k=i

(
k

i

)
= Hn.

From equation [17]

(26)

n∑
k=i

(
k

i

)
=

(
n+ 1

i+ 1

)
we find

n∑
i=1

(−1)
i+1

(
n+ 1

i+ 1

)
Hi = Hn.

Remark 24. Equation (25) has been already discovered by Wang [30], but here
we give an alternative proof of it. Besides, we also give one more proof of it in
Appendix by using the equation (1.44) in Gould’s book [16].

2.4 Hyperharmonic numbers via difference operator

By taking inspiration from (15), Mező [20] defined the hyperharmonic func-
tion:

(27) h(w)
z =

zw

zΓ (w)
(ψ (z + w)− ψ (w))

where w, z + w ∈ C\ (Z− ∪ {0}). Here Z− denotes the negative integers. In
the light of this definition, Dil [14] gave formulas to evaluate some special val-

ues of h
(w)
z . However, all those evaluations are valid under the restriction of w,

z + w ∈ C\ (Z− ∪ {0}), i.e. upper index can not be a negative integer. In this
subsection firstly we are going to show a way to define ”negative-ordered hyperhar-
monic numbers”.

From (1) we have the recurrence

h(r)
n = h

(r)
n−1 + h(r−1)

n .
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To obtain lower-ordered hyperharmonic numbers in terms of higher-ordered ones,
we can write it as

(28) h(r−1)
n = h(r)

n − h
(r)
n−1.

Setting r = 1 gives

h(0)
n = h(1)

n − h
(1)
n−1 = Hn −Hn−1 =

1

n
.

For r = 0 in (28) gives

h(−1)
n = h(0)

n − h
(0)
n−1 =

1

n
− 1

n− 1
=
−1

n2
.

Similarly, for r = −1 and r = −2 we have

h(−2)
n =

2

n3

and

h(−3)
n =

−6

n4

respectively. So by induction on r for n > 1 we have

h(−r)
n =

(−1)
r
r!

nr+1 .

Hence we deduce the following definition.

Definition 25. For positive integers n and r, negative-ordered hyperharmonic

number h
(−r)
n is defined by

h(−r)
n =


(−1)rr!

nr+1 , n > r ≥ 1∑n−1
k=0

(
r
k

)
(−1)

k 1
n−k , r ≥ n > 1

1, n = 1

Remark 26. There are two main reasons for giving the definition like this; the
part n > r ≥ 1 comes from the recursive definition of hyperharmonic numbers and
the part r ≥ n > 1 comes from the desire to define the generating function of
the negative-ordered hyperharmonic numbers naturally. By considering the gener-
ating function of the hyperharmonic numbers (see (17)) we would like to define the
generating function of the negative-ordered hyperharmonic numbers as follows:

∞∑
n=0

h(−r)
n zn = − (1− z)r ln (1− z) .

One can think that for n > r ≥ 1 we have two different representations of h
(−r)
n ,

but considering the equation (1.43) in [16]

r∑
k=0

(
r

k

)
(−1)

k 1

n− k
=

(−1)
r

(n− r)
(
n
r

)
we see that these two representations are equal.
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Now we give some results which are obtained using the difference operator.

We can consider h
(r)
n either as a function of n or r, hence we get the following

proposition which gives representations of hyperharmonic numbers with binomial
coefficients.

Proposition 27. Multiple difference of h
(r)
n with respect to n (i.e. applying ∆

operator k−times) gives

(29) h
(r−k)
n+k =

k∑
i=0

(−1)
k−i
(
k

i

)
h

(r)
n+i,

where r ∈ Z and k, n ∈ N ∪ {0} and with respect to r gives

h
(r+k)
n−k =

k∑
i=0

(−1)
k−i
(
k

i

)
h(r+i)
n ,

where r ∈ Z and k, n ∈ N and k ≤ n.

Proof. Proof can be seen from (19) and multiple difference of h
(r)
n respect to the

variables n and r.

Corollary 28. For k ∈ N

h
(k)
n−k =

k∑
i=0

(−1)
k−i
(
k

i

)
h(i)
n ,

and
k∑

i=0

(−1)
k−i
(
k

i

)
h

(r+i)
k = 0.

