APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS available online at http://pefmath.etf.rs

APPL. ANAL. DISCRETE MATH. **17** (2023), 138–158. https://doi.org/10.2298/AADM210630007Y

COMPLETE MONOTONICITY INVOLVING THE DIVIDED DIFFERENCE OF POLYGAMMA FUNCTIONS

Zhen-Hang Yang and Jing-Feng Tian*

For $r, s \in \mathbb{R}$ and $\rho = \min\{r, s\}$, let

$$D[x+r, x+s; \psi_{n-1}] \equiv -\phi_n(x)$$

be the divided difference of the functions $\psi_{n-1} = (-1)^n \psi^{(n-1)}$ $(n \in \mathbb{N})$ on $(-\rho, \infty)$, where $\psi^{(n)}$ stands for the polygamma functions. In this paper, we present the necessary and sufficient conditions for the functions

$$x \mapsto \prod_{i=1}^{k} \phi_{m_{i}}(x) - \lambda_{k} \prod_{i=1}^{k} \phi_{n_{i}}(x),$$
$$x \mapsto \prod_{i=1}^{k} \phi_{n_{i}}(x) - \mu_{k} \phi_{s_{n_{k}}}(x)$$

to be completely monotonic on $(-\rho, \infty)$, where $m_i, n_i \in \mathbb{N}$ for i = 1, ..., k with $k \geq 2$ and $s_{n_k} = \sum_{i=1}^k n_i$. These generalize known results and gives an answer to a problem.

1. INTRODUCTION

Recall that a function f is said to be completely monotonic on an interval I if f has derivatives of all orders on I and $(-1)^n f^{(n)}(x) \ge 0$ for $x \in I$ and

^{*}Corresponding author. Jing-Feng Tian

²⁰²⁰ Mathematics Subject Classification. Primary 33B15; Secondary 26A48, 15A45. Keywords and Phrases. Polygamma functions, Divided difference, Majorization, Complete monotonicity

 $n \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}$ (see [8, 29]). A obvious observation is that, if f(x) and g(x) are completely monotonic on I, then pf(x) + qg(x) for p, q > 0 and f(x)g(x) are also completely monotonic on I (see [18, Theorem 1]).

The Euler's gamma and psi (digamma) functions are defined, for x > 0, by

$$\Gamma\left(x\right) = \int_{0}^{\infty} e^{-t} t^{x-1} dt, \ \psi\left(x\right) = \frac{\Gamma'\left(x\right)}{\Gamma\left(x\right)},$$

respectively. The derivatives $\psi^{(n)}(x)$ for $n \in \mathbb{N}$ are called polygamma functions. The functions $\psi^{(n)}(x)$ for $n \in \mathbb{N}_0$ have the following integral and series representations [1, Sections 6.3, 6.4])

$$\psi(x) = -\gamma + \int_0^\infty \frac{e^{-t} - e^{-xt}}{1 - e^{-t}} dt = -\gamma - \frac{1}{x} + \sum_{k=1}^\infty \frac{1}{k(x+k)},$$
$$(-1)^{n-1} \psi^{(n)}(x) = \int_0^\infty \frac{t^n}{1 - e^{-t}} e^{-xt} dt = \frac{n!}{x^{n+1}} + n! \sum_{k=1}^\infty \frac{1}{(x+k)^{n+1}},$$

where $\gamma = 0.57721...$ is Euler's constant.

Denote by $\psi_n = (-1)^{n-1} \psi^{(n)} = |\psi^{(n)}|, n \in \mathbb{N}_0$. Clearly, ψ_n for $n \in \mathbb{N}$ is completely monotonic on $(0, \infty)$. More properties, including monotonicity, convexity, complete monotonicity and inequalities, of ψ_n can be found in [2, 3, 4, 5, 6, 7, 9, 10, 12, 13, 14, 15, 16, 19, 20, 24, 25, 30], and recent papers [11, 21, 22, 23, 26, 27, 28, 31, 32, 33, 34, 35].

For $r, s \in \mathbb{R}$ and $n \in \mathbb{N}$, let $\phi_n^{[r,s]}(x)$ be defined on $(-\min\{r,s\},\infty)$ by

(1)
$$\phi_n^{[r,s]}(x) = \begin{cases} (-1)^{n-1} \frac{\psi^{(n-1)}(x+r) - \psi^{(n-1)}(x+s)}{r-s} & \text{if } r \neq s, \\ (-1)^{n-1} \psi^{(n)}(x+s) = \psi_n(x+s) & \text{if } r = s, \end{cases}$$

or equivalently,

$$\phi_{n}^{[r,s]}(x) = \frac{\int_{s}^{r} \psi_{n}(x+t) dt}{r-s} \text{ if } r \neq s \text{ and } \phi_{n}^{[s,s]}(x) = \psi_{n}(x+s).$$

It was shown in [33] that, for $r \ge s$, the function $x \mapsto \phi_n^{[r,s]}(x)$ has the asymptotic relations

(2)
$$(x+s)^n \frac{\phi_n^{[r,s]}(x)}{(n-1)!} = 1 - \frac{n(r-s-1)}{2} \frac{1}{x+r} + O\left((x+r)^{-2}\right)$$

as $x \to \infty$, and

а

$$\lim_{x \to -s+} (x+s)^n \frac{\phi_n^{[r,s]}(x)}{(n-1)!} = \frac{1}{|r-s|} \quad \text{if } r \neq s,$$

(3)

$$\lim_{k \to -s+} (x+s)^{n+1} \frac{\phi_n^{[r,s]}(x)}{n!} = 1 \qquad \text{if } r = s.$$

Let $\boldsymbol{x}_{[k]} = (x_i)_{1 \leq i \leq k} = (x_1, x_2, ..., x_k)$ and $\boldsymbol{y}_{[k]} = (y_i)_{1 \leq i \leq k} = (y_1, y_2, ..., y_k) \in \mathbb{R}^k$. A k-tuple $\boldsymbol{x}_{[k]}$ is said to be strictly majorized by another k-tuple $\boldsymbol{y}_{[k]}$ (in symbol $\boldsymbol{x}_{[k]} \prec \boldsymbol{y}_{[k]}$) if $x_i \geq x_{i+1}, y_i \geq y_{i+1}$ for $1 \leq i \leq k-1$ with $\boldsymbol{x}_{[k]} \neq \boldsymbol{y}_{[k]}$,

$$\sum_{i=1}^{j} x_i \le \sum_{i=1}^{j} y_i \text{ for } 1 \le j \le k-1 \text{ and } \sum_{i=1}^{k} x_i = \sum_{i=1}^{k} y_i$$

(see [17, p. 8, Definition A.1]). In what follows, we will use another equivalent definition of $\boldsymbol{x}_{[k]} \prec \boldsymbol{y}_{[k]}$, which can be stated as follows:

Definition 1. Let $\boldsymbol{x}_{[k]} = (x_i)_{1 \leq i \leq k} = (x_1, x_2, ..., x_k)$ and $\boldsymbol{y}_{[k]} = (y_i)_{1 \leq i \leq k} = (y_1, y_2, ..., y_k) \in \mathbb{R}^k$. The k-tuple $\boldsymbol{x}_{[k]}$ is said to be strictly majorized by another k-tuple $\boldsymbol{y}_{[k]}$, denoted by $\boldsymbol{x}_{[k]} \prec \boldsymbol{y}_{[k]}$ or $\boldsymbol{y}_{[k]} \succ \boldsymbol{x}_{[k]}$, if $\boldsymbol{x}_{[k]} \neq \boldsymbol{y}_{[k]}$,

$$x_{1} \leq x_{2} \leq \cdots \leq x_{k}, \quad y_{1} \leq y_{2} \leq \cdots \leq y_{k},$$

$$\sum_{i=1}^{j} x_{i} \geq \sum_{i=1}^{j} y_{i} \text{ for } j = 1, \dots, k-1 \text{ and } \sum_{i=1}^{k} x_{i} = \sum_{i=1}^{k} y_{i}.$$

For the sake of statements and proofs in the sequel, we also need several assumptions and notations:

(i) $\boldsymbol{n}_{[k]}^* = (n_i^*)_{1 \le i \le k}, \, \boldsymbol{n}_{[k]}' = (n_i')_{1 \le i \le k}$ and $(\boldsymbol{n} + \boldsymbol{1})_{[k]} = (n_i + 1)_{1 \le i \le k};$ (ii) $\alpha_{\boldsymbol{m}_{[k]}, \boldsymbol{n}_{[k]}}$ and $\beta_{\boldsymbol{n}_{[k]}}$ are defined by

(4)
$$\alpha_{\boldsymbol{m}_{[k]},\boldsymbol{n}_{[k]}} = \prod_{i=1}^{k} \frac{\Gamma(m_i)}{\Gamma(n_i)} \text{ and } \beta_{\boldsymbol{n}_{[k]}} = \frac{\prod_{i=1}^{k} \Gamma(n_i)}{\Gamma(s_{n_k})}$$

where $s_{n_k} = \sum_{i=1}^k n_i$.

