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BIER SPHERES OF EXTREMAL VOLUME AND

GENERALIZED PERMUTOHEDRA

Filip D. Jevtić and Rade T. Živaljević ∗

We study hidden geometry of Bier spheres Bier(K) = K ∗∆ K◦ by describ-

ing their natural geometric realizations, compute their volume, describe an

effective criterion for their polytopality, and associate to Bier(K) a natural

coarsening Fan(K) of the braid fan. We also establish a connection of Bier

spheres of maximal volume with recent generalizations of the classical Van

Kampen-Flores theorem and clarify the role of Bier spheres in the theory of

generalized permutohedra.

1. INTRODUCTION

The problem of deciding if a given triangulation of a sphere is realizable as
the boundary sphere of a simplicial, convex polytope is known as the “Simplicial
Steinitz problem” [11]. This is an example of a problem of geometric combinatorics
which links together areas of mathematics as distant as combinatorial optimization
[21], convex polytopes [24], algebraic geometry [11], topological combinatorics [17],
discrete and computational geometry [25], etc.

It is known by an indirect and non-constructive argument that a vast ma-
jority of triangulated spheres are “non-polytopal”, in the sense that they are not
combinatorially isomorphic to the boundary of a convex polytope. This holds, in
particular, for Bier spheres Bier(K) (named after T. Bier, see [17, Section 5.6]),
the (n−2)-dimensional, combinatorial spheres on 2n-vertices, constructed with the
aid of simplicial complexes K ⊊ 2[n].
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Combinatorics of Bier spheres and their generalizations have been studied
in numerous publications [2, 5, 6, 13, 14, 15, 16, 22]. In this paper we put
more emphasis on the interplay of geometry and combinatorics of Bier spheres,
in particular, continuing the research from [13], we study the connection with
generalized permutohedra, one of the most important and well studied classes of
convex polytopes in recent years.

2. AN OVERVIEW OF THE PAPER AND NEW RESULTS

One of the main new results of [13] was the observation ([13, Theorem 3.1])
that each Bier sphere Bier(K), defined as a canonical triangulation of a (n −
2) sphere Sn−2 associated to an abstract simplicial complex K ⊊ 2[n], admits a
starshaped embedding in Rn−1.

It turns out that the radial fan Fan(K) of the starshaped embedding of
the Bier sphere Bier(K), described in the proof of this result, is a coarsening of
the braid arrangement fan. This fact was not emphasized in [13], however it is
interesting in itself and certainly deserves further study.

Recall that the braid arrangement fan is the normal fan of the standard
permutohedron [24] and that the coarsening of the braid fan leads to an important
and well studied class of generalized permutohedra [19, 20, 4, 7, 23, 18, 9, 12],
or deformed permutohedra, as they are called by some authors.

In this paper we take a closer look at the fan Fan(K) (the canonical or Bier
fan of a simplicial complex K), with the goal to clarify the role of Bier spheres in
the theory of generalized permutohedra and to study other geometric properties of
Bier spheres arising from this construction.

The main new results of the paper are the following.

In Section 4 (see also Sections 3 and 5) we give a combinatorial proof that
Fan(K) is refined by the braid fan, relying on the preposets-braid cones dictionary
from [20]. In particular we show that the maximal cones of Fan(K) are associated
with tree posets which have precisely one node which is not a leaf.

In Section 6 we study Bier spheres (or rather the associated starshaped sets
Star(K)) of extremal volume. In particular we show (Proposition 6) that Bier
spheres of maximal volume are closely related to the class of nearly neighborly Bier
spheres, studied in [2], and balanced simplicial complexes [15], which provide a
natural class of examples extending the classical Van Kampen-Flores theorem, see
[15, Theorem 3.5].

One of the consequences of Propositions 5 and 6 is that all starshaped sets
Star(K) of maximal volume coincide with one and the same, universal (n − 1)-
dimensional convex set (convex polytope), denoted by Ωn and referred to as the
Van Kampen-Flores polytope. The structure of the Van Kampen-Flores polytope is
clarified (and its name explained) in Sections 6 and 7, in particular we show (The-
orem 14) that the polar dual of Ωn is affine-isomorphic to a median hypersimplex.
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In Section 8 we prove a K-submodularity theorem which for polytopal Bier
spheres plays the role similar to the role of classical submodular functions (poly-
matroids) in the theory of generalized permutohedra. With the aid of this result
we obtain a useful criterion for a Bier sphere to be polytopal.

For the reader’s convenience here is a glossary with brief descriptions of the
main objects studied in this paper (see Section 5 for more complete exposition).

Bier(K) = K ∗∆ K◦, the Bier sphere of K, is a combinatorial object (sim-
plicial complex), defined as a deleted join of two simplicial complexes (K and its
Alexander dual K◦).

Fan(K) = BierFan(K), the canonical or the Bier fan of K, is a complete,
simplicial fan in H0

∼= Rn−1, associated to a simplicial complex K ⊊ 2[n].

R±δ(Bier(K)) is the canonical starshaped realization of Bier(K) described
in [13, Theorem 3.1].

Star(K) is the starshaped body whose boundary is the sphereR±δ(Bier(K)).

Ωn is a universal, (n − 1)-dimensional convex polytope (the Van Kampen-
Flores polytope) which is equal, as a convex body, to Star(K) for each Bier sphere
of maximal volume.

Figure 1: The 3-dimensional cube as the Van Kampen-Flores polytope Ω4.
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Example 1. The geometric objects listed in the glossary can be in the case n = 4
easily described with the aid of a 3-dimensional cube (Figure 1)).