As an immediate result of (29), we give a new representation for the negative-
ordered hyperharmonic numbers.

Corollary 29. For k, n ∈ N, the (n+ k)-th hyperharmonic number of order −k is
given by

(30) h
(−k)
n+k =

k∑
i=0

(−1)
k−i
(
k

i

)
1

n+ i
.

Using the following result one can state the lower-ordered hyperharmonic
numbers in terms of the higher-ordered hyperharmonic numbers.

Corollary 30. We have

h
(r−k)
k =

k∑
i=1

(−1)
k−i
(
k

i

)
h

(r)
i .
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Corollary 31. For non-negative integer k and n we have

1

k + 1
=

k∑
i=0

(
k

i

)
h

(−i)
i+1 ,

and

(31) Hn =

n∑
i=1

(
n

i

)
h

(1−i)
i .

Proof. From (30) we have

h
(−k)
k+1 =

k∑
i=0

(−1)
k−i
(
k

i

)
1

i+ 1
.

In the light of (22) we write

1

k + 1
=

k∑
i=0

(
k

i

)
h

(−i)
i+1 .

For the second equation, we write

n−1∑
k=0

1

k + 1
=

n−1∑
k=0

k∑
i=0

(
k

i

)
h

(−i)
i+1

=

n−1∑
i=0

n−1∑
k=i

(
k

i

)
h

(−i)
i+1 .

With the help of (26) we get

n−1∑
k=0

1

k + 1
=

n−1∑
i=0

(
n

i+ 1

)
h

(−i)
i+1

which completes the proof.

Remark 32. By definition we have

h
(−i)
i+1 =

(−1)
i

i+ 1
.

Employing this in (31) gives an alternative proof of (23).

Remark 33. As a result we can state

Hk =

k∑
i=1

(−1)
k−i
(
k

i

)
h

(k+1)
i .
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Furthermore we obtain

1

k
=

k∑
i=1

(−1)
k−i
(
k

i

)
h

(k)
i ,

and from this we have a double sum representation for harmonic numbers as

Hn =
∑

1≤i≤k≤n

(−1)
k−i
(
k

i

)
h

(k)
i .

2.5 Fibonacci numbers via difference operator

In spite of the fact that Fibonacci numbers originally come from a counting
problem, it is possible to define negative-indexed Fibonacci numbers as:

F−n = (−1)
n+1

Fn

where n ∈ N. The recurrence relation

F−n = F−n−1 + F−n−2

also holds [4, 15].

Now we give binomial representations for the Fibonacci and the negative-
indexed Fibonacci numbers.

Proposition 34. For non-negative integers k and n we have

Fn−k =

k∑
i=0

(−1)
k−i
(
k

i

)
Fn+i.

Proof. (19) gives

∆kFn =

k∑
i=0

(−1)
k−i
(
k

i

)
Fn+i.

On the other hand we calculate ∆kFn = Fn−k, equality of these two results com-
pletes the proof.

By setting n = 0 in Proposition 34, we get the following result.

Corollary 35. For k ∈ N we have

(32) F−k =

k∑
i=0

(−1)
k−i
(
k

i

)
Fi.

RHS of (32) is meaningful for k > 0 therefore we can consider (32) as a
definition of the negative-indexed Fibonacci numbers. Calculations give the first
few of them as F−1 = 1, F−2 = −1, F−3 = 2, . . . .
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Remark 36. The negative-indexed Fibonacci numbers have been already discovered
[4, 15]. Here we give another approach.

By using (32), we give an alternative verification of the recurrence relation
for the negative-indexed Fibonacci numbers.

Corollary 37. For any k ∈ N ∪ {0} we have

F−k = F−k−1 + F−k−2.

