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A MONOTONICITY THEOREM FOR THE
GENERALIZED ELLIPTIC INTEGRAL OF THE FIRST

KIND

Qi Bao, Xue-Jing Ren and Miao-Kun Wang∗

For a ∈ (0, 1/2] and r ∈ (0, 1), let Ka(r) (K (r)) denote the generalized
elliptic integral (complete elliptic integral, respectively) of the first kind. In
this article, we mainly present a sufficient and necessary condition under
which the function a 7→ [K (r) − Ka(r)]/(1 − 2a)λ(λ ∈ R) is monotone on
(0, 1/2) for each fixed r ∈ (0, 1). The obtained result leads to the conclusion
that inequality

K (r)− (1− 2a)α
[
K (r)− π

2

]
≤ Ka(r) ≤ K (r)− (1− 2a)β

[
K (r)− π

2

]
holds for all a ∈ (0, 1/2] and r ∈ (0, 1) with the best possible constants
α = π/2 and β = 2.

1. INTRODUCTION

For r ∈ (0, 1), Legendre’s complete elliptic integral of the first kind [5, 21] is
defined by

K (r) =

∫ π/2

0

1√
1− r2 sin2 t

dt.
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This integral is a special case of the Gaussian hypergeometric function [3, 7, 9]

F (a, b; c;x) = 2F1(a, b; c;x) =

∞∑
n=0

(a, n)(b, n)

(c, n)n!
xn, |x| < 1,

where (a, n) is the Pochhammer symbol or shifted factorial defined as (a, 0) = 1
for a ̸= 0, and (a, n) = a(a + 1)(a + 2) · · · (a + n − 1) = Γ(n + a)/Γ(a) for n ∈
N = {1, 2, 3, · · · }, and Γ(x) =

∫∞
0
tx−1e−tdt(Rex > 0) is the classical Euler Gamma

function. Indeed, we have

K (r) =
π

2
F

(
1

2
,
1

2
; 1; r2

)
.(1)

For a ∈ (0, 1/2] and r ∈ (0, 1), the generalized elliptic integral of the first
kind is defined as [3]

Ka(r) =
π

2
F (a, 1− a; 1; r2),(2)

when a = 1/2, the function Ka(r) reduces to the complete elliptic integral of the
first kind K (r). It follows from integral representation of the Gaussian hypergeo-
metric function that Ka(r) satisfies the following integral formula[1, 21]

Ka(r) = [sin(πa)]

∫ π/2

0

(tanx)1−2a(1− r2 sin2 x)−adx.(3)

The complete elliptic integrals and generalized elliptic integrals have wide
applications in many mathematical branches as well as in physics and engineer-
ing [4, 8]. In recent years, they have frequently occurred in geometric function
theory, the theory of mean values and number theory. Especially, a lot of con-
formal invariants and distortion functions in conformal and quasiconformal maps,
and modular functions in Ramanujan’s generalized modular equation all depend
on the two integrals K (r) and Ka(r) [3, 4, 14, 17, 18, 19, 20, 25, 26]. In
reviewing the research results of K (r) and Ka(r) in the past few years, they can
be broadly classified into two kinds. One is to prove monotonicity properties of cer-
tain combinations of K (r) and Ka(r) with respect to r ∈ (0, 1), and thus extend
some classical inequalities of K (r) to the case of Ka(r). The other one is to study
the dependence of Ka(r) on the parameter a, and obtain some sharp upper and
lower bounds for Ka(r) in terms of K (r). Relatively speaking, the study of the
dependence on the parameter a of Ka(r) is more difficult and fewer achievements.
For above, and the recent development of Ka(r) and K (r), the readers can refer
to the literatures [2, 10, 11, 12, 13, 22, 23, 24, 27, 29].

In 2000, Anderson, Qiu, Vamanamurthy and Vuorinen [3, Corollary 7.3]
proved that, for each r ∈ (0, 1), the function a 7→ Ka(r) is strictly increasing
from [0, 1/2] onto [π/2,K (r)], and therefore derived that inequality

Ka(r) ≤ K (r),(4)
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which holds for each a ∈ [0, 1/2] and r ∈ (0, 1).