The tetrahedron ∆[4] with vertices {1, 2, 3, 4} (colored in blue) is the ambient
simplex of the simplicial complex K. Similarly, the ambient simplex of K◦ (the
Alexander dual of K) is the red tetrahedron ∆[4̄] with vertices {1̄, 2̄, 3̄, 4̄}.

For illustration let K be the 1-dimensional skeleton of ∆[4]. Then K◦ is the 0-
dimensional skeleton of ∆[4̄] and the maximal simplices of the associated Bier sphere

Bier(K) are triangles (3-element sets) {i, j, k̄}, for distinct elements i, j, k ∈ [4].

Strictly speaking what we have just described (see [17, Definition 5.6.1]) is
Bier(K), as an abstract simplicial complex with vertices in S = {1, 2, 3, 4, 1̄, 2̄, 3̄, 4̄}.
By interpreting the elements of S as vertices of two centrally symmetric tetrahedra,
∆[4] and ∆[4̄] = −∆[4], depicted in Figure 1, each abstract 2-simplex {i, j, k̄} turns
into a genuine, geometric triangle.

The union of these triangles is precisely the canonical starshaped realiza-
tion R±δ(Bier(K)) of Bier(K), described in [13, Theorem 3.1] and listed in the
glossary.

The cones over these triangles (with the apex in the center of the cube) form
a complete, simplicial fan Fan(K) which is referred to as the Bier fan of K.

Star(K) is the starshaped body inside Fan(K), whose boundary is the sphere
R±δ(Bier(K)).

The reader is invited to experiment with other subcomplexes K ⊊ ∆[4] and
to determine the corresponding objects R±δ(Bier(K)), BierFan(K) and Star(K).
For example if K = ∂∆[4] = 2[4] \ {[4]} then Star(K) = ∆[4], etc.

3. BIER FANS OF SIMPLICIAL COMPLEXES

Let K ⊊ 2[n] be a simplicial complex and K◦ := {A ⊂ [n] | [n] \ A /∈ K} its
Alexander dual. By definition, see [17, Section 5.6], the associated Bier sphere is
the deleted join,

(1) Bier(K) := K ∗∆ K◦.

As in Example 1 (see also [17, Section 5.5]) the vertices of the deleted join (1)
are [n] ∪ [n̄] = {1, . . . , n, 1̄, . . . , n̄} and a simplex τ ∈ Bier(K) is described as the
union τ = A1 ∪ A2, where A1 and A2 are subsets of [n] such that A1 ∈ K,A2 ∈
K◦, A1 ∩A2 = ∅ and (by definition) C := {̄i | i ∈ C} ⊆ [n̄].

Caveat: For convenience here we use (as in [15]) an extended τ = (A1, A2;B)
notation for simplices in the Bier sphere, where B := [n] \ (A1 ∪ A2). Hence, an
ordered partition A1 ⊔ A2 ⊔ B = [n] corresponds to a simplex τ ∈ Bier(K) if and
only if A1 ∈ K, A2 ∈ K◦ (which implies ∅ ≠ B ̸= [n]). In the “interval notation”,
used in [2], the simplex τ = (A1, A2;B) is recorded as the pair (A1, [n] \A2) while
the same simplex is denoted in [17, Section 5.6] by τ = A1 ⊎A2.
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For example the facets of Bier(K) are triples τ = (A1, A2;B) where B = {ν}
is a singleton. In this case τ is (in the interval notation) determined by the pair
A ⊊ C, where A = A1 ∈ K and C = A1 ∪ {ν} /∈ K.

The braid arrangement is the arrangement of hyperplanes Braidn = {Hi,j}1≤i<j≤n

in H0 where H0 := {x ∈ Rn | x1 + · · ·+ xn = 0} ∼= Rn/(1, . . . , 1)R and Hi,j := {x |
xi − xj = 0}. The hyperplanes Hi,j subdivide the space H0 into the polyhedral
cones

Cπ := {x ∈ H0 | xπ(1) ≤ xπ(2) ≤ · · · ≤ xπ(n)}
labeled by permutations π ∈ Sn. The cones Cπ, together with their faces, form a
complete simplicial fan in H0, called the braid arrangement fan.

4. PREPOSETS AND BIER FANS

A binary relation R ⊆ [n]× [n] is a preposet on [n] if it is both reflexive and
transitive. Following [20], in explicit calculations we often write ≼R, instead of R,
and x ≼R y, instead of (x, y) ∈ R or xRy. Given a preposet ≼R we write x ≺R y
if ≼R and x ̸= y, and x ≡R y if both x ≼R y and y ≼R x.

For a more detailed account and, in particular, the preposet-braid cone dic-
tionary, which describes the geometry of braid cones in the language of preposets,
the reader is refereed to [20] (Sections 3.3 and 3.4).

Let τ = (A1, A2;B) ∈ Bier(K). The associated preposet ≼τ is the binary
relation defined as the reflexive and transitive closure of the relation

ρτ := (A1 ×B) ∪ (B ×B) ∪ (B ×A2) ⊆ [n]× [n] .

Following [20] (Section 3.4), the associated braid cone is

(2) Cone(≼τ ) = Cone(τ) = {x ∈ H0 | xi ≤ xj for each (i, j) ∈ ρτ} .

In other words Cone(≼τ ) is described by all inequalities xi ≤ xj , where either
(i, j) ∈ A1×B or (j, i) ∈ A2×B, and all equalities xi = xj for all pairs (i, j) ∈ B×B.

The original proof (and the statement) of the following theorem is more
geometric, emphasising the starshaped embedding R±δ(Bier(K)) of the sphere
Bier(K). Here we give a different and more combinatorial proof, which uses the
preposet-braid cone dictionary.