Let $F_{\boldsymbol{m}_{[k]},\boldsymbol{n}_{[k]}}^{[r,s]}(x;\lambda_k)$ and $G_{\boldsymbol{n}_{[k]}}^{[r,s]}(x;\mu_k)$ be defined on $(-\min\{r,s\},\infty)$ by

(5)
$$F_{\boldsymbol{m}_{[k]},\boldsymbol{n}_{[k]}}^{[r,s]}(x;\lambda_{k}) = \prod_{i=1}^{k} \phi_{m_{i}}^{[r,s]}(x) - \lambda_{k} \prod_{i=1}^{k} \phi_{n_{i}}^{[r,s]}(x),$$

(6)
$$G_{\boldsymbol{n}_{[k]}}^{[r,s]}(x;\mu_k) = \prod_{i=1}^{k} \phi_{n_i}^{[r,s]}(x) - \mu_k \phi_{s_{n_k}}^{[r,s]}(x) ,$$

where $\lambda_k, \mu_k \in \mathbb{R}$, $s_{n_k} = \sum_{i=1}^k n_i$, $k \ge 2$. In particular, due to $\phi_n^{[0,0]}(x) = \psi_n(x)$, we have

(7)
$$\mathcal{F}_{\boldsymbol{m}_{[k]},\boldsymbol{n}_{[k]}}(x;\lambda_{k}) = F_{\boldsymbol{m}_{[k]},\boldsymbol{n}_{[k]}}^{[0,0]}(x;\lambda_{k}) = \prod_{i=1}^{k} \psi_{m_{i}}(x) - \lambda_{k} \prod_{i=1}^{k} \psi_{n_{i}}(x)$$

(8)
$$\mathcal{G}_{\boldsymbol{n}_{[k]}}(x;\mu_k) = G_{\boldsymbol{n}_{[k]}}^{[0,0]}(x;\mu_k) = \prod_{i=1}^k \psi_{n_i}(x) - \mu_k \psi_{s_{n_k}}(x)$$

In 2017, Yang [33] obtained the complete monotonicity of the function

$$x \mapsto \phi_{n+1}^{[r,s]}(x)^2 - \lambda \phi_n^{[r,s]}(x) \phi_{n+2}^{[r,s]}(x)$$

on $(-\min\{r,s\},\infty)$, which extended Alzer and Wells's result in [5, Corollary 2.3]. In 2019, Qi and Agarwal [23] proposed an problem on the complete monotonicity of the function

$$x \mapsto \phi_{n+1}^{[r,s]}(x)^2 - \lambda \phi_{n-k+1}^{[r,s]}(x) \phi_{n+k+1}^{[r,s]}(x)$$

on $(-\min\{r,s\},\infty)$, where $k,n \in \mathbb{N}$. Later, Gao [11] considered the complete monotonicity of the functions $F_{\boldsymbol{m}_{[2]},\boldsymbol{n}_{[2]}}^{[c,0]}(x;\lambda_2)$ and $G_{\boldsymbol{n}_{[2]}}^{[c,0]}(x;\mu_2)$ on $(0,\infty)$, where $m_1, m_2, n_1, n_2 \in \mathbb{N}_0$ satisfying

(9)
$$n_2 > m_2 \ge m_1 > n_1$$
 and $n_1 + n_2 = m_1 + m_2$,

and c > 0. Precisely, Gao's result can be stated as two theorems (see also [21, 22]).

Theorem 2. Let $m_1, m_2, n_1, n_2 \in \mathbb{N}$ satisfying (9) and $\lambda_2 \in \mathbb{R}$, c > 0. Then the following statements are valid:

(i) For 0 < c < 1, $F_{\boldsymbol{m}_{[2]},\boldsymbol{n}_{[2]}}^{[c,0]}(x;\lambda_2)$ is completely monotonic on $(0,\infty)$ if and only if $\lambda_2 \leq \alpha_{\boldsymbol{m}_{[2]},\boldsymbol{n}_{[2]}}$, where $\alpha_{\boldsymbol{m}_{[k]},\boldsymbol{n}_{[k]}}$ is given in (4).

(ii) For c > 1, $-F_{\boldsymbol{m}_{[2]},\boldsymbol{n}_{[2]}}^{[c,0]}(x;\lambda_2)$ is completely monotonic on $(0,\infty)$ if and only if $\lambda_2 \ge \alpha_{\boldsymbol{m}_{[2]},\boldsymbol{n}_{[2]}}$.

(iii) For c > 0, $-F_{m_{[2]},n_{[2]}}^{[c,0]}\left(x; \alpha_{(m+1)_{[2]},(n+1)_{[2]}}\right)$ is completely monotonic on $(0,\infty)$.

Theorem 3. Let $n_1, n_2 \in \mathbb{N}$ and $\mu_2 \in \mathbb{R}$, c > 0. Then the following statements are valid:

(i) For 0 < c < 1, $G_{\boldsymbol{n}_{[2]}}^{[c,0]}(x;\mu_2)$ and $-G_{\boldsymbol{n}_{[2]}}^{[c,0]}(x;\mu_2)$ are completely monotonic on $(0,\infty)$ if and only if $\mu_2 \leq \beta_{\boldsymbol{n}_{[2]}}$ and $\mu_2 \geq c^{-1}\beta_{\boldsymbol{n}_{[2]}}$, respectively, where $\beta_{\boldsymbol{n}_{[2]}}$ is given in (4).

(ii) For c > 1, $G_{\boldsymbol{n}_{[2]}}^{[c,0]}(x;\mu_2)$ and $-G_{\boldsymbol{n}_{[2]}}^{[c,0]}(x;\mu_2)$ are completely monotonic on $(0,\infty)$ if and only if $\mu_2 \leq c^{-1}\beta_{\boldsymbol{n}_{[2]}}$ and $\mu_2 \geq \beta_{\boldsymbol{n}_{[2]}}$, respectively.

Remark 4. (i) Clearly, the conditions (9) imply $(m_1, m_2) \prec (n_1, n_2)$.

(ii) Let c = |r - s| and $\rho = \min\{r, s\}$. We see clearly that

$$F_{\boldsymbol{m}_{[2]},\boldsymbol{n}_{[2]}}^{[[r-s],0]}(x+\rho;\lambda_2) = F_{\boldsymbol{m}_{[2]},\boldsymbol{n}_{[2]}}^{[r,s]}(x;\lambda_2) \quad and \quad G_{\boldsymbol{n}_{[2]}}^{[[r-s],0]}(x+\rho;\mu_2) = G_{\boldsymbol{n}_{[2]}}^{[r,s]}(x;\mu_2).$$

Then replacing (9), c, x and $(0,\infty)$ by $(m_1,m_2) \prec (n_1,n_2)$, |r-s|, $x + \rho$ and $(-\rho,\infty)$, respectively, Theorems 2 and 3 are still true.

(iii) For convenience, in what follows we always denote ϕ_n , $F_{\boldsymbol{m}_{[k]},\boldsymbol{n}_{[k]}}$ and $G_{\boldsymbol{n}_{[k]}}$ for $\phi_n^{[p,q]}$, $F_{\boldsymbol{m}_{[k]},\boldsymbol{n}_{[k]}}^{[r,s]}$ and $G_{\boldsymbol{n}_{[k]}}^{[r,s]}$, respectively, unless special explanation.

Recently, Qi [22, Remark 19] proposed a problem on discussing necessary and sufficient conditions for the functions $\mathcal{F}_{\boldsymbol{m}_{[k]},\boldsymbol{n}_{[k]}}(x;\lambda_k)$ and $-\mathcal{F}_{\boldsymbol{m}_{[k]},\boldsymbol{n}_{[k]}}(x;\lambda_k)$ to be respectively completely monotonic on $(0,\infty)$, where $\boldsymbol{m}_{[k]},\boldsymbol{n}_{[k]} \in \mathbb{N}_0^k$. Motivated by Theorems 2, 3 and Remark 4, as well Qi's problem mentioned above, it is the aim of this paper to give generalizations of Theorems 2 and 3. Our first result is the following theorem.

Theorem 5. Let $\boldsymbol{m}_{[k]} = (m_1, ..., m_k)$ and $\boldsymbol{n}_{[k]} = (n_1, ..., n_k) \in \mathbb{N}^k$ for $k \geq 2$ satisfy $\boldsymbol{m}_{[k]} \prec \boldsymbol{n}_{[k]}$, let $\alpha_{\boldsymbol{m}_{[k]}, \boldsymbol{n}_{[k]}}$ be given by (4), and let the function $F_{\boldsymbol{m}_{[k]}, \boldsymbol{n}_{[k]}}(x; \lambda_k)$ be defined on $(-\rho, \infty)$ by (5), where $\rho = \min\{r, s\}$. Then the following statements hold:

(i) If 0 < |r-s| < 1, then the function $x \mapsto F_{\boldsymbol{m}_{[k]},\boldsymbol{n}_{[k]}}(x;\lambda_k)$ is completely monotonic on $(-\rho,\infty)$ if and only if $\lambda_k \leq \alpha_{\boldsymbol{m}_{[k]},\boldsymbol{n}_{[k]}}$.