Very recently, Qiu, Ma and Bao[16, Theorem 1.1] showed that, for each
r ∈ (0, 1), the following functions

f1, λ(a) =
Ka(r)

aλ
(λ ∈ R) and f2, λ(a) =

Ka(r)− π/2

aλ
(λ ∈ R)(5)

are both strictly increasing (decreasing) on (0, 1/2] if and only if λ ≤ 0 (λ ≥ 1,
respectively), and substantially obtained that

π

2
(1− 2a) + 2aK (r) ≤ Ka(r) ≤ min

{
K (r),

π

2
+ πa log

1√
1− r2

}
,(6)

for each a ∈ [0, 1/2] and r ∈ (0, 1), with equality in each instance if and only if
a = 1/2. Moreover, the authors[16, Theorem 3.6] also proved that the function r 7→
[Ka(r)−π/2]/[K (r)−π/2] is strictly decreasing from (0, 1) onto (sin(πa), 4a(1−a)).
Consequently, for each a ∈ [0, 1/2] and r ∈ (0, 1), the double inequality

π

2
+
[
K (r)− π

2

]
sin(πa) ≤Ka(r) ≤

π

2
+ 4a(1− a)

[
K (r)− π

2

]
(7)

holds true.

Motivated by the functions f1,λ(a) and f2,λ(a) defined in (5) and inequality
(6), in this paper, we shall introduce another combinational function of K (r) and
Ka(r) with one free parameter λ ∈ R,

g(a) =
K (r)− Ka(r)

(1− 2a)λ
, a ∈ (0, 1/2],

and establish a sufficient and necessary condition under which g(a) is monotone
on (0, 1/2] for each r ∈ (0, 1). Exactly speaking, we shall find all values of λ ∈ R
such that g(a) is strictly increasing or decreasing on (0, 1/2] for each r ∈ (0, 1),
and thus establish several new inequalities between K (r) and Ka(r). Besides, the
refinement of inequality (7) will also be given in the following Theorem 2.

In the sequel, we always let a ∈ (0, 1/2], N (R) denotes the set of positive
integers (real numbers, respectively) as usual, N0 = N ∪ {0}, let

ak =
(a, k)(1− a, k)

(k!)2
, bk =

[
(1/2, k)

k!

]2
,(8)

ck = (k!)2ak = (a, k)(1− a, k), dk = (k!)2bk = (1/2, k)2,(9)

P1,n(r) =
π

2

n∑
k=0

akr
2k, P2,n(r) =

π

2

n∑
k=0

bkr
2k,(10)

Dn =
dn
4

[
π2

2
− ψ′

(
n+

1

2

)]
, D(r) =

π

2

∞∑
n=1

Dn

(n!)2
r2n.(11)
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Recall that the Psi (Digamma) function is defined by [1, 6]

ψ(x) =
Γ′(x)

Γ(x)
, Rex > 0,(12)

and the Gamma function Γ(x) has the well-known Euler’s reflection formula

Γ(a)Γ(1− a) =
π

sin(πa)
.(13)

Theorem 1. Let r ∈ (0, 1), λ ∈ R, and D(r) be as in (11). Define the function g
on (0, 1/2] by

g(a) =
K (r)− Ka(r)

(1− 2a)λ
.(14)

Then g is strictly increasing (decreasing) on (0, 1/2] if and only if λ ≥ 2 (λ ≤
π/2, respectively). Moreover, g(0+) |λ=2= K (r) − π/2, g(1/2) |λ=2= D(r), and
g(0+) |λ=π/2= K (r) − π/2, g(1/2) |λ=π/2= 0. In particular, for a ∈ (0, 1/2] and
r ∈ (0, 1),

max

{
K (r)− (1− 2a)π/2

[
K (r)− π

2

]
, K (r)− (1− 2a)2D(r)

}
(15)

≤ Ka(r) ≤ K (r)− (1− 2a)2
[
K (r)− π

2

]
,

with equality in each instance if and only if a = 1/2.

Theorem 2. Let a ∈ (0, 1/2), n ∈ N0, and P1,n(r) be as in (10). Define the
function f on (0, 1) by

f(r) =
Ka(r)− P1,n(r)

K (r)− P2,n(r)
,

then f is strictly decreasing on (0, 1) with

f(0+) = α =
Γ(n+ 1 + a)Γ(n+ 2− a) sin(πa)

Γ(3/2 + n)2
, f(1−) = sin(πa).

In particular, for a ∈ (0, 1/2], r ∈ (0, 1) and n ∈ N0,

(16) P1,n(r) + [K (r)− P2,n(r)] sin(πa) ≤ Ka(r) ≤ P1,n(r) + α[K (r)− P2,n(r)],

with equality in each instance if and only if a = 1/2.