Theorem 2. ([13, Theorem 3.1]) Let K ⊊ 2[n] be a simplicial complex. Then the
collection of convex cones

(3) Fan(K) = {Cone(≼τ )}τ∈Bier(K)

is a complete simplicial fan in H0 = {x ∈ Rn | x1 + · · · + xn = 0}, referred to
as the canonical fan associated to K. Moreover, the face poset FaceFan(K) is
isomorphic to the (extended) face poset FaceBier0(K) := FaceBier(K) ∪ {∅} of
the Bier sphere Bier(K). The construction of the canonical fan is faithful in the
sense that if Fan(K1) = Fan(K2) then K1 = K2.
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Proof. The faithfulness of the construction is quite immediate, since one can recover
both K and K◦ from the preposets corresponding to maximal cones in Fan(K).
Moreover, the structure of the face poset of Fan(K) is easily recovered from (3).

Let us begin the proof that Fan(K) is a complete, simplicial fan by showing
that for each permutation π ∈ Sn there exists exactly one facet τ = (A1, A2;B) =
(A1, A2; {ν}) of the Bier sphere Bier(K) such that,

Cπ = {x ∈ H0 | xπ(1) ≤ xπ(2) ≤ · · · ≤ xπ(n)} ⊆ Cone(τ) .

Since [n] /∈ K we know that {k | {π(j)}j≤k /∈ K} ≠ ∅. Let p = min{k | {π(j)}j≤k /∈
K} and let ν = π(p). By construction A1 := {π(j)}j<p ∈ K and A2 := {π(j)}j>p ∈
K◦, and it immediately follows that Cπ ⊆ Cone(τ) where τ = (A1, A2; {ν}).

Conversely, let Int(Cπ)∩Cone(τ ′) ̸= ∅ where τ ′ = (A′
1, A

′
2, {ν′}) ∈ Bier(K).

In other words there exists x ∈ Cone(τ ′) such that

xπ(1) < xπ(2) < · · · < xπ(n) .

Let p′ := π−1(ν′). Then the condition x ∈ Cone(τ ′) implies that {π(j)}j<p′ ⊆
A′

1 ∈ K and {π(j)}j>p′ ⊆ A′
2 ∈ K◦, which immediately implies p = p′ and τ = τ ′.

If τ = (A1, A2;B) and τ ′ = (A′
1, A

′
2;B

′) are two, not necessarily maximal,
faces of Bier(K), then Cone(τ)∩Cone(τ ′) = Cone(τ ′′) where τ ′′ = (A′′

1 , A
′′
2 ;B

′′) is
the simplex determined by the conditions A′′

1 = A1∩A′
1 and A′′

2 = A2∩A′
2. Indeed,

this follows from the preposet-braid cone dictionary, see [20, Proposition 3.5], and
the following lemma.

Lemma 3. The reflexive and transitive closure of the relation ≼τ ∪ ≼τ ′ coin-
cides with the relation ≼τ ′′ . Moreover, ≼τ ′′ is a contraction (in the sense of [20],
Section 3.3) of both ≼τ and ≼τ ′ .

Proof of Lemma 3: Since ρτ ∪ ρτ ′ ⊆ ρτ ′′ , it is sufficient to show that the reflex-
ive/transitive closure ≼ of ≼τ ∪ ≼τ ′ contains the relation ρτ ′′ . This will follow if
we prove that

(4) i ≼ j for each pair of elements in B′′ = (A1∆A′
1) ∪ (A2∆A′

2) ∪B ∪B′ .

As a first step in the proof of (4), let us show that B ∪B′ ⊆ B′′.

As an immediate consequence of the definition of the Alexander dual K◦ of
a simplicial complex K, we obtain the implication

X /∈ K and Y /∈ K◦ ⇒ X ∩ Y ̸= ∅ .

From here, in light of A1∪B /∈ K and A′
2∪B′ /∈ K◦, we deduce (A1∪B)∩(A′

2∪B′) ̸=
∅. Choose s ∈ B and t ∈ B′ and assume z ∈ (A1 ∪ B) ∩ (A′

2 ∪ B′). Then, directly
from the definition of preposets ≼τ and ≼τ ′ , we obtain the relation t ≼τ ′ z ≼τ s
and, as a consequence, t ≼ s.
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Similarly, from A′
1∪B′ /∈ K and A2∪B /∈ K◦, we deduce that z′ ∈ (A′

1∪B)∩
(A2 ∪B) for some z′. If s ∈ B and t ∈ B′ then s ≼τ z′ ≼τ ′ t, and as a consequence
s ≼ t. The relations s ≼ t and t ≼ s together imply that s ≡≼ t, which completes
the proof of the inclusion B ∪B′ ⊆ B′′.

For the completion of the proof of (4) let us begin with the case z ∈ A1 \A′
1.

Then B′ ≼τ ′ z ≼τ B and as a consequence z ∈ B′′. Similarly, if z ∈ A2 \ A′′
2 then

B ≼τ ′ z ≼τ B′ and again z ∈ B′′. The other two cases A′
1 \A1 ̸= ∅ and A′

2 \A2 ̸= ∅
are treated analogously.

For the completion of the proof of Lemma 3 we need to show that both A1∩A′
1

and A2∩A′
2 are disjoint from B′′. This is obvious since if z ∈ A1∩A′

1 (z ∈ A2∩A′
2)

then z is never a right hand side (respectively left hand side) of a relation involving
≼τ or ≼τ ′ (except for the trivial relations z ≼τ z and z ≼τ ′ z).