(ii) If |r-s| > 1, then the function $x \mapsto -F_{\boldsymbol{m}_{[k]},\boldsymbol{n}_{[k]}}(x;\lambda_k)$ is completely monotonic on $(-\rho,\infty)$ if and only if $\lambda_k \ge \alpha_{\boldsymbol{m}_{[k]},\boldsymbol{n}_{[k]}}$.

(iii) For |r-s| > 0, the function $x \mapsto -F_{\boldsymbol{m}_{[k]},\boldsymbol{n}_{[k]}}\left(x;\alpha_{(\boldsymbol{m+1})_{[k]},(\boldsymbol{n+1})_{[k]}}\right)$ is completely monotonic on $(-\rho,\infty)$.

Let $r \to s = 0$ in Theorem 5, we can prove the following corollary.

Corollary 6. Let $\boldsymbol{m}_{[k]} = (m_1, ..., m_k)$ and $\boldsymbol{n}_{[k]} = (n_1, ..., n_k) \in \mathbb{N}^k$ for $k \geq 2$ satisfy $\boldsymbol{m}_{[k]} \prec \boldsymbol{n}_{[k]}$, let $\alpha_{\boldsymbol{m}_{[k]}, \boldsymbol{n}_{[k]}}$ be given by (4), and let the function $\mathcal{F}_{\boldsymbol{m}_{[k]}, \boldsymbol{n}_{[k]}}(x; \lambda_k)$ be defined on $(0, \infty)$ by (7). Then the following statements are valid:

(i) The function $x \mapsto \mathcal{F}_{\boldsymbol{m}_{[k]},\boldsymbol{n}_{[k]}}(x;\lambda_k)$ is completely monotonic on $(0,\infty)$ if and only if $\lambda_k \leq \alpha_{\boldsymbol{m}_{[k]},\boldsymbol{n}_{[k]}}$.

(ii) The function $x \mapsto -\mathcal{F}_{\boldsymbol{m}_{[k]},\boldsymbol{n}_{[k]}}(x;\lambda_k)$ is completely monotonic on $(0,\infty)$ if and only if $\lambda_k \geq \alpha_{(\boldsymbol{m+1})_{[k]},(\boldsymbol{n+1})_{[k]}}$.

Our second result is stated as follows.

Theorem 7. Let $n_i \in \mathbb{N}$, i = 1, 2, ..., k with $k \ge 2$, and $s_{n_k} = \sum_{i=1}^k n_i$, let $\beta_{\mathbf{n}_{[k]}}$ be given by (4), and let the function $G_{\mathbf{n}_{[k]}}(x; \mu_k)$ be defined by (6). Then the following statements hold:

(i) For 0 < |r-s| < 1, $x \mapsto G_{\boldsymbol{n}_{[k]}}(x;\mu_k)$ and $x \mapsto -G_{\boldsymbol{n}_{[k]}}(x;\mu_k)$ are completely monotonic on $(-\rho,\infty)$ if and only if $\mu_k \leq \beta_{\boldsymbol{n}_{[k]}}$ and $\mu_k \geq |r-s|^{1-k} \beta_{\boldsymbol{n}_{[k]}}$, respectively.

(ii) For |r-s| > 1, the functions $x \mapsto G_{\mathbf{n}_{[k]}}(x;\mu_k)$ and $x \mapsto -G_{\mathbf{n}_{[k]}}(x;\mu_k)$ are completely monotonic on $(-\rho,\infty)$ if and only if $\mu_k \leq |r-s|^{1-k} \beta_{\mathbf{n}_{[k]}}$ and $\mu_k \geq \beta_{\mathbf{n}_{[k]}}$, respectively.

Let $r \to s = 0$ in Theorem 7, the following proposition is immediate.

Corollary 8. Let $n_i \in \mathbb{N}$, i = 1, 2, ..., k with $k \geq 2$, and $s_{n_k} = \sum_{i=1}^k n_i$, and let the function $\mathcal{G}_{\boldsymbol{n}_{[k]}}(x; \mu_k)$ be given by (8). Then the function $x \mapsto \mathcal{G}_{\boldsymbol{n}_{[k]}}(x; \mu_k)$ is completely monotonic on $(0, \infty)$ if and only if $\mu_k \leq \beta_{\boldsymbol{n}_{[k]}}$.

Remark 9. Clearly, Corollaries 6 and 8 solve partly Qi's problem in [22, Remark 19].

The proofs of main results are given in Section 3. In Section 4, we list several consequences of main results.

2. LEMMAS

To prove main results, we need the following lemmas.

Lemma 10. Let $m_i, n_i \in \mathbb{N}$ for i = 1, ..., k with $k \ge 2$ satisfy $\sum_{i=1}^k m_i = \sum_{i=1}^k n_i$, and let $\phi_n(x)$ be defined on $(-\rho, \infty)$ by (1), where $\rho = \min\{r, s\}$. Then

(10)
$$\lim_{x \to -\rho^+} \prod_{i=1}^k \frac{\phi_{m_i}(x)}{\phi_{n_i}(x)} = \begin{cases} \prod_{i=1}^k \frac{\Gamma(m_i)}{\Gamma(n_i)} = \alpha_{m_{[k]}, n_{[k]}} & \text{if } |r-s| > 0, \\ \prod_{i=1}^k \frac{\Gamma(m_i+1)}{\Gamma(n_i+1)} = \alpha_{(m+1)_{[k]}, (n+1)_{[k]}} & \text{if } r = s, \end{cases}$$

(11)
$$\lim_{x \to \infty} \prod_{i=1}^{k} \frac{\phi_{m_i}(x)}{\phi_{n_i}(x)} = \prod_{i=1}^{k} \frac{\Gamma(m_i)}{\Gamma(n_i)} = \alpha_{\boldsymbol{m}_{[k]}, \boldsymbol{n}_{[k]}}.$$

Proof. Assume that $\rho = \min\{r, s\} = s$. When r > s, using the first limit relation of (3) we have

$$\lim_{x \to -s^+} \prod_{i=1}^k \frac{\phi_{m_i}(x)}{\phi_{n_i}(x)} = \lim_{x \to -s^+} \prod_{i=1}^k \frac{(m_i - 1)! (x + s)^{-m_i} / (r - s)}{(n_i - 1)! (x + s)^{-n_i} / (r - s)} = \prod_{i=1}^k \frac{(m_i - 1)!}{(n_i - 1)!}.$$

When r = s, using the second limit relation of (3) we have

$$\lim_{x \to -s^+} \prod_{i=1}^k \frac{\phi_{m_i}(x)}{\phi_{n_i}(x)} = \lim_{x \to -s^+} \prod_{i=1}^k \frac{m_i! (x+s)^{-m_i-1}}{n_i! (x+s)^{-n_i-1}} = \prod_{i=1}^k \frac{m_i!}{n_i!}.$$

By the asymptotic formula (2) it is deduced that

$$\prod_{i=1}^{k} \frac{\phi_{m_i}(x)}{\phi_{n_i}(x)} \sim \prod_{i=1}^{k} \frac{(m_i-1)! (x+s)^{-m_i}}{(n_i-1)! (x+s)^{-n_i}} \to \prod_{i=1}^{k} \frac{(m_i-1)!}{(n_i-1)!}$$

as $x \to \infty$, which completes the proof.

Remark 11. Assume that r > s. Then from (10) and (11) we have

$$\lim_{x \to -s^+} \prod_{i=1}^k \frac{\phi_{m_i}(x)}{\phi_{n_i}(x)} = \lim_{x \to \infty} \prod_{i=1}^k \frac{\phi_{m_i}(x)}{\phi_{n_i}(x)} = \alpha_{\boldsymbol{m}_{[k]}, \boldsymbol{n}_{[k]}}.$$

Therefore, for r > s, the function $\prod_{i=1}^{k} (\phi_{m_i}/\phi_{n_i})$ is not monotonic on $(-s, \infty)$.