A monotonicity theorem for the generalized elliptic integral of the first kind 369

2. PRELIMINARIES

In this section, we shall prove several Lemmas, which will be used in the proof
of our main results.

Lemma 3. ([5, Lemma 5.1]) For −∞ < a < b < ∞, let f , g : [a, b] → R be
continuous on [a, b], and be differentiable on (a, b). Let g′(x) ̸= 0 on (a, b). If
f ′(x)/g′(x) is increasing (decreasing) on (a, b), then so are

[f(x)− f(a)]/[g(x)− g(a)] and [f(x)− f(b)]/[g(x)− g(b)].

If f ′(x)/g′(x) is strictly monotone, then the monotonicity in the conclusion is also
strict.

Lemma 4. ([15, Lemma 2.1] and [17, Lemma 2.4]) For n ∈ N0, let rn and sn be
real numbers, and let the power series R(x) =

∑∞
n=0 rnx

n and S(x) =
∑∞

n=0 snx
n

be convergent for |x| < 1. If sn ≥ 0 and not all vanish for n ∈ N0, and if rn/sn
is strictly increasing (decreasing) in n ∈ N0, then the function x 7→ R(x)/S(x) is
strictly increasing (decreasing, respectively) on (0, 1).

Lemma 5. ([28, Theorem A]) Let the functions f, g be defined on (0,∞) such that
their Laplace transforms L (f) =

∫∞
0
f(t)e−xtdt and L (g) =

∫∞
0
g(t)e−xtdt exist

with g(t) ̸= 0 for all t > 0. Then the ratio L (f)/L (g) is decreasing (increasing)
on (0,∞) if f/g is increasing (decreasing) on (0,∞).

Lemma 6. For a ∈ (0, 1/2], let p(a) = (1 − 2a) cos(πa)/[1 − sin(πa)], then p is
strictly increasing from (0, 1/2] onto (1, 4/π].

Proof. Clearly p(0) = 1, and by l’Hôptial’s rule we have p(1/2) = 4/π. Let p1(a) =
(1 − 2a) cos(πa), p2(a) = 1 − sin(πa), p3(a) = 1 − 2a and p4(a) = cot(πa). Then
p(a) = p1(a)/p2(a), p1(1/2) = p2(1/2) = p3(1/2) = p4(1/2) = 0 and

p′1(a)

p′2(a)
=

2

π
+
p3(a)

p4(a)
,

p′3(a)

p′4(a)
=

2 sin2(πa)

π
.

Applying Lemma 3 twice, the monotonicity of p(a) on (0, 1/2] follows.

Lemma 7. Let n ∈ N0, cn, dn and Dn be as in (9) and (11). Then

lim
a→1/2

dn − cn
(1− 2a)2

= Dn.
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Proof. By (12), (13) and l’Hôpital Rule twice,

lim
a→1/2

dn − cn
(1− 2a)2

=
1

4
lim

a→1/2

[ψ(a+ n)− ψ(1− a+ n)− ψ(a) + ψ(1− a)]cn
1− 2a

= −1

8
lim

a→1/2

{
[ψ′(a+ n) + ψ′(1− a+ n)− ψ′(a)− ψ′(1− a)]cn

+ [ψ(a+ n)− ψ(1− a+ n)− ψ(a) + ψ(1− a)]2cn

}

=
dn
4

[
π2

2
− ψ′ (n+ 1/2)

]
= Dn.

Lemma 8. For each a ∈ (0, 1/2), define the function h on (0,∞) by

h(x) =
ψ′(x+ a)− ψ′(x+ 1− a)

2ψ(x+ 1/2)− ψ(1− a+ x)− ψ(a+ x)
.

Then h is positive and strictly decreasing on (0,∞).

Proof. Write h(x) = h1(x)/h2(x), where

h1(x) = ψ′(x+ a)− ψ′(x+ 1− a),

h2(x) = 2ψ(x+ 1/2)− ψ(1− a+ x)− ψ(a+ x).

Since ψ′ is strictly decreasing on (0,∞) and a ∈ (0, 1/2), then h1(x) > 0 for all
x ∈ (0,∞). Also, due to

∂h2
∂a

= ψ′(1− a+ x)− ψ′(a+ x) < 0,

one has h2(x) > h2(x) |a=1/2= 0. Thus h(x) is a positive function defined on
(0,∞).