5. COMPARISON OF TWO DEFINITIONS OF BIER FANS

The definition of the Bier fan Fan(K), used in the previous section (see (3)),
uses the language of preposets. From this definition it is almost straightforward, in
light of the results from [20], that Fan(K) is a coarsening of the braid arrangement
fan.

It turns out (Proposition 4) that the fan Fan(K) is isomorphic to the ra-
dial fan associated to the starshaped realization R±δ(Bier(K)) of the Bier sphere
Bier(K), constructed in [13], Theorem 3.1. For the reader’s convenience here we
provide some details of this construction.

For each set b = {bi}ni=1 of affinelly independent vectors, there is an associated
geometric simplex ∆b = Conv{bi}ni=1. For instance ∆e ⊂ Rn is the standard (n−1)-
dimensional simplex associated to the standard basis e = {ei}ni=1 in Rn.

Moreover, if S ∈ K ⊆ 2[n] is a simplex in an abstract simplicial complex,
then the associated b-realization is the geometric simplex Rb(S) = Conv{bi}i∈S .
For example, if δ = (δ1, . . . , δn) is defined by δi = ei − 1

n (e1 + · · ·+ en) then

∆δ = Conv{δi}ni=1 and ∆−δ = Conv{−δi}ni=1 .

(Note that ∆δ and ∆−δ = −∆δ are (for n = 4)) precisely the simplices ∆[4] and ∆[4̄]

used in Example 1 and depicted in Figure 1.) If T ⊆ [n] then T is the corresponding
subset of [n̄] = {1̄, 2̄, . . . , n̄}. The Starshaped geometric realization of the abstract
simplicial complex Bier(K) = K ∗∆ K◦ ⊂ 2[n] ∗ 2[n̄], described in [13, Theorem
3.1], is the geometric simplicial complex

(5) R±δ(Bier(K)) = {Rδ(S) ∗R−δ(T ) | (S, T ) ∈ K ∗∆ K◦}

where Rδ(S) ∗R−δ(T ) := Conv(Rδ(S)∪R−δ(T )) is the geometric join of simplices.
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Let Cone(C) = ∪λ≥0 λC be the convex cone with the apex at the origin
generated by a convex set C ⊂ H0. The collection of convex cones

Cone±δ(K) = {Cone(Rδ(S) ∗R−δ(T )) | (S, T ) ∈ K ∗∆ K◦}

is by [13, Theorem 3.1] a complete simplicial fan in H0 (the radial fan of the
starshaped set R±δ(Bier(K))). The associated starshaped body is

(6) Star(K) = {λx ∈ H0 | x ∈ R±δ(Bier(K)) and 0 ≤ λ ≤ 1} .

Proposition 4. The fan Fan(K) coincides with the negative of the radial fan of
the starshaped set R±δ(Bier(K). More explicitly,

Fan(K) = Cone∓δ(K) := RadialFan(R∓δ(Bier(K))) .

Proof. Extremal rays of the simplicial cone Cone(R−δ(S) ∗ Rδ(T )) are generated

by the vectors {δ̂i}i∈S∪{δj}j∈T , where δ̂j is the barycenter of the facet ∆i ⊂ ∆δ :=
Conv{δk}k∈[n], opposite to the vertex δi ∈ ∆δ.

Let us show that the extremal rays of the cone Cone(τ), where τ = (S, T ; {ν}),
have the same representation. In this case the preposet ≼τ (the reflexive/transitive
closure of ρτ = S × {ν} ∪ {(ν, ν)} ∪ {ν} × T ) is a tree-poset, in the sense of [20],
Section 3.3, meaning that the associated Hasse diagram is a spanning tree on [n].
The corresponding simplicial cone is described by inequalities listed in (2), and the
associated extremal rays are obtained if all inequalities, with one exception, are
turned into equalities.

If xi ≤ xν is the excepted inequality (where i ∈ S), then the corresponding
ray has a parametric representation xk = t for k ̸= i and xi = −(n− 1)t ≤ xν = t.

From here it immediately follows that this ray is spanned by δ̂i. If xν ≤ xj is the
excepted inequality (where j ∈ T ), then the corresponding ray has a parametric
representation xk = t for k ̸= j and xj = −(n − 1)t ⩾ xν = t. In this case the
spanning vector is δj .

6. VOLUME AND FACE NUMBERS OF BIER SPHERES

Bier sphere Bier(K), being an abstract simplicial complex, must be realized
as a geometric sphere in order to discuss the volume of its inner region. A natu-
ral choice is the starshaped body Star(K) introduced in Section 5 (equation (6))
whose boundary ∂Star(K) = R±δ(Bier(K)) is the starshaped embedding of the
Bier sphere originally described in [13] (see equation (5) for an explicit definition).
Recall that (as a subset of H0)

(7) R±δ(Bier(K)) =
⋃

{Rδ(S) ∗R−δ(T ) | (S, T ) ∈ K ∗∆ K◦} .
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Let τ = (S, T ; {i}) be a facet of Bier(K). Then R(τ) = Rδ(S) ∗R−δ(T ), the
corresponding geometric simplex from (7), contributes to the volume of Star(K)
the quantity V olτ where

(n− 1)!V olτ := |Det(τ)| = |ϵ1b1 . . . b̂i . . . ϵnbn|

(ϵi = +1 if i ∈ S and ϵi = −1 if i ∈ T ) and the volume of Star(K) is

V ol(Star(K)) =
∑
τ

V olτ .(8)

Notice that V ol0 = V olτ is a constant, independent of the facet τ ∈ Bier(K). Let

mi(K) = mi = |{S ∈ K | S ∪ {i} ̸∈ K}| .