Lemma 12. For $k, \ell \in \mathbb{N}$ with $\ell \leq k-1$, let $\mathbf{m}_{[k+1]} = (m_i)_{1 \leq i \leq k+1}$ and $\mathbf{n}_{[k+1]} = (n_i)_{1 \leq i \leq k+1} \in \mathbb{N}^{k+1}$ satisfy $\mathbf{m}_{[k+1]} \prec \mathbf{n}_{[k+1]}$, and let $n_i^* = n_i$ for $1 \leq i \leq k-\ell$, $n_{k-\ell+1}^* = n_{k-\ell+1} + n_{k-\ell+2} - m_{k+1}$, $n_i^* = n_{i+1}$ for $k-\ell+2 \leq i \leq k$ and $\ell \geq 2$. Suppose that

(12) $n_1 \le m_1 \le m_2 \le \dots \le m_k \le m_{k+1} < n_{k-\ell+2} \le n_{k-\ell+3} \le \dots \le n_{k+1}.$

Then $\boldsymbol{m}_{[k]} \prec \boldsymbol{n}^*_{[k]}$ if $n_{k-\ell+1} \leq m_{k+1}$. Moreover, we have

(13)
$$\frac{\alpha_{\boldsymbol{m}_{[k+1]},\boldsymbol{n}_{[k+1]}}}{\alpha_{\boldsymbol{m}_{[k]},\boldsymbol{n}_{[k]}^*}} = \alpha_{\boldsymbol{m}_{[2]}',\boldsymbol{n}_{[2]}'},$$

(14)
$$\frac{\alpha_{(m+1)_{[k+1]},(n+1)_{[k+1]}}}{\alpha_{(m+1)_{[k]},(n+1)_{[k]}^{*}}} = \alpha_{(m'+1)_{[2]},(n'+1)_{[2]}},$$

where $\mathbf{m}'_{[2]} = (m'_1, m'_2) = (n^*_{k-\ell+1}, m_{k+1})$ and $\mathbf{n}'_{[2]} = (n'_1, n'_2) = (n_{k-\ell+1}, n_{k-\ell+2}).$

Proof. (i) Due to $m_{[k+1]} \prec n_{[k+1]}$ and $n_{k-\ell+1} \leq m_{k+1}$, it is easy to check that

$$n_{k-\ell+2}^* - n_{k-\ell+1}^* = n_{k-\ell+3} - (n_{k-\ell+1} + n_{k-\ell+2} - m_{k+1}) \ge 0,$$

$$n_{k-\ell+1}^* - n_{k-\ell}^* = (n_{k-\ell+1} + n_{k-\ell+2} - m_{k+1}) - n_{k-\ell} > 0.$$

From the above two inequalities we get that

$$n_k^* = n_{k+1} \ge n_k = n_{k-1}^* \ge \dots \ge n_{k-\ell+3} = n_{k-\ell+2}^* \ge n_{k-\ell+1}^* > n_{k-\ell}^*$$

= $n_{k-\ell} \ge n_{k-\ell-1} = n_{k-\ell-1}^* \ge \dots \ge n_1^*.$

For $1 \leq j \leq k - \ell$, it is clear that

$$\sum_{i=1}^{j} m_i \ge \sum_{i=1}^{j} n_i = \sum_{i=1}^{j} n_i^*.$$

For $k - \ell + 1 \le j \le k$, we have

$$\sum_{i=1}^{j} m_{i} - \sum_{i=1}^{j} n_{i}^{*} = \sum_{i=1}^{j} m_{i} - \sum_{i=1}^{k-\ell} n_{i}^{*} - n_{k-\ell+1}^{*} - \sum_{i=k-\ell+2}^{j} n_{i}^{*}$$
$$= \sum_{i=1}^{j} m_{i} - \sum_{i=1}^{k-\ell} n_{i} - \sum_{i=k-\ell+3}^{j+1} n_{i} - (n_{k-\ell+1} + n_{k-\ell+2} - m_{k+1})$$
$$= \sum_{i=1}^{j+1} m_{i} - \sum_{i=1}^{j+1} n_{i} + (m_{k+1} - m_{j+1}) \ge 0,$$

where the equality holds when j = k. These show that $\boldsymbol{m}_{[k]} \prec \boldsymbol{n}^*_{[k]}$.

(ii) A direct computation yields

$$\frac{\alpha_{\boldsymbol{m}_{[k+1]},\boldsymbol{n}_{[k+1]}}}{\alpha_{\boldsymbol{m}_{[k]},\boldsymbol{n}_{[k]}^{*}}} = \frac{\prod_{i=1}^{k+1} \left(\Gamma\left(m_{i}\right)/\Gamma\left(n_{i}\right)\right)}{\prod_{i=1}^{k} \left(\Gamma\left(m_{i}\right)/\Gamma\left(n_{i}^{*}\right)\right)} = \frac{\Gamma\left(n_{k-\ell+1}^{*}\right)\Gamma\left(m_{k+1}\right)}{\Gamma\left(n_{k-\ell+1}\right)\Gamma\left(n_{k-\ell+2}\right)} = \alpha_{\boldsymbol{m}_{[2]}',\boldsymbol{n}_{[2]}'},$$

and

$$\frac{\alpha_{(\boldsymbol{m}+1)_{[k+1]},(\boldsymbol{n}+1)_{[k+1]}}}{\alpha_{(\boldsymbol{m}+1)_{[k]},(\boldsymbol{n}+1)_{[k]}^{*}}} = \frac{\prod_{i=1}^{k+1} \left(\Gamma\left(m_{i}+1\right)/\Gamma\left(n_{i}+1\right)\right)}{\prod_{i=1}^{k} \left(\Gamma\left(m_{i}+1\right)/\Gamma\left(n_{i}^{*}+1\right)\right)} \\ = \frac{\Gamma\left(m_{k+1}+1\right)\Gamma\left(n_{k-\ell+1}^{*}+1\right)}{\Gamma\left(n_{k-\ell+1}+1\right)\Gamma\left(n_{k-\ell+2}+1\right)} = \alpha_{\boldsymbol{m}'_{[2]},\boldsymbol{n}'_{[2]}},$$
by completing the proof.

thereby completing the proof.

Lemma 13. Let $n_1, n_2, ..., n_k \in \mathbb{N}$ with $k \geq 2$ and let $\phi_n(x)$ be defined on $(-\rho, \infty)$ by (1), where $\rho = \min\{r, s\}$. Then we have

$$\lim_{x \to -\rho+} \frac{\prod_{i=1}^{k} \phi_{n_i}(x)}{\phi_{s_{n_k}}(x)} = \begin{cases} \frac{\prod_{i=1}^{k} \Gamma(n_i)}{|r-s|^{k-1} \Gamma(s_{n_k})} = \frac{\beta_{\boldsymbol{n}_{[k]}}}{|r-s|^{k-1}} & \text{if } r \neq s, \\ \infty & \text{if } r = s, \end{cases}$$
$$\lim_{x \to \infty} \frac{\prod_{i=1}^{k} \phi_{n_i}(x)}{\phi_{s_{n_k}}(x)} = \frac{\prod_{i=1}^{k} \Gamma(n_i)}{\Gamma(s_{n_k})} = \beta_{\boldsymbol{n}_{[k]}},$$

where $s_{n_k} = \sum_{i=1}^k n_i$.

Proof. Assume that $\rho = \min\{r, s\} = s$. When r > s, using the first limit relation of (3) we have

$$\lim_{x \to -s^{+}} \frac{\prod_{i=1}^{k} \phi_{n_{i}}(x)}{\phi_{s_{n_{k}}}(x)} = \lim_{x \to -s^{+}} \frac{\prod_{i=1}^{k} \left[(n_{i}-1)! (x+s)^{-n_{i}} / (r-s) \right]}{(s_{n_{k}}-1)! (x+s)^{-s_{n_{k}}} / (r-s)}$$
$$= \frac{\prod_{i=1}^{k} \Gamma(n_{i})}{|r-s|^{k-1} \Gamma(s_{n_{k}})}.$$

When r = s, using the second limit relation of (3) we have

$$\lim_{x \to -s^+} \frac{\prod_{i=1}^k \phi_{n_i}(x)}{\phi_{s_{n_k}}(x)} = \lim_{x \to -s^+} \frac{\prod_{i=1}^k n_i! (x+s)^{-n_i-1}}{s_{n_k}! (x+s)^{-s_{n_k}-1}}$$
$$= \frac{\prod_{i=1}^k n_i!}{s_{n_k}!} \lim_{x \to -s^+} \frac{1}{(x+s)^k} = \infty$$

By the asymptotic formula (2) it is deduced that

$$\frac{\prod_{i=1}^{k} \phi_{n_i}(x)}{\phi_{s_{n_k}}(x)} \sim \frac{\prod_{i=1}^{k} (n_i - 1)! (x + s)^{-n_i}}{(s_{n_k} - 1)! (x + s)^{-s_{n_k}}} \to \frac{\prod_{i=1}^{k} (n_i - 1)!}{(s_{n_k} - 1)!}$$

as $x \to \infty$, which completes the proof.

3. PROOFS OF MAIN RESULTS

We are now in a position to prove our main results.