According to (cf. [1])

ψ(x) =

∫ ∞

0

(
e−t

t
− e−xt

1− e−t

)
dt

and

ψ′(x) =

∫ ∞

0

te−xt

1− e−t
dt = L

[
t

1− e−t

]
,

where Laplace transform of a function f(t) is denoted by L [f ], we get

h1(x) =

∫ ∞

0

te−(x+a)t

1− e−t
dt−

∫ ∞

0

te−(x+1−a)t

1− e−t
dt

=

∫ ∞

0

t(e−at − e−(1−a)t)

1− e−t
e−xtdt

= L

[
t(e−at − e−(1−a)t)

1− e−t

]
,
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h2(x) = −2

∫ ∞

0

e−(x+1/2)t

1− e−t
dt+

∫ ∞

0

e−(x+1−a)t + e−(x+a)t

1− e−t
dt

=

∫ ∞

0

−2e−t/2 + e(a−1)t + e−at

1− e−t
e−xtdt

= L

[
−2e−t/2 + e(a−1)t + e−at

1− e−t

]
,

and thereby

h(x) =
h1(x)

h2(x)
=

∫∞
0
h3(t)e

−xtdt∫∞
0
h4(t)e−xtdt

=
L [h3(t)]

L [h4(t)]
.(17)

Here

h3(t) =
t(e−at − e−(1−a)t)

1− e−t
, h4(t) =

−2e−t/2 + e(a−1)t + e−at

1− e−t
.(18)

are both real functions defined on (0,∞).

Noting that

h3(t)

h4(t)
=

t[e(1−a)t − eat]

e(1−a)t + eat − 2et/2
=

t[e(1/2−a)t − e−(1/2−a)t]

e(1/2−a)t + e−(1/2−a)t − 2
(19)

=
2t sinh[(1/2− a)t]

4 sinh2[(1/2− a)t/2]
=
t cosh[(1/2− a)t/2]

sinh[(1/2− a)t/2]

=
2

(1/2− a)

[(1/2− a)t/2]

tanh[(1/2− a)t/2]
,

and h4(t) > 0 for all t ∈ (0,∞) and a ∈ (0, 1/2).

Therefore, the monotonicity of h directly follows from (17)-(19) and Lemma
5 together with the fact that the function x 7→ tanh(x)/x is strictly decreasing from
(0,∞) onto (0, 1).

Lemma 9. For a ∈ (0, 1/2), let

q(x) =
ψ(x+ a)− ψ(x+ 1− a)− ψ(a) + ψ(1− a)

Γ(x+ 1/2)2/[Γ(x+ 1− a)Γ(x+ a) sin(πa)]− 1
, x ∈ (0,∞).

Then q is positive and strictly decreasing on (0,∞).

Proof. Let
q1(x) = ψ(x+ a)− ψ(x+ 1− a)− ψ(a) + ψ(1− a),

q2(x) =
Γ(x+ 1/2)2

Γ(x+ 1− a)Γ(x+ a) sin(πa)
− 1

and q3(x) = q2(x) + 1, then q1(0
+) = q2(0

+) = 0 and

q′1(x)

q′2(x)
=

1

q3(x)
· ψ′(x+ a)− ψ′(x+ 1− a)

2ψ(x+ 1/2)− ψ(1− a+ x)− ψ(a+ x)
.
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It was proved in [30, Theorem 2.6] that the function q3 is positive and strictly
increasing on (0,∞). In combination with Lemma 8, we obtain that the ratio
function q′1/q

′
2 is a product of two positive and strictly decreasing functions, so

that q is also strictly decreasing on (0,∞) by application of Lemma 3. Moreover,
for all x ∈ (0,∞), q2(x) = q3(x) − 1 > q3(0

+) − 1 = 0, and q1(x) > q1(0
+) = 0

since q′1(x) = ψ′(x+ a)− ψ′(x+ 1− a) > 0 for each a ∈ (0, 1/2).

Letting x = n ∈ N in q(x) defined in Lemma 9, we get a positive decreasing
sequence.

Corollary 10. Let n ∈ N, a ∈ (0, 1/2) and cn, dn be as in (9), the positive sequence

Qn =
ψ(n+ a)− ψ(n+ 1− a)− ψ(a) + ψ(1− a)

dn/cn − 1

is strictly decreasing in n.