In light of (8) the volume of Star(K) can be calculated as

V ol(Star(K)) = V ol0

n∑
i=1

mi = V ol0fn−2(Bier(K))(9)

where fn−2(Bier(K)) is the number of facets of the Bier sphere Bier(K).

The following proposition allows us to compare the volumes of Bier spheres
which are obtained one from the other by a bistellar operation, see [17, Section
5.6].

Proposition 5. Assume that K ⊊ 2[n] is a simplicial complex and let Star(K) ⊂
H0 be the associated starshaped body. Let B ̸∈ K be a minimal non-face of K in
the sense that (∀i ∈ B)B \ {i} ∈ K, and let K ′ = K ∪ {B}. Let C = [n] \ B the
complement of B. Then

V ol (Star(K ′))− V ol (Start(K)) = V (K ′,K) = (|C| − |B|)V ol0 .

The following relations are an immediate consequence

V (K ′,K) > 0, if |B| < n

2

V (K ′,K) = 0, if |B| = n

2

V (K ′,K) < 0, if |B| > n

2

Proof. Let Σ = Rδ(B) ∗R−δ(C) be the (possibly degenerate) simplex in H0 which
has Rδ(B) and R−δ(C) as two “complementary faces”. (Note that Σ is degenerate
precisely if |B| = |C| = n/2 in which case the simplices Rδ(B) and R−δ(C) intersect
in a common barycenter.)

If Σ is non-degenerate its boundary ∂Σ is the union of two discs

∂Σ = ∂(Rδ(B)∗R−δ(C)) = (∂(Rδ(B))∗R−δ(C))∪ (Rδ(B)∗∂(R−δ(C))) = Σ1∪Σ2
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where Σ1 ⊆ Bier(K ′) and Σ2 ⊆ Bier(K). If Σ is degenerate then Σ = Σ1 = Σ2

(as sets), more precisely Σ1 and Σ2 are two different triangulations of Σ.

Note that Bier(K ′) \ Σ1 = Bier(K) \ Σ2 and Cone(Σ1) = Cone(Σ2) =
Cone(Σ). From here we observe that

1. Star(K) = Star(K ′) if and only if |B| = |C| = n
2 ;

2. Star(K) ⊊ Star(K ′) if and only if |B| > |C|;

3. |V (K ′,K)| = ||C| − |B||V ol0 = (n− 2|B|)V ol0 = V ol(Σ).

For example the third relation is a consequence of (9) or can be deduced directly
by a similar argument.

Proposition 6. If n = 2m + 1 is odd the unique Bier sphere of maximal volume
is Bier(K) where

(10) K =

(
[n]

≤ m

)
= {S ⊂ [n] | |S| ≤ m} .

If n = 2m is even a Bier sphere Bier(K) is of maximal volume if and only if

(11)

(
[n]

≤ m− 1

)
⊆ K ⊆

(
[n]

≤ m

)
.

A Bier sphere Bier(K) is of minimal volume if and only if either K = {∅} or K
is the boundary of the simplex ∆[n], K = ∂∆[n] = 2[n] \ {[n]}.

Proof. The first half of proposition, describing the Bier spheres of maximal volume,
is an immediate consequence of Proposition 5. The second, describing the Bier
spheres of minimal volume, is an immediate consequence of the formula (9), since
the unique triangulation of a sphere Sm−1 with the minimum number of facets is
the boundary of an m-dimensional simplex.

Corollary 7. For all Bier spheres Bier(K) of maximal volume, the convex body
Ωn = Star(K) is unique and independent of K. The body Ωn is centrally symmet-
ric. More explicitly Ωn = Conv(∆δ ∪ ∇δ) where ∆δ ⊂ H0 is the simplex spanned
by vertices δi := ei − 1

n (e1 + · · ·+ en) and ∇δ := −∆δ = ∆δ̄ is the simplex spanned
by δ̄i = −δi. The centrally symmetric (n− 1)-dimensional convex body Ωn is from
here on referred to as the Van Kampen-Flores polytope in dimension n− 1.

Proof. The body Ωn is centrally symmetric since the sphere centrally symmetric to
the Bier sphere Bier(K) is the sphere Bier(K◦) and Ωn = Star(K) = Star(K◦)
if K is one of the complexes described in equations (10) and (11). More precisely
Ωn = Conv(∆δ ∪∇δ) since⋃

Star(L) = Conv(∆δ ∪∇δ)

where the union on the left is taken over all simplicial complexes L ⊊ 2[n].
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We call Ωn the Van Kampen-Flores body (polytope) (in dimension n− 1) for
the following reason. The Bier sphere of the simplicial complex (10) is precisely
the simplicial triangulation of the (n− 2)-sphere, used in the standard proof of the
classical Van Kampen-Flores theorem, which claims that the (m − 1)-dimensional

complex
(
[2m+1]
≤m

)
is not embeddable in R2m−2 (see [17, Section 5.6]).

Moreover, the complexes
(

[2m]
≤m−1

)
and

(
[2m]
≤m

)
(the boundary complexes men-

tioned in (11)) appear in the “sharpened Van Kampen-Flores theorem” (Theo-
rem 6.8 from [3]).

Finally all complexes mentioned in (10) and (11) appeared under the name
balanced complexes in the following theorem, which unifies and extends previously
known results.

Theorem 8. ([15, Theorem 3.5]) Let K ⊂ 2[n] be a simplicial complex and let
K◦ be its Alexander dual. Assume that K is balanced in the sense that either (10)
or (11) is satisfied. Then for each continuous map f : ∆n−1 → Rn−3 there exist
disjoint faces F1 ∈ K and F2 ∈ K◦ such that f(F1) ∩ f(F2) ̸= ∅.