3.1Proofs of Theorem 5

(i) For 0 < |r-s| < 1, the necessary condition for $F_{\boldsymbol{m}_{[k]},\boldsymbol{n}_{[k]}}(x;\lambda_k)$ to be completely monotonic on $(-\rho, \infty)$ follows from the limit relation

$$\lambda_{k} \leq \lim_{x \to \infty} \frac{\prod_{i=1}^{k} \phi_{m_{i}}\left(x\right)}{\prod_{i=1}^{k} \phi_{n_{i}}\left(x\right)} = \alpha_{\boldsymbol{m}_{[k]},\boldsymbol{n}_{[k]}} \coloneqq \lambda_{k}^{[0]},$$

where the limit relation holds due to (11). To prove that $F_{\boldsymbol{m}_{[k]},\boldsymbol{n}_{[k]}}(x;\lambda_k)$ is completely monotonic on $(-\rho, \infty)$ if $\lambda_k \leq \lambda_k^{[0]}$, it suffices to prove $F_{\boldsymbol{m}_{[k]}, \boldsymbol{n}_{[k]}}\left(x; \lambda_k^{[0]}\right)$ is completely monotonic on $(-\rho, \infty)$. By virtu of Theorem 2 (i) and Remark 4 (ii) we see that $F_{\boldsymbol{m}_{[k]},\boldsymbol{n}_{[k]}}\left(x;\lambda_{k}^{[0]}\right)$ is completely monotonic on $(-\rho,\infty)$ for k=2. Suppose that $F_{\boldsymbol{m}_{[k]},\boldsymbol{n}_{[k]}}\left(x;\lambda_{k}^{[0]}\right)$ is completely monotonic on $(-\rho,\infty)$ for certain $k \geq 2$. If we prove that $F_{\boldsymbol{m}_{[k+1]},\boldsymbol{n}_{[k+1]}}\left(x;\lambda_{k+1}^{[0]}\right)$ is completely monotonic on $(-\rho,\infty)$, then by induction, $F_{\boldsymbol{m}_{[k]},\boldsymbol{n}_{[k]}}\left(x;\lambda_{k}^{[0]}\right)$ is completely monotonic on $(-\rho,\infty)$ for all $k \geq 2$.

Since $\boldsymbol{m}_{[k+1]} \prec \boldsymbol{n}_{[k+1]}$, we have

(15)
$$n_1 \le m_1 \le m_2 \le \dots \le m_k \le m_{k+1} \le n_{k+1}$$

We now prove that $F_{\boldsymbol{m}_{[k+1]},\boldsymbol{n}_{[k+1]}}\left(x;\lambda_{k+1}^{[0]}\right)$ is completely monotonic on $(-\rho,\infty)$ stepwise. To this end, we first write

(16)

$$F_{\boldsymbol{m}_{[k+1]},\boldsymbol{n}_{[k+1]}}\left(x;\lambda_{k+1}^{[0]}\right) = F_{\boldsymbol{m}_{[k+1]},\boldsymbol{n}_{[k+1]}}\left(x;\alpha_{\boldsymbol{m}_{[k+1]},\boldsymbol{n}_{[k+1]}}\right)$$

$$= \left[\prod_{i=1}^{k+1}\phi_{m_{i}}\left(x\right) - \alpha_{\boldsymbol{m}_{[k]},\boldsymbol{n}_{[k]}^{*}}\phi_{m_{k+1}}\left(x\right)\prod_{i=1}^{k}\phi_{n_{i}^{*}}\left(x\right)\right]$$

$$+ \alpha_{\boldsymbol{m}_{[k]},\boldsymbol{n}_{[k]}^{*}}\left[\phi_{m_{k+1}}\left(x\right)\prod_{i=1}^{k}\phi_{n_{i}^{*}}\left(x\right) - \frac{\alpha_{\boldsymbol{m}_{[k+1]},\boldsymbol{n}_{[k+1]}}}{\alpha_{\boldsymbol{m}_{[k]},\boldsymbol{n}_{[k]}^{*}}}\prod_{i=1}^{k+1}\phi_{n_{i}}\left(x\right)\right]$$

$$:= S_{1}\left(x\right) + \alpha_{\boldsymbol{m}_{[k]},\boldsymbol{n}_{[k]}^{*}} \times S_{2}\left(x\right).$$

It is easy to check that

$$S_{1}(x) = \phi_{m_{k+1}}(x) \left[\prod_{i=1}^{k} \phi_{m_{i}}(x) - \alpha_{\boldsymbol{m}_{[k]}, \boldsymbol{n}_{[k]}^{*}} \prod_{i=1}^{k} \phi_{n_{i}^{*}}(x) \right]$$
$$= \phi_{m_{k+1}}(x) F_{\boldsymbol{m}_{[k]}, \boldsymbol{n}_{[k]}^{*}} \left(x; \alpha_{\boldsymbol{m}_{[k]}, \boldsymbol{n}_{[k]}^{*}} \right).$$

If $\boldsymbol{m}_{[k]} \prec \boldsymbol{n}_{[k]}^*$, then by the induction assumption $F_{\boldsymbol{m}_{[k]},\boldsymbol{n}_{[k]}^*}\left(x;\alpha_{\boldsymbol{m}_{[k]},\boldsymbol{n}_{[k]}^*}\right)$ is completely monotonic on $(-\rho, \infty)$. Since $\phi_{m_{k+1}}(x)$ is completely monotonic on $(-\rho, \infty)$, we see that $S_1(x)$ is completely monotonic on $(-\rho, \infty)$ if $\boldsymbol{m}_{[k]} \prec \boldsymbol{n}^*_{[k]}$.

Step 1: Let $n_i^* = n_i$ for i = 1, ..., k - 1 and $n_k^* = n_k + n_{k+1} - m_{k+1}$. Taking $\ell = 1$ in Lemma 12 gives that $\boldsymbol{m}_{[k]} \prec \boldsymbol{n}_{[k]}^*$ and (13) holds. Therefore, $S_1(x)$ in (16) is completely monotonic on $(-\rho, \infty)$. While $S_2(x)$ in (16) can be written as

$$S_{2}(x) = \left[\prod_{i=1}^{k-1} \phi_{n_{i}}(x)\right] \left[\phi_{n_{k}^{*}}(x) \phi_{m_{k+1}}(x) - \frac{\alpha_{\boldsymbol{m}_{[k+1]},\boldsymbol{n}_{[k+1]}}}{\alpha_{\boldsymbol{m}_{[k]},\boldsymbol{n}_{[k]}^{*}}} \phi_{n_{k}}(x) \phi_{n_{k}+1}(x)\right] \\ = \left[\prod_{i=1}^{k-1} \phi_{n_{i}}(x)\right] F_{\boldsymbol{m}_{[2]}',\boldsymbol{n}_{[2]}'}\left(x; \alpha_{\boldsymbol{m}_{[2]}',\boldsymbol{n}_{[2]}'}\right),$$

where $m'_{[2]} = (m'_1, m'_2) = (n^*_k, m_{k+1}), n'_{[2]} = (n'_1, n'_2) = (n_k, n_{k+1}).$ Case 1.1: $n_k \le m_{k+1}$. Since $n^*_k = n_k + n_{k+1} - m_{k+1} \ge n_k, m_{k+1} \ge n_k$ and $n_k^* + m_{k+1} = n_k + n_{k+1}$, we have $(n_k^*, m_{k+1}) \prec (n_k, n_{k+1})$ if $n_k^* \leq m_{k+1}$ and $(m_{k+1}, n_k^*) \prec (n_k, n_{k+1})$ if $n_k^* > m_{k+1}$. Using Theorem 2 (i) and Remark 4 (ii) we see that $F_{\boldsymbol{m}'_{[2]},\boldsymbol{n}'_{[2]}}\left(x;\alpha_{\boldsymbol{m}'_{[2]},\boldsymbol{n}'_{[2]}}\right)$ is completely monotonic on $(-\rho,\infty)$. Moreover, the functions $\phi_{n_i}(x)$ for i = 1, ..., k-1 are clearly completely monotonic on $(-\rho, \infty)$. Then $S_2(x)$ is also completely monotonic on $(-\rho, \infty)$. It follows from the relation (16) that $F_{\boldsymbol{m}_{[k+1]},\boldsymbol{n}_{[k+1]}}\left(x;\lambda_{k+1}^{[0]}\right)$ is completely monotonic on $(-\rho,\infty)$.

Case 1.2: $n_k > m_{k+1}$. This together with the relation (15) yields

(17)
$$n_1 \le m_1 \le m_2 \le \dots \le m_k \le m_{k+1} < n_k \le n_{k+1}.$$

To prove that $F_{\boldsymbol{m}_{[k+1]},\boldsymbol{n}_{[k+1]}}\left(x;\lambda_{k+1}^{[0]}\right)$ is completely monotonic on $(-\rho,\infty)$ in this case, it suffices to prove that $F_{\boldsymbol{m}_{[k+1]},\boldsymbol{n}_{[k+1]}}\left(x;\lambda_{k+1}^{[0]}\right)$ is completely monotonic on $(-\rho,\infty)$ under the relation (17), which is given by Step 2.