Proof. Considering Corollary 35 we write

F−k−1 + F−k−2 = Fk+2 +

k+1∑
i=0

(−1)
k−i
[(
k + 2

i

)
−
(
k + 1

i

)]
Fi

= Fk+2 +

k+1∑
i=1

(−1)
k−i
(
k + 1

i− 1

)
Fi

=

k+2∑
i=1

(−1)
k−i
(
k + 1

i− 1

)
Fi

which can be written as

F−k−1 + F−k−2 =

k+2∑
i=1

(−1)
k−i
[(

k

i− 1

)
+

(
k

i− 2

)]
Fi

=

k+1∑
i=1

(−1)
k−i
(

k

i− 1

)
Fi +

k+2∑
i=2

(−1)
k−i
(

k

i− 2

)
Fi

=

k∑
i=0

(−1)
k−i
(
k

i

)
[Fi+2 − Fi+1]

=

k∑
i=0

(−1)
k−i
(
k

i

)
Fi

= F−k.

Remark 38. Eventually for any k ∈ Z we have

Fk = Fk−1 + Fk−2.

Lastly we prove a correspondence between the negative- and the positive-
indexed Fibonacci numbers.

Corollary 39. The following identity holds:

F−k = (−1)
k+1

Fk.
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Proof. Considering (32) we obtain the result, by induction on k.

2.6 Hyperbolic functions via difference operator

Now we apply the difference operator to the hyperbolic functions.

Proposition 40. Effects of ∆ operator on sinhx and coshx functions are given
by

k∑
i=0

(−1)
k−i
(
k

i

)
sinh (x+ i) =

1

2ex

(
1− 1

e

)k (
e2x+k + (−1)

k+1
)

and
k∑

i=0

(−1)
k−i
(
k

i

)
cosh (x+ i) =

1

2ex

(
1− 1

e

)k (
e2x+k + (−1)

k
)
.

Proof. Proof can be seen from (19) and multiple differences of sinhx and coshx
functions.

Remark 41. As a consequence of Proposition 40 we have closed formulas for the
alternate binomial sums of sinhx and coshx :

k∑
i=0

(−1)
k−i
(
k

i

)
sinh (i) =

(e− 1)
k
(
ek + (−1)

k+1
)

2ek

and
k∑

i=0

(−1)
k−i
(
k

i

)
cosh (i) =

(e− 1)
k
(
ek + (−1)

k
)

2ek
.

Now we have results on digamma function.

Proposition 42. Considering the digamma function with the difference operator
we get

(k − 1)!

xk
=

k∑
i=0

(−1)
i

(
k

i

)
ψ (x+ i) .

Proof. Proof can be seen from (19) and multiple differences of ψ (x).

Remark 43. Considering k = 1 in Proposition 42 we give the following well-known
result as a consequence:

ψ (x+ 1) = ψ (x) +
1

x
.
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3. APPENDIX

In Subsection 2.2, we have given the equation (16) as the generalization of
the equation (3). In a similar fashion one can obtain the following equations:

(33) D

(
x+ n

n

)−1

|x=0= −Hn,

(34) D

(
x+ r − 1 + n

n

)−1

|x=0= −
(
r − 1 + n

n

)−2

h(r)
n ,

(35) D

(
x− 1

n

)
|x=0= (−1)

n+1
Hn.

When these formulas are applied to appropriate sums containing the binomial
coefficients, many equations containing harmonic numbers (and also generalizations
of harmonic numbers) can be obtained. H.W. Gould gave a list of 500 binomial
coefficient summations in [16]. Considering the equations (3), (16), (33), (34) and
(35) together with that list we have several identities of harmonic, hyperharmonic
and generalized harmonic numbers. Some of them are known but most of them are
new. The following references also include formulas of these types: [6, 7, 8, 27, 28].

Remark 44. In the following tables:

1) The numbers on the LHS are the numbers of formulas at the H.W. Gould’s
book [16]; whereas on the RHS are the equations we have obtained using these
formulas.

2) There are some formulas containing hyperharmonic numbers with non-
integer order. We recall that the meanings of these numbers are given by the hy-
perharmonic function defined by (27). For detailed calculation techniques of such
numbers, see [14].