3. PROOFS OF THEOREMS 1 AND 2

Proof of Theorem 1. First of all, Corollary 7.3 in [3] gives

lim
a→0

g(a)
∣∣
λ>0

= lim
a→0

K (r)− Ka(r)

(1− 2a)λ
= K (r)− π

2
.(20)

By (1), (2) and Lemma 7,

lim
a→1/2

g(a)
∣∣
λ=2

= lim
a→1/2

K (r)− Ka(r)

(1− 2a)2
=
π

2
lim

a→1/2

∞∑
n=0

dn − cn
(1− 2a)2

r2n

(n!)2
(21)

=
π

2

∞∑
n=0

lim
a→1/2

dn − cn
(1− 2a)2

r2n

(n!)2

=
π

8

∞∑
n=0

dn

[
π2

2
− ψ′ (n+ 1/2)

]
r2n

(n!)2

=
π

2

∞∑
n=1

Dn

(n!)2
r2n

= D(r),

and thus
(22)

lim
a→1/2

g(a)
∣∣
λ=π

2

= lim
a→1/2

K (r)− Ka(r)

(1− 2a)π/2
= lim

a→1/2

K (r)− Ka(r)

(1− 2a)2
(1− 2a)2−π/2 = 0.
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Next, logarithmic differentiation of g yields

(1− 2a)

2

g′(a)

g(a)
=

1− 2a

2
F (a, r) + λ,(23)

where

F (a, r) =
1

K (r)− Ka(r)

∂[K (r)− Ka(r)]

∂a
= − 1

K (r)− Ka(r)

∂Ka(r)

∂a
(24)

=−

(
∂

∂a

∞∑
n=0

cn
(n!)2

r2n

)( ∞∑
n=0

dn − cn
(n!)2

r2n

)−1

=−

( ∞∑
n=1

∂cn
∂a

1

(n!)2
r2n

)( ∞∑
n=1

dn − cn
(n!)2

r2n

)−1

=−

( ∞∑
n=0

Anr
2n

)( ∞∑
n=0

Bnr
2n

)−1

,

(25) An =
∂cn+1

∂a

1

[(n+ 1)!]2
, Bn =

dn+1 − cn+1

[(n+ 1)!]2
.

Lemma 9 and Corollary 10 imply that Bn > 0 for n ∈ N0, and

An

Bn
=
∂cn+1

∂a

(
1

dn+1 − cn+1

)
=

[ψ(n+ 1 + a)− ψ(n+ 2− a)− ψ(a) + ψ(1− a)]cn+1

dn+1 − cn+1
= Qn+1

is positive and strictly decreasing in n ∈ N0, so that F (a, r) is strictly increasing in
r ∈ (0, 1) by (24), (25) and Lemma 4.

Clearly, F (a, 0+) = −Q1 = 4/(2a − 1). For a ∈ (0, 1/2) and r ∈ (0, 1), if we
set

F2(a, r) =

∫ π/2

0

(tanx)1−2a(1− r2 sin2 x)−adx,

F3(a, x) = (sinx)1−2a(cosx)−1 log(sinx),

F4(a, x) = (tanx)1−2a(1− r2 sin2 x)−a
[
2 log(tanx) + log

(
1− r2 sin2 x

)]
.
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Then Ka(r) = F2(a, r) sin(πa) by (3), so that

lim
r→1

F (a, r) = lim
r→1

1

Ka(r)− K (r)

[
π cos(πa)F2(a, r) + lim

r→1

∂F2

∂a
sin(πa)

](26)

= lim
r→1

π cos(πa)Ka(r)

[Ka(r)− K (r)] sin(πa)
+ lim

r→1

sin(πa)

Ka(r)− K (r)

∂F2

∂a

= lim
r→1

π cos(πa)

[1− K (r)/Ka(r)] sin(πa)
+ lim

r→1

1

K (r)

sin(πa)

Ka(r)/K (r)− 1

∂F2

∂a

=
π cos(πa)

sin(πa)− 1
+

sin(πa)

sin(πa)− 1
lim
r→1

1

K (r)

∂F2

∂a
,

(27)
∂F2

∂a
= −

∫ π/2

0

F4(a, x)dx, lim
r→1

∂F2

∂a
= −2

∫ π/2

0

F3(a, x)dx.