The importance of complexes listed in equations (10) and (11) in Proposition
6 was noted even earlier. In [17, Section 5.6] they were used as a source of examples
of non-polytopal triangulations of spheres while in [2] they provided examples of
nearly neighborly Bier spheres.

7. VAN KAMPEN-FLORES POLYHEDRA AND MEDIAN
HYPERSIMPLICES

The Van Kampen-Flores polytope was introduced in the previous section as
the convex hull

Ωn = Conv(∆ ∪∇) = Conv {δ1, δ2, . . . , δn,−δ1,−δ2, . . . ,−δn}

where ∆ = Conv{δi}ni=1 ⊂ H0
∼= Rn−1 and δi := ei − 1

n (e1 + · · ·+ en).

In this section, for convenience, we use a slightly more general representation
Ωn = Conv(∆ ∪ ∇) where ∆ = ∆u = Conv({ui})ni=1 is a regular simplex centered
at the origin, where ∆◦ = −∆ =: ∇ is the polar dual of ∆. Note that the vertices
of ∆ form a circuit in Rn−1 in the sense that the linear map

(12) Rn Λ−→ Rn−1, λ = (λ1, . . . , λn) 7→ Λ(λ) := λ1u1 + · · ·+ λnun

is an epimorphism with the kernel generated by 1 = (1, 1, . . . , 1) ∈ Rn.

The polytope Ωn must have been well-known, in this or equivalent form, in
classical theory of convex polytopes, although, perhaps, without a specific name.
In [13, Theorem 2.2] it originally appeared as a member of the family QL,α =
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Conv(∆L ∪ −α∆L) of polytopes where ∆L = Conv{l1u1, . . . , lnun} is a radial
perturbation of ∆ (for some positive weight vector L = (l1, . . . , ln)) and α > 0.

The results from Section 6 provide sufficient evidence that this polytope may
deserve some independent interest. For this reason, and for future reference, we
collect here some basic information about the facial structure of the Van Kampen-
Flores polytope and its polar dual.

Proposition 9. The vertex set of the polytope Ωn is the set

V ert(Ωn) = {u1, u2, . . . , un,−u1,−u2, . . . ,−un} .

If a subset {ui}i∈I ∪{−uj}j∈J ⊂ V ert(Ωn) corresponds to a proper face of Ωn then

I ∩ J = ∅ and |I|, |J | ≤ n

2
.(13)

Conversely, this condition is also sufficient if n is an odd number. If n is even,
then a pair (I, J) corresponds to a proper face of Ωn if in addition to (13) either
(a) |I| = |J | = n

2 , or (b) both |I| and |J | are strictly less than n
2 .

Proof. Let z : Rn−1 → R be a non-zero linear form such that the associated hy-
perplane Hz := {x ∈ Rn−1 | ⟨z, x⟩ = 1} is a supporting hyperplane of Ωn. The
corresponding face of the polytope Ωn is described by a pair (I, J) of subsets of [n]
recording which vertices of the polytope Ωn belong to the hyperplane Hz

Ωn ∩Hz = Conv({ui}i∈I ∪ {−uj}j∈J) .

The ordered pair (I, J) of subsets of [n] must satisfy the following

(∀i ∈ I) ⟨z, ui⟩ = 1 (∀j ∈ J) ⟨z,−uj⟩ = 1(14)

(∀k /∈ I) ⟨z, uk⟩ < 1 (∀k /∈ J) ⟨z,−uk⟩ < 1(15)

Conversely, one can prescribe in advance numbers {ai}ni=1 such that ai = ⟨z, ui⟩ for
some z, provided a1+· · ·+an = 0. Moreover, if these numbers satisfy the conditions
(14) and (15), then the pair I = {i ∈ [n] | ai = 1} and J = {j ∈ [n] | aj = −1}
clearly corresponds to a face of Ωn. From here the necessary conditions (13) is
easily deduced.

The rest of the proposition is also an immediate consequence. If n is odd or
both |I| and |J | are strictly less than n

2 , then there are no obstacles for constructing
a sequence {ai}ni=1 with desired properties.

On the other hand if n is even and, say, |I| = n
2 , then |J | = n

2 as well. If this
is satisfied then such a pair (I, J) clearly corresponds to a facet of Ωn.

We turn our attention now to the polar polytope Ω◦
n of the Van Kampen-

Flores polytope. As visible from Figure 1, in the case n = 4 the polytope Ω4 is the
three dimensional cube while Ω◦

n is the octahedron.
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Recall that the Minkowski functional µP of a convex body P ⊆ Rn−1 (which
contains the origin in its interior) is the convex function µP : Rn−1 → R, defined
by

µP (x) = d(0, x)/d(0, x0) = Inf{r > 0 | x ∈ rP}

where d(·, ·) is the Euclidean distance function and x0 is the intersection of the
positive ray through x and the boundary of P .

The following proposition determines the polar dual of a convex body K,
from the Minkowski functional µP , as the set P ◦ = {x | µP (x) ≤ 1}.

Proposition 10. Minkowski functional of a convex body P is equal to the support
functional of its polar dual

µP = hP◦ .

The following relation for two convex bodies P and Q (containing the origin
in their interior) follows directly from the definition

(16) µP∩Q = max{µP , µQ} .

Let us calculate the Minkowski functional of the polytope Ω◦
n. Since

(Conv(P ∪Q))◦ = P ◦ ∩Q◦

and ∆◦ = ∇,∇◦ = ∆ we observe that

Ω◦
n = (Conv(∆ ∪∇))◦ ∼= ∇∩∆ .