(1.23)
∞∑
k=0

Hk

2k = 2 ln 2

(1.41)
n∑

k=1

(−1)
k−1 (n

k

)
1
k = Hn

(1.42)
n∑

k=1

(−1)
k−1 (n

k

)
Hk = 1

n

(1.44)
n∑

k=1

(−1)
k−1 (n+1

k+1

)
Hk = Hn

(2.16)
∞∑
k=1

Hk

k! = e
∞∑
k=1

(−1)k−1

k!k

(3.2)
n∑

k=1

(
r−2+n−k

r−2

)
Hk = h

(r)
n
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(3.36) 2
2n∑
k=1

(−1)
k
Hk = Hn

(3.95)
n∑

k=1

(−1)
k (2n−2k

n−k
)(

2k
k

)
1
k = 22n

{
h

( 1
2 )

n −
(
n− 1

2
n

)
Hn

}
(3.100)

n∑
k=1

(−1)
k (n+k

2k

)(
2k
k

)
1
k = −2Hn

(3.108)
n∑

k=0

{(
k+m+1

m

)
Hk + h

(k+2)
m

}
=
∑m

k=0

{(
k+n+1

n

)
Hk + h

(k+2)
n

}
(4.3)

n∑
k=1

(−1)
k−1 (n

k

)
xkHk = n (1− x)

n−1
+

n∑
k=1

(
n
k

) (x−k)k(1−x+k)n−k

k

(6.19)
n∑

k=0

(
n
k

)(
r
k

)
h

(1−k)
n+r = Hn +Hr

(6.22)
n∑

k=1

(−1)
k (2n

k

)(
2n−k

n

)2 1
k =

(
2n
n

){
h

(n+1)
n −

(
2n
n

)
Hn

}
(7.2)

n∑
k=1

(
n
k

)(
r
k

)
Hk =

(
r+n
n

)
Hn − h(r+1)

n

(7.9)
n∑

k=1

(−1)
k (n

k

)(
2k
k

)−1 22k

(2k+1)Hk =
(

2n
n

)−1 22n

(2n+1)h
( 1

2 )
n

(7.13)
n∑

k=1

(−1)
k−1 (n

k

)(
2n−k

n

)
Hk =

n∑
k=1

(
n
k

)2 1
k

(7.15)
n∑

k=1

(
n
k

)(
r
k

){
(Hk)

2
+H

(2)
k

}
=
(
r+n
n

){
H

(2)
n −H(2)

n+r +H
(2)
r

}
+
((

r+n
n

)
Hn − h(r+1)

n

)
{Hn −Hn+r +Hr}

(12.9)
n∑

k=0

(
n
k

)(
x+k
k

)−1(x+k+1+n
n

)−1

×
{

x+2k+1
x+k+1

(
Hk −

(
x+k+1+n

n

)−1
h

(x+k+2)
n

)
− k

(x+k+1)2

}
= 0

(12.9)
n∑

k=0

(
n
k

)(
y+k
k

)(
y+k+1+n

n

)−1

×
{

y+2k+1
y+k+1

(
Hk +

(
y+k+1+n

n

)−1
h

(y+k+2)
n

)
− k

(y+k+1)2

}
= Hn

(Z.58) H2n = 22n
(

2n
n

)−1
{(

n− 1
2

n

)
Hn + h

( 1
2 )

n

}

The next table contains generalized version of the equations in the first table,
by substitution

(
x+k
k

)
with

(
x+r−1+k

k

)
where r > 1.

(1.23)
∞∑
k=0

h
(r)
k

2k = 2r ln 2

(1.41)
n∑

k=1

(−1)
k−1 (n

k

)
k

(k+r−1)2
=
(
r−1+n

n

)−2
h

(r)
n
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(1.42)
n∑

k=1

(−1)
k−1 (n

k

)(
k+r−1

k

)−2
h

(r)
k = 1

n+r−1

(1.44)
n∑

k=1

(−1)
k−1 (n+1

k+1

)(
r−1+k

k

)−2
h

(r)
k =

n∑
k=1

k
(k+r−1)2

(2.16)
∞∑
k=1

(
r−1+k

k

)−2 h
(r)
k

k! = e
∞∑
k=0

(−1)k

(r+k)2k!