Step 2: Let $n_i^* = n_i$ for i = 1, ..., k - 2, $n_{k-1}^* = n_{k-1} + n_k - m_{k+1}$ and $n_k^* = n_{k+1}.$

Case 2.1: $n_{k-1} \leq m_{k+1}$. Taking $\ell = 2$ in Lemma 12 gives that $\boldsymbol{m}_{[k]} \prec \boldsymbol{n}_{[k]}^*$ and (13) holds. Hence, by the induction assumption $S_1(x)$ in the relation (16) is completely monotonic on $(-\rho, \infty)$. While $S_2(x)$ in (16) can be written as

$$S_{2}(x) = \frac{\prod_{i=1}^{k+1} \phi_{n_{i}}(x)}{\phi_{n_{k-1}}(x) \phi_{n_{k}}(x)} \left[\phi_{n_{k-1}^{*}}(x) \phi_{m_{k+1}}(x) - \alpha_{\boldsymbol{m}'_{[2]}, \boldsymbol{n}'_{[2]}} \phi_{n_{k-1}}(x) \phi_{n_{k}}(x) \right]$$
$$= \left[\phi_{n_{k+1}}(x) \prod_{i=1}^{k-2} \phi_{n_{i}}(x) \right] F_{\boldsymbol{m}'_{[2]}, \boldsymbol{n}'_{[2]}}\left(x; \alpha_{\boldsymbol{m}'_{[2]}, \boldsymbol{n}'_{[2]}}\right),$$

where $\boldsymbol{m}'_{[2]} = (m'_1, m'_2) = (n^*_{k-1}, m_{k+1}), \ \boldsymbol{n}'_{[2]} = (n'_1, n'_2) = (n_{k-1}, n_k).$

Since $n_{k-1}^* = n_{k-1} + n_k - m_{k+1} > n_{k-1}$, $m_{k+1} \ge n_{k-1}$ and $n_{k-1}^* + m_{k+1} = n_{k-1}$ $n_{k-1}+n_k$, we have $(n_{k-1}^*, m_{k+1}) \prec (n_{k-1}, n_k)$ if $n_{k-1}^* \leq m_{k+1}$ and $(m_{k+1}, n_{k-1}^*) \prec (n_{k-1}, n_k)$ (n_{k-1}, n_k) if $n_{k-1}^* > m_{k+1}$, which implies that $F_{m'_{[2]}, n'_{[2]}}(x; \alpha_{m'_{[2]}, n'_{[2]}})$ is completely monotonic on $(-\rho, \infty)$. Moreover, the functions $\phi_{n_i}(x)$ for i = 1, ..., k+1 are clearly

completely monotonic on $(-\rho, \infty)$, so is $S_2(x)$. Hence $F_{\boldsymbol{m}_{[k+1]},\boldsymbol{n}_{[k+1]}}\left(x;\lambda_{k+1}^{[0]}\right)$ is completely monotonic on $(-\rho, \infty)$.

Case 2.2: $n_{k-1} > m_{k+1}$. This together with the relation (17) yields

(18)
$$n_1 \le m_1 \le m_2 \le \dots \le m_k \le m_{k+1} < n_{k-1} \le n_k \le n_{k+1}.$$

To prove that $F_{\boldsymbol{m}_{[k+1]},\boldsymbol{n}_{[k+1]}}(x;\lambda_{k+1}^{[0]})$ is completely monotonic on $(-\rho,\infty)$ in this case, it suffices to prove that $F_{\boldsymbol{m}_{[k+1]},\boldsymbol{n}_{[k+1]}}\left(x;\lambda_{k+1}^{[0]}\right)$ is completely monotonic on $(-\rho,\infty)$ under the relation (18), which is given by Step 3.

Step 3: Let $n_i^* = n_i$ for i = 1, ..., k - 3, $n_{k-2}^* = n_{k-2} + n_{k-1} - m_{k+1}$, $n_{k-1}^* = n_k$, and $n_k^* = n_{k+1}$.

Case 3.1: $n_{k-2} \leq m_{k+1}$. Taking $\ell = 3$ in Lemma 12 gives that $m_{[k]} \prec$ $n_{[k]}^{*}$ and (13) holds. By the induction assumption $S_{1}(x)$ in the relation (16) is completely monotonic on $(-\rho, \infty)$. While $S_2(x)$ in (16) can be written as

$$S_{2}(x) = \frac{\prod_{i=1}^{k+1} \phi_{n_{i}}(x)}{\phi_{n_{k-2}}(x) \phi_{n_{k-1}}(x)} \left[\phi_{n_{k-2}^{*}}(x) \phi_{m_{k+1}}(x) - \alpha_{\boldsymbol{m}'_{[2]}, \boldsymbol{n}'_{[2]}} \phi_{n_{k-2}}(x) \phi_{n_{k-1}}(x) \right]$$
$$= \left[\phi_{n_{k}}(x) \phi_{n_{k+1}}(x) \prod_{i=1}^{k-3} \phi_{n_{i}}(x) \right] F_{\boldsymbol{m}'_{[2]}, \boldsymbol{n}'_{[2]}}\left(x; \alpha_{\boldsymbol{m}'_{[2]}, \boldsymbol{n}'_{[2]}}\right),$$

where $\mathbf{m}'_{[2]} = (m'_1, m'_2) = (n^*_{k-2}, m_{k+1}), \ \mathbf{n}'_{[2]} = (n'_1, n'_2) = (n_{k-2}, n_{k-1}).$ Since $n^*_{k-2} = n_{k-2} + n_{k-1} - m_{k+1} > n_{k-2}, \ m_{k+1} \ge n_{k-2}$ and $n^*_{k-2} + m_{k+1} = n_{k-2} + n_{k-1}$, we have $(n^*_{k-2}, m_{k+1}) \prec (n_{k-2}, n_{k-1})$ if $n^*_{k-2} \le m_{k+1}$ and $(m_{k+1}, n^*_{k-2}) \prec (n_{k-2}, n_{k-1})$ if $n^*_{k-2} > m_{k+1}$, which implies that the function $F_{\boldsymbol{m}'_{[2]},\boldsymbol{n}'_{[2]}}\left(x;\alpha_{\boldsymbol{m}'_{[2]},\boldsymbol{n}'_{[2]}}\right)$ is completely monotonic on $(-\rho,\infty)$. This together with the facts that the functions $\phi_{n_i}(x)$ for i = 1, ..., k + 1 are clearly completely monotonic on $(-\rho, \infty)$ means that $S_2(x)$ is completely monotonic on $(-\rho, \infty)$, and so is $F_{\boldsymbol{m}_{[k+1]},\boldsymbol{n}_{[k+1]}}(x;\lambda_{k+1}^{[0]}).$

Case 3.2: $n_{k-2} > m_{k+1}$. This together with the relation (18) yields

(19)
$$n_1 \le m_1 \le m_2 \le \dots \le m_k \le m_{k+1} < n_{k-2} \le n_{k-1} \le n_k \le n_{k+1}$$

To prove that $F_{\boldsymbol{m}_{[k+1]},\boldsymbol{n}_{[k+1]}}\left(x;\lambda_{k+1}^{[0]}\right)$ is completely monotonic on $(-\rho,\infty)$ in this case, it suffices to prove that $F_{\boldsymbol{m}_{[k+1]},\boldsymbol{n}_{[k+1]}}\left(x;\lambda_{k+1}^{[0]}\right)$ is completely monotonic on $(-\rho,\infty)$ under the relation (19), which is given by Step 4.

Repeating such step $\ell - 1$ times, it remains to prove that $F_{\boldsymbol{m}_{[k+1]},\boldsymbol{n}_{[k+1]}}$ $(x; \lambda_{k+1}^{[0]})$ is completely monotonic on $(-\rho, \infty)$ under the relation (12).

Step ℓ : Let $n_i^* = n_i$ for $1 \le i \le k - \ell$, $n_{k-\ell+1}^* = n_{k-\ell+1} + n_{k-\ell+2} - m_{k+1}$, $n_i^* = n_{i+1}$ for $k - \ell + 2 \le i \le k$.

Case $\ell.1: n_{k-\ell+1} \leq m_{k+1}$. Lemma 12 indicates that $\boldsymbol{m}_{[k]} \prec \boldsymbol{n}_{[k]}^*$ and (13) holds. By the induction assumption $S_1(x)$ in the relation (16) is completely monotonic on $(-\rho, \infty)$. While $S_2(x)$ in (16) can be written as

$$S_{2}(x) = \frac{\prod_{i=1}^{k+1} \phi_{n_{i}}(x)}{\phi_{n_{k-\ell+1}}(x) \phi_{n_{k-\ell+2}}(x)} \times \left[\phi_{n_{k-\ell+1}^{*}}(x) \phi_{m_{k+1}}(x) - \alpha_{\mathbf{m}'_{[2]},\mathbf{n}'_{[2]}} \phi_{n_{k-\ell+1}}(x) \phi_{n_{k-\ell+2}}(x) \right] \\ = \left[\prod_{i=1}^{k-\ell} \phi_{n_{i}}(x) \prod_{i=k-\ell+3}^{k+1} \phi_{n_{i}}(x) \right] F_{\mathbf{m}'_{[2]},\mathbf{n}'_{[2]}}\left(x; \alpha_{\mathbf{m}'_{[2]},\mathbf{n}'_{[2]}}\right),$$