We use basic properties of the functions x+ = max{0, x} and x− = max{0,−x} =
(−x)+, which satisfy the well-known elementary relations

x = x+ − x− |x| = x+ + x−

x+ = 1
2 (|x|+ x) x− = 1

2 (|x| − x) .

Each vector x ∈ Rn−1, in agreement with (12), has a unique representation

x = λ1u1 + λ2u2 + · · ·+ λnun

where λ1 + · · ·+ λn = 0 .

Proposition 11. The Minkowski functionals of simplices ∆ and ∇, and of their
intersection Ω◦

n = ∆ ∩∇ are the following

µ∆(x) = nmax{λ−
i }

n
i=1 µ∇(x) = nmax{λ+

i }
n
i=1 µΩ◦

n
(x) = nmax{|λi|}ni=1 .

Proof. Assuming that x = λ1u1+ · · ·+λnun ̸= 0, let us calculate the corresponding
point x0 ∈ ∂(∆) ∩ Ray(0, x), defined as the intersection point of the boundary of
∆ with the ray emanating from the origin 0, passing through the point x.

If λ := max{λ−
i }ni=1 then

x = (λ+ λ1)u1 + · · ·+ (λ+ λn)un
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where λ+λi ≥ 0 for each i ∈ [n] and λ+λj = 0 for at least one j ∈ [n]. A moment’s
reflection shows

x0 =
x

nλ
∈ ∂(∆)

which immediately implies that µ∆(x) = nλ = nmax{λ−
i }ni=1.

Since µ−K(x) = µK(−x) we observe that

µ∇(x) = µ∆(−x) = nmax{(−λi)
−}ni=1 = nmax{(λi)

+}ni=1 .

The third formula µΩ◦
n
(x) = nmax{|λi|}ni=1 is an immediate consequence of (16)

and the relation max{λ+
i , λ

−
i } = |λi|.

Since K = {x ∈ Rn−1 | µK(x) ≤ 1}, as a corollary of Proposition 11 we
obtain the following result.

Corollary 12.

Ω◦
n = ∆ ∩∇ = {x = λ1u1 + . . . λnun|λ1 + · · ·+ λn = 0 and (∀i) |λi| ≤ 1} .

Definition 13. A hypersimplex ∆n,r with parameters n, r is defined as the convex
hull of all n-dimensional vectors, vertices of the n-dimensional cube [0, 1]n, which
belong to the hyperplane x1+ · · ·+xn = r. Alternatively ∆n,r = Newton(σr) can be
described as the Newton polytope of the elementary symmetric function σr of degree
r in n variables.

Theorem 14. If n = 2k is even then Ω◦
2k = ∆ ∩ ∇ is affine isomorphic to the

hypersimplex ∆2k,k. If n = 2k + 1 then Ω◦
n is affine isomorphic to the convex hull

(17) Ω◦
2k+1

∼= Conv{λ ∈ [0, 1]2k+1 | (∀i)λi ∈ {0, 1
2
, 1} and |Z(λ)| = |W (λ)| = k}

where Z(λ) = {j | λj = 0} and W (λ) = {j | λj = 1}.

Proof. By Corollary 12 the polytope Ω◦
n is affine isomorphic to the intersection of

the hyperplane λ1 + · · · + λn = 0 with the n-cube [−1,+1]n. The (inverse of the)
affine transformation λi = 2xi−1 (i = 1, . . . , n) maps this to the intersection of the
hypercube [0, 1]n with the hyperplane x1 + · · ·+ xn = n/2.

If n = 2k we obtain the hypersimplex ∆2k,k. If n = 2k + 1 we obtain the
polytope (17).

8. K-SUBMODULAR FUNCTIONS

In this section we return to the question of polytopality of Bier spheres.
The main result is the K-submodularity theorem (Theorem 19) which for polytopal
Bier spheres plays the role similar to the role of classical submodular functions
(polymatroids) in the theory of generalized permutohedra.

Recall [10, 21] that a function f : 2[n] → R is submodular if

f(X ∪ Y ) + f(X ∩ Y ) ≤ f(X) + f(Y ) for each X,Y ∈ 2[n] .
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Proposition 15. ([1, 8]) Let F be an essential complete simplicial fan in Rn and
G be the N × n matrix whose rows are the rays of F . Then the following are
equivalent for any vector h ∈ RN .

(I) The fan F is the normal fan of the polytope Ph := {x ∈ Rn | Gx ≤ h}.

(II) For any two adjacent chambers R⩾0R and R⩾0S of F with R\{r} = S\{s},

αhr + βhs +
∑

t∈R∩S

γtht > 0,(18)

where

αr+ βs+
∑

t∈R∩S

γtt = 0(19)

is the unique (up to scaling) linear dependence with α, β > 0 between the rays
of R ∪ S.

The inequalities in Proposition 15 are sometimes referred to as the wall-
crossing inequalities.

Definition 16. Given a (proper) simplicial complex K ⊊ 2[n], an element A ∈ K
is a boundary simplex if (∃c ∈ [n])A ∪ {c} /∈ K. Similarly B /∈ K is a boundary
non-simplex if (∃c ∈ [n])B \{c} ∈ K. A pair (A,B′) ∈ (K, 2[n] \K) is a boundary
pair if B′ = A ∪ {c} for some c ∈ [n].

We already know (Section 3) that boundary pairs (A,B′) correspond to max-
imal simplices in Bier(K). In the following proposition we describe the ridges, i.e.
the codimension one simplices in the Bier sphere Bier(K).