(3.2)
n∑

k=1

(
m+n−k

m

)
h

(r)
k = h

(m+r+1)
n

(3.36) 2
2n∑
k=1

(−1)
k (r−1+2n−k

r−1

)
h

(r)
k = h

(r)
n

(3.95)
n∑

k=1

(−1)
k (2n−2k

n−k
)(

2k
k

)
k

(r−1+k)2

= 22n
(
r−1+n

n

)−1
{
h

(r− 1
2 )

n −
(
r−1+n

n

)−1(r− 3
2 +n
n

)
h

(r)
n

}
(3.100)

n∑
k=1

(−1)
k (n+k

2k

)(
2k
k

)
k

(r−1+k)2

= (−1)
n (r−1+n

n

)−1
{
h

(r−n−1)
n −

(
r−2
n

)(
r−1+n

n

)−1
h

(r)
n

}
(3.108)

n∑
k=0

{(
k+r+m

m

)
h

(r)
k +

(
k+r−1

k

)
h

(k+r+1)
m

}
=

m∑
k=0

{(
k+r+n

n

)
h

(r)
k +

(
k+r−1

k

)
h

(k+r+1)
n

}
(4.3)

n∑
k=1

(−1)
k (n

k

)
(x+ r − 1)

k−1 (r−1+k
k

)−1
{
k − (x+ r − 1)

(
r−1+k

k

)−1
h

(r)
k

}
=

n∑
k=1

(
n
k

)
(x− k)

k
(1− x+ k)

n−k k
(r−1+k)2

(6.19)
n∑

k=0

(
n
k

)(
r
k

)
h

(j−k)
n+r =

(
n+j−1

n

)
h

(j)
r +

(
r+j−1

r

)
h

(j)
n

(6.22)
n∑

k=1

(−1)
k (2n

k

)(
2n−k

n

)2 k
(r−1+k)2

=
(

2n
n

)(
r−1+n

n

)−1
{
h

(n+r)
n −

(
2n+r−1

n

)(
r−1+n

n

)−1
h

(r)
n

}
(7.2)

n∑
k=1

(
n
k

)(
m
k

)(
r−1+k

k

)−2
h

(r)
k

=
(
r−1+n

n

)−1
{(

r−1+m+n
n

)(
r−1+n

n

)−1
h

(r)
n − h(m+r)

n

}
(7.9)

n∑
k=1

(−1)
k (n

k

)(
2k
k

)−1 22k

(2k+1)h
(r)
k =

(
2n
n

)−1 22n

(2n+1)h
(r− 1

2 )
n

(7.13)
n∑

k=1

(−1)
k−1 (n

k

)(
2n−k

n

)(
m−1+k

k

)−2
h

(m)
k =

n∑
k=1

(
n
k

)2 k
(k+m−1)2

(7.29) ∂
∂jS

n
j+r−1 |j=0= ∂

∂jF
(
−2n, 1

2 , n+ j + r; 4
)
|j=0

=
2n∑
k=0

(−1)
k+1 (2n

k

)(
2k
k

)(
n+r−1+k

k

)−2
h

(n+r)
k

(7.30) ∂
∂jR

n
j+r−1 |j=0= ∂

∂jF
(
−2n− 1, 1

2 , n+ j + r; 4
)
|j=0
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=
2n+1∑
k=0

(−1)
k+1 (2n+1

k

)(
2k
k

)(
n+r−1+k

k

)−2
h

(n+r)
k

(12.9)
n∑

k=0

(
n
k

)(
x+k
k

)−1(x+r+k+n
n

)−1(r−1+k
k

){(
r−1+k

k

)−1 x+r+2k
x+r+k h

(r)
k

−
(
x+r+k+n

n

)−1 x+r+2k
x+r+k h

(x+k+r+1)
n − k

(x+r+k)2

}
= 0

(12.9)
n∑

k=0

(
n
k

)(
y+k
k

)(
r+y+k+n

n

)−1(r−1+k
k

)−1
{(

r−1+k
k

)−1 r+y+2k
r+y+k h

(r)
k

+
(
r+y+k+n

n

)−1 r+y+2k
r+y+k h

(y+k+r+1)
n + k

(r+y+k)2

}
= h

(r)
n

(
r−1+n

n

)−2

(Z.58) h
(2r−1)
2n = 22n

(
2n
n

)−1
{(

n+r− 3
2

n

)
h

(r)
n +

(
n+r−1

n

)
h

(r− 1
2 )

n

}
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