where $\mathbf{m}'_{[2]} = (m'_1, m'_2) = (n^*_{k-\ell+1}, m_{k+1}), \ \mathbf{n}'_{[2]} = (n'_1, n'_2) = (n_{k-\ell+1}, n_{k-\ell+2}).$ Since $n^*_{k-\ell+1} = n_{k-\ell+1} + n_{k-\ell+2} - m_{k+1} > n_{k-\ell+1}$ and $m_{k+1} \ge n_{k-\ell+1}$, we have $(n^*_{k-\ell+1}, m_{k+1}) \prec (n_{k-\ell+1}, n_{k-\ell+2})$ if $n^*_{k-\ell+1} \le m_{k+1}$ and $(m_{k+1}, n^*_{k-\ell+1}) \prec (n_{k-\ell+1}, n_{k-\ell+2})$ if $n^*_{k-\ell+1} > m_{k+1}$, which implies that $F_{\mathbf{m}'_{[2]}, \mathbf{n}'_{[2]}}\left(x; \alpha_{\mathbf{m}'_{[2]}, \mathbf{n}'_{[2]}}\right)$ is completely monotonic on $(-\rho, \infty)$. In view of that the functions $\phi_{n_i}(x)$ for i = 1, ..., k+1 are clearly completely monotonic on $(-\rho, \infty)$, so is $S_2(x)$, and so is $F_{\mathbf{m}_{[k+1]}, \mathbf{n}_{[k+1]}}\left(x; \lambda^{[0]}_{k+1}\right)$.

Case $\ell.2$: $n_{k-\ell+1} > m_{k+1}$. This together with the relation (12) yields

(20)
$$n_1 \le m_1 \le m_2 \le \dots \le m_k \le m_{k+1} < n_{k-\ell+1} \le n_{k-\ell+2} \le \dots \le n_{k+1}$$

To prove that $F_{\boldsymbol{m}_{[k+1]},\boldsymbol{n}_{[k+1]}}\left(x;\lambda_{k+1}^{[0]}\right)$ is completely monotonic on $(-\rho,\infty)$ in this case, it suffices to prove that $F_{\boldsymbol{m}_{[k+1]},\boldsymbol{n}_{[k+1]}}\left(x;\lambda_{k+1}^{[0]}\right)$ is completely monotonic on $(-\rho,\infty)$ under the relation (20), which is given by Step $\ell + 1$.

Repeating such step k-1 times, it remains to prove that $F_{\boldsymbol{m}_{[k+1]},\boldsymbol{n}_{[k+1]}}\left(x;\lambda_{k+1}^{[0]}\right)$ is completely monotonic on $(-\rho,\infty)$ under the relation

(21)
$$n_1 \le m_1 \le \dots \le m_k \le m_{k+1} < n_2 \le n_3 \le \dots \le n_k \le n_{k+1}$$

Step k. We write

$$F_{\boldsymbol{m}_{[k+1]},\boldsymbol{n}_{[k+1]}}\left(x;\lambda_{k+1}^{[0]}\right) = F_{\boldsymbol{m}_{[k+1]},\boldsymbol{n}_{[k+1]}}\left(x;\alpha_{\boldsymbol{m}_{[k+1]},\boldsymbol{n}_{[k+1]}}\right)$$
$$= \left[\prod_{i=1}^{k+1}\phi_{m_{i}}\left(x\right) - \alpha_{\boldsymbol{m}_{[k]}^{*},\boldsymbol{n}_{[k]}^{*}}\phi_{m_{1}}\left(x\right)\prod_{i=1}^{k}\phi_{n_{i}^{*}}\left(x\right)\right]$$
$$+ \alpha_{\boldsymbol{m}_{[k]}^{*},\boldsymbol{n}_{[k]}^{*}}\left[\phi_{m_{1}}\left(x\right)\prod_{i=1}^{k}\phi_{n_{i}^{*}}\left(x\right) - \frac{\alpha_{\boldsymbol{m}_{[k+1]},\boldsymbol{n}_{[k+1]}}}{\alpha_{\boldsymbol{m}_{[k]}^{*},\boldsymbol{n}_{[k]}^{*}}}\prod_{i=1}^{k+1}\phi_{n_{i}}\left(x\right)\right]$$
$$:= I_{1}\left(x\right) + \alpha_{\boldsymbol{m}_{[k]}^{*},\boldsymbol{n}_{[k]}^{*}}I_{2}\left(x\right),$$

where $\boldsymbol{m}_{k}^{*} = (m_{1}^{*}, ..., m_{k}^{*}) = (m_{2}, m_{3}, ..., m_{k+1}), \ \boldsymbol{m}_{2}^{\prime} = (m_{1}^{\prime}, m_{2}^{\prime}) = (m_{1}, n_{1}^{*}), \ \boldsymbol{n}_{2}^{\prime} = (n_{1}^{\prime}, n_{2}) = (n_{1}, n_{2}), \ \boldsymbol{n}_{k}^{*} = (n_{1}^{*}, ..., n_{k}^{*}) = (n_{1} + n_{2} - m_{1}, n_{3}, ..., n_{k+1}).$

An easy verification shows that

$$\boldsymbol{m}_{k}^{*} = (m_{2}, m_{3}, ..., m_{k+1}) \prec (n_{1} + n_{2} - m_{1}, n_{3}, ..., n_{k+1}) = \boldsymbol{n}_{k}^{*}.$$

By the induction assumption $F_{\boldsymbol{m}_{[k]}^*,\boldsymbol{n}_{[k]}^*}\left(x;\alpha_{\boldsymbol{m}_{[k]}^*,\boldsymbol{n}_{[k]}^*}\right)$ is completely monotonic on $(-\rho,\infty)$.

Since $m_1 \ge n_1$ and $n_1^* = n_1 + n_2 - m_1 \ge n_1$, we have $(m_1, n_1^*) \prec (n_1, n_2)$ if $m_1 \le n_1^*$ and $(n_1^*, m_1) \prec (n_1, n_2)$ if $m_1 > n_1^*$. Moreover, it is readily seen that

$$\frac{\alpha_{\boldsymbol{m}_{[k+1]},\boldsymbol{n}_{[k+1]}}}{\alpha_{\boldsymbol{m}_{[k]}^*,\boldsymbol{n}_{[k]}^*}} = \frac{\prod_{i=1}^{k+1} \left(\Gamma\left(m_i\right) / \Gamma\left(n_i\right)\right)}{\prod_{i=1}^{k} \left(\Gamma\left(m_i^*\right) / \Gamma\left(n_i^*\right)\right)} = \frac{\Gamma\left(n_1^*\right) \Gamma\left(m_1\right)}{\Gamma\left(n_1\right) \Gamma\left(n_2\right)} = \alpha_{\boldsymbol{m}_{[2]}',\boldsymbol{n}_{[2]}'}$$

It follows that that $F_{\boldsymbol{m}'_{[2]},\boldsymbol{n}'_{[2]}}\left(x;\alpha_{\boldsymbol{m}'_{[2]},\boldsymbol{n}'_{[2]}}\right)$ is completely monotonic on $(-\rho,\infty)$. Note that $I_1(x)$ and $I_2(x)$ can be written as

$$\begin{split} I_{1}\left(x\right) &= \phi_{m_{1}}\left(x\right) \left[\prod_{i=1}^{k} \phi_{m_{i}^{*}}\left(x\right) - \alpha_{\boldsymbol{m}_{[k]}^{*},\boldsymbol{n}_{[k]}^{*}} \prod_{i=1}^{k} \phi_{n_{i}^{*}}\left(x\right)\right] \\ &= \phi_{m_{1}}\left(x\right) F_{\boldsymbol{m}_{[k]}^{*},\boldsymbol{n}_{[k]}^{*}}\left(x;\alpha_{\boldsymbol{m}_{[k]}^{*},\boldsymbol{n}_{[k]}^{*}}\right), \end{split}$$

$$I_{2}(x) = \left[\prod_{i=3}^{k+1} \phi_{n_{i}}(x)\right] \left[\phi_{n_{1}^{*}}(x) \phi_{m_{1}}(x) - \alpha_{m_{[2]}^{\prime}, n_{[2]}^{\prime}} \phi_{n_{1}}(x) \phi_{n_{2}}(x)\right]$$
$$= \left[\prod_{i=3}^{k+1} \phi_{n_{i}}(x)\right] F_{m_{[2]}^{\prime}, n_{[2]}^{\prime}}\left(x; \alpha_{m_{[2]}^{\prime}, n_{[2]}^{\prime}}\right).$$

By the induction assumption $I_1(x)$ is completely monotonic on $(-\rho, \infty)$.

Since $\phi_{m_1}(x)$ and $\phi_{n_i}(x)$ for $1 \leq i \leq k+1$ are completely monotonic on $(-\rho, \infty)$, we deduce that $F_{\boldsymbol{m}_{[k+1]},\boldsymbol{n}_{[k+1]}}(x; \lambda_{k+1}^{[0]})$ represented by (16) is completely monotonic on $(-\rho, \infty)$.