Proposition 17. The ridges (codimension one simplices) τ ∈ Bier(K) have one of
the following three forms, exhibited in Figure 2. Here we use the interval notation
τ = (X,Y ) (Section 3) where X ⊊ Y,X ∈ K,Y /∈ K and (X,Y ) ̸= (∅, [n]).

Proof. In the interval notation, the ridges inBier(K) correspond to intervals (X,Y )
where Y = X ∪ {c1, c2} and c1 ̸= c2. The Λ-configurations correspond to the case
when both X1 and X2 are in K, the V -configurations correspond to the case when
neither X1 nor X2 are in K, and the X-configurations arise if precisely one of these
sets is in K.

Definition 18. Let K ⊊ 2[n] be a simplicial complex and Bier(K) the associated
Bier sphere. A K-submodular function (K-wall crossing function) is a function
f : V ert(Bier(K)) → R such that

f(c1) + f(c2) + Σi∈Xf(i) > Σj /∈Y f(j̄) for each Λ-configuration(20)

f(c̄1) + f(c̄2) + Σj /∈Xf(j̄) > Σi∈Xf(i) for each V -configuration(21)

f(c2) + f(c̄2) > 0 for each X-configuration.(22)
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Y = X ∪ {c1, c2}

X1 = X ∪ {c1} X2 = X ∪ {c2}

X

Bier(K)

(a) Λ configuration

Y = X ∪ {c1, c2}

X1 = X ∪ {c1} X2 = X ∪ {c2}

X

Bier(K)

(b) V configuration

Y = X ∪ {c1, c2}

X1 = X ∪ {c1} X2 = X ∪ {c2}

X

Bier(K)

(c) X configuration

Figure 2: Configurations of maximal adjacent simplices in Bier(K).

Theorem 19. Let F = Fan(K) be the radial fan arising from the canonical star-
shaped realization of the associated Bier sphere Bier(K). (The fan F is by Theorem
2 a coarsening of the braid fan.) Then F is a normal fan of a convex polytope if
and only if the simplicial complex K admits a K-submodular function. Moreover,
there is a bijection between convex realizations of Bier(K) with radial fan F and
K-submodular functions f .

Proof. We apply Proposition 15 to the fan F = Fan(K).

Let δ = (δ1, . . . , δn) be a circuit in H0 where δi = ei − u
n (u = e1 + · · ·+ en).

Let δ̄ = (δ̄1, . . . , δ̄n) be the opposite circuit where δ̄i := −δi. The vertices of
Bier(K) are {1, . . . , n, 1̄, . . . , n̄} and for the corresponding representatives on the
one dimensional cones of the fan F = Fan(K) we choose {δ1, . . . , δn, δ̄1, . . . , δ̄n}.

Our objective is to identify the corresponding “wall crossing relations” (19),
in each of the three cases listed in Figure 2, and to read off the associated “wall
crossing inequalities” (18).

In order to identify the wall crossing relations in the case of the Λ and V
configurations we observe that, if [n] = S ∪ T and S ∩ T = ∅ then, up to a linear
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factor, the only dependence in the set {δi}i∈S ∪ {δ̄j}j∈T is the relation∑
i∈S

δi =
∑
j∈T

δ̄j .

The first two inequalities in Definition 18 are an immediate consequence. To com-
plete the proof it is sufficient to observe that, in the case of an X configuration (22),
the only dependence in the set {δi}i∈X ∪ {δ̄j}j /∈Y ∪ {δc2 , δ̄c2} is, up to a non-zero
factor, the relation δc2 + δ̄c2 = 0.

As an illustration we use Theorem 19 to show that Bier spheres of threshold
complexes are polytopal. This result was originally obtained in [13] (Theorem 2.2)
by a different method.

Suppose that L = (l1, l2, . . . , ln) ∈ Rn
+ is a strictly positive vector. The

associated measure (weight distribution) µL on [n] is defined by µL(I) =
∑

i∈I li
(for each I ⊆ [n]).

Given a threshold ν > 0, the associated threshold complex is TµL<ν := {I ⊆
[n] | µL(I) < ν}. Without loss of generality we assume that µL([n]) = l1+· · ·+ln =
1. Moreover ([13]. Remark 2.1) we can always assume, without loss of generality,
that µL(I) ̸= ν for each I ⊆ [n], which implies that the Alexander dual of K is
K◦ = TµL≤1−ν = TµL<1−ν .

Corollary 20. ([13], Theorem 2.2) Bier(TµL<ν) is isomorphic to the boundary
sphere of a convex polytope which can be realized as a polar dual of a generalized
permutohedron.

Proof. Following Theorem 19, it is sufficient to construct a K-submodular function
f : [n] ∪ [n̄] → R where [n] ∪ [n̄] = V ert(Bier(K)) = {1, . . . , n, 1̄, . . . , n̄}. Let us
show that the function defined by

(23) f(i) = (1− ν)li f(j̄) = νlj (i, j = 1, . . . , n)

is indeed K-submodular for K = TµL<ν . The inequalities (20) and (21), for the
function f defined by (23), take (in the notation of Definition 18 and Figure 2) the
following form

(24) νµL(Y ) > (1− ν)µL(Y
c) (1− ν)µL(X) < νµL(X

c) .

However, in a threshold complex, both inequalities (24) hold without any restric-
tions on a simplex X ∈ K and a non-simplex Y /∈ K. (For example the second
inequality in (24) is a consequence of µL(X) < ν and µ(Xc) > 1− ν.)

The convex polytope obtained by this construction is indeed the polar dual of
a generalized permutohedron since the complete fan F = Fan(K) is a coarsening
of the braid fan.
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