It is well known that for n ∈ N (cf. [21]),

ψ(n)(x) = (−1)n+1

∫ ∞

0

tne−xt

1− e−t
dt = −

∫ 1

0

tx−1

1− t
(log t)ndt.

Hence by (27) and by using the substitution t = sin2 x, we have

lim
r→1

∂F2

∂a
= −2

∫ π/2

0

(sinx)1−2a log(sinx)

1− sin2 x
d(sinx)

= −1

2

∫ π/2

0

(sinx)−2a log(sin2 x)

1− sin2 x
d(sin2 x)

= −1

2

∫ 1

0

t(1−a)−1 log t

1− t
dt =

1

2
ψ′(1− a).

Combining with (26), F (a, 1) = π cos(πa)/[sin(πa) − 1], so that F (a, r) is strictly
increasing in r from (0, 1) onto (4/(2a − 1), π cos(πa)/[sin(πa) − 1]) for each a ∈
(0, 1/2). Hence by (23) and Lemma 6, we conclude that

g′(a) ≥ 0 ⇐⇒ λ ≥ sup
a∈(0,1/2),r∈(0,1)

2a− 1

2
F (a, r) = sup

a∈(0,1/2)

2a− 1

2
F (a, 0) = 2,

g′(a) ≤ 0 ⇐⇒ λ ≤ inf
a∈(0,1/2),r∈(0,1)

2a− 1

2
F (a, r) = inf

a∈(0,1/2)

π(1− 2a) cos(πa)

2[1− sin(πa)]
=
π

2

for all a ∈ (0, 1/2) and r ∈ (0, 1).

Finally, it follows from (20), (21) and (22) together with the monotonicity
properties of the functions g(a) with λ = π/2 and λ = 2 that inequalities

(1− 2a)2
[
K (r)− π

2

]
≤ K (r)− Ka(r)

≤ min
{
(1− 2a)π/2

[
K (r)− π

2

]
, (1− 2a)2D(r)

}
.
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hold for all a ∈ (0, 1/2) and r ∈ (0, 1), which is equivalent to inequality (15). The
remaining conclusions are clear.

Proof of Theorem 2. If n = 0, then Theorem 2 can be found in [16, Theorem
3.6]. Following we suppose n ≥ 1. By (1) and (2),

K (r)− P2,n(r) =
π

2

∞∑
k=n+1

bkr
2k > 0,

f(r) =

∑∞
k=n+1 akr

2k∑∞
k=n+1 bkr

2k
=

∑∞
k=0 ak+n+1r

2k∑∞
k=0 bk+n+1r2k

.

Let

Ek =
ak+n+1

bk+n+1
=

Γ(k + n+ 1 + a)Γ(k + n+ 2− a) sin(πa)

Γ(k + n+ 3/2)2
,

Then

Ek+1 − Ek = −Γ(k + n+ 1 + a)Γ(k + n+ 2− a)(1/2− a)2 sin(πa)

Γ(k + n+ 5/2)2
< 0,

so that the sequence {Ek} is strictly decreasing in k ∈ N0 for each fixed n ∈ N. It
shows that the function f is strictly decreasing on (0, 1) by Lemma 4. Moreover,

lim
r→0+

f(r) = E0 =
Γ(n+ 1 + a)Γ(n+ 2− a) sin(πa)

Γ(3/2 + n)2
,(28)

lim
r→1−

f(r) = lim
r→1−

Ka(r)/K (r)− π
2

(∑n
k=0 akr

2k
)
/K (r)

1− π
2 (
∑n

k=0 bkr
2k) /K (r)

(29)

= lim
r→1−

Ka(r)

K (r)
= sin(πa).

Therefore, Theorem 2 directly follows from (28) and (29) together with the
monotonicity of f .

Remark 11. Rewrite inequality (15) as

max

{
K (r)− (1− 2a)2D(r),

π

2
+
[
K (r)− π

2

] (
1− (1− 2a)π/2

)}
≤ Ka(r) ≤

π

2
+ 4a(1− a)

[
K (r)− π

2

]
,

we clearly see that the upper bound of Ka(r) in inequality (15) is equal to that of
inequality (7). But it is our view that Theorem 1 in this paper adds that the upper
bound is optimal in some sense. On the other hand, computational and numerical
experiments show that the lower bound of Ka(r) in (15) is not directly comparable
to any one of (6) and (7) for (a, r) ∈ (0, 1/2)× (0, 1).
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