Taking into account the above k times steps, we find $F_{\boldsymbol{m}_{[k+1]},\boldsymbol{n}_{[k+1]}}\left(x;\lambda_{k+1}^{[0]}\right)$ is completely monotonic on $(-\rho,\infty)$. By induction $F_{\boldsymbol{m}_{[k]},\boldsymbol{n}_{[k]}}\left(x;\lambda_{k+1}^{[0]}\right)$ is completely monotonic on $(-\rho,\infty)$ for all $k \geq 2$, thereby completing the proof of the first statement.

(ii) For |r-s| > 1, the necessary condition for $-F_{\boldsymbol{m}_{[k]},\boldsymbol{n}_{[k]}}(x;\lambda_k)$ is completely monotonic on $(-\rho,\infty)$ follows from the limit relation

$$\lambda_{k} \geq \lim_{x \to -\rho^{+}} \frac{\prod_{i=1}^{k} \phi_{m_{i}}\left(x\right)}{\prod_{i=1}^{k} \phi_{n_{i}}\left(x\right)} = \alpha_{\boldsymbol{m}_{[k]}, \boldsymbol{n}_{[k]}} = \lambda_{k}^{[0]},$$

where the limit relation holds due to (10).

Similarly, to prove that $-F_{\boldsymbol{m}_{[k]},\boldsymbol{n}_{[k]}}(x;\lambda_{k})$ is completely monotonic on $(-\rho,\infty)$ if $\lambda_{k} \geq \lambda_{k}^{[0]}$, it suffices to prove $-F_{\boldsymbol{m}_{[k]},\boldsymbol{n}_{[k]}}\left(x;\lambda_{k}^{[0]}\right)$ is completely monotonic on $(-\rho,\infty)$. By Theorem 2 (ii) and Remark 4 (ii) we see that $-F_{\boldsymbol{m}_{[k]},\boldsymbol{n}_{[k]}}\left(x;\lambda_{k}^{[0]}\right)$ is completely monotonic on $(-\rho,\infty)$ for k=2. Suppose that $-F_{\boldsymbol{m}_{[k]},\boldsymbol{n}_{[k]}}\left(x;\lambda_{k}^{[0]}\right)$ is completely monotonic on $(-\rho,\infty)$ for certain $k \geq 2$. Clearly, multiplying by "-1" on each side in those equations containing letters "F", "S" and "I" in the proof of the first assertion, we find that $-F_{\boldsymbol{m}_{[k+1]},\boldsymbol{n}_{[k+1]}}\left(x;\lambda_{k+1}^{[0]}\right)$ is completely monotonic on $(-\rho,\infty)$. By induction, $-F_{\boldsymbol{m}_{[k]},\boldsymbol{n}_{[k]}}\left(x;\lambda_{k}^{[0]}\right)$ is completely monotonic on $(-\rho,\infty)$. By induction, $-F_{\boldsymbol{m}_{[k]},\boldsymbol{n}_{[k]}}\left(x;\lambda_{k}^{[0]}\right)$ is completely monotonic on $(-\rho,\infty)$.

(iii) Using the same technic as the proof of part (ii) and noting that the identity (14), the third assertion follows. This completes the proof.

3.2 Proof of Corollary 6

(i) Taking $r \to s = 0$ in Theorem 5 (i) gives the first statement.

(ii) If $-\mathcal{F}_{\boldsymbol{m}_{[k]},\boldsymbol{n}_{[k]}}(x;\lambda_k)$ is completely monotonic on $(0,\infty)$, then

$$-\mathcal{F}_{\boldsymbol{m}_{[k]},\boldsymbol{n}_{[k]}}\left(x;\lambda_{k}\right) = -\prod_{i=1}^{k}\psi_{m_{i}}\left(x\right) + \lambda_{k}\prod_{i=1}^{k}\psi_{n_{i}}\left(x\right) \ge 0$$

for all x > 0, and then,

$$\lambda_{k} \geq \lim_{x \to 0+} \frac{\prod_{i=1}^{k} \psi_{m_{i}}(x)}{\prod_{i=1}^{k} \psi_{n_{i}}(x)} = \prod_{i=1}^{k} \frac{m_{i}!}{n_{i}!} = \alpha_{(m+1)_{[k]},(n+1)_{[k]}}$$

where the equality holds due to the limit relation (10) for $r \to s = 0$, which proves the necessity.

Suppose that $\lambda_k \geq \alpha_{(m+1)_{[k]},(n+1)_{[k]}}$. To prove the sufficiency, we note that

$$-\mathcal{F}_{\boldsymbol{m}_{[k]},\boldsymbol{n}_{[k]}}\left(x;\lambda_{k}\right) = -\mathcal{F}_{\boldsymbol{m}_{[k]},\boldsymbol{n}_{[k]}}\left(x;\alpha_{(\boldsymbol{m}+\boldsymbol{1})_{[k]},(\boldsymbol{n}+\boldsymbol{1})_{[k]}}\right) \\ + \left(\lambda_{k} - \alpha_{(\boldsymbol{m}+\boldsymbol{1})_{[k]},(\boldsymbol{n}+\boldsymbol{1})_{[k]}}\right)\prod_{i=1}^{k}\psi_{n_{i}}\left(x\right)$$

Taking $r \to s = 0$ in Theorem 5 (iii), we find that $-\mathcal{F}_{\boldsymbol{m}_{[k]},\boldsymbol{n}_{[k]}}\left(x;\alpha_{(\boldsymbol{m}+\boldsymbol{1})_{[k]},(\boldsymbol{n}+\boldsymbol{1})_{[k]}}\right)$ is completely monotonic on $(0,\infty)$; the functions $\psi_{n_i}(x)$ for i = 1,...,k are completely monotonic on $(0,\infty)$. Consequently, $-\mathcal{F}_{\boldsymbol{m}_{[k]},\boldsymbol{n}_{[k]}}(x;\lambda_k)$ is completely monotonic on $(0,\infty)$ if $\lambda_k \ge \alpha_{(\boldsymbol{m}+\boldsymbol{1})_{[k]},(\boldsymbol{n}+\boldsymbol{1})_{[k]}}$, which proves the sufficiency, and the proof is done.

3.3 Proof of Theorem 7

We only prove that the functions $G_{\boldsymbol{n}_{[k]}}(x;\mu_k)$ is completely monotonic on $(-\rho,\infty)$ if and only if $\mu_k \leq \beta_{\boldsymbol{n}_{[k]}}$ in the case of 0 < |r-s| < 1, other statements in the cases of 0 < |r-s| < (>) 1 can be proven in the same way.

For 0 < |r - s| < 1, if the functions $G_{\boldsymbol{n}_{[k]}}(x; \mu_k)$ is completely monotonic on $(-\rho, \infty)$ then $G_{\boldsymbol{n}_{[k]}}(x; \mu_k) \ge 0$ for all $x > -\rho$, which implies

$$\mu_k \leq \lim_{x \to \infty} \frac{\prod_{i=1}^k \phi_{n_i}(x)}{\phi_{s_{n_k}}(x)} = \frac{\prod_{i=1}^k \Gamma(n_i)}{\Gamma(s_{n_k})} = \beta_{\boldsymbol{n}_{[k]}}.$$

Suppose that $\mu_k \leq \beta_{\boldsymbol{n}_{[k]}}$. Since

$$G_{\boldsymbol{n}_{[k]}}(x;\mu_{k}) = \prod_{i=1}^{k} \phi_{n_{i}}(x) - \beta_{\boldsymbol{n}_{[k]}} \phi_{s_{n_{k}}}(x) + (\beta_{\boldsymbol{n}_{[k]}} - \mu_{k}) \phi_{s_{n_{k}}}(x),$$

and $\phi_{s_{n_k}}(x)$ is completely monotonic on $(-\rho, \infty)$, to prove that $G_{\mathbf{n}_{[k]}}(x; \mu_k)$ is completely monotonic on $(-\rho, \infty)$, it suffices to prove that $G_{\mathbf{n}_{[k]}}(x; \beta_{\mathbf{n}_{[k]}})$ is completely monotonic on $(-\rho, \infty)$, which can be proven by induction. By Theorem 3 and Remark 4 (i), we see that $G_{\mathbf{n}_{[k]}}(x; \beta_{\mathbf{n}_{[k]}})$ is completely monotonic on $(-\rho, \infty)$ for k = 2. Assume that $G_{\mathbf{n}_{[k]}}(x; \beta_{\mathbf{n}_{[k]}})$ is completely monotonic on $(-\rho, \infty)$ for certain $k \geq 2$. Note that

$$G_{\boldsymbol{n}_{[k+1]}}(x;\beta_{\boldsymbol{n}_{[k+1]}}) = \left[\prod_{i=1}^{k+1} \phi_{n_i}(x) - \beta_{\boldsymbol{n}_{[k]}} \phi_{s_{n_k}}(x) \phi_{n_{k+1}}(x)\right] \\ + \left[\beta_{\boldsymbol{n}_{[k]}} \phi_{s_{n_k}}(x) \phi_{n_{k+1}}(x) - \beta_{\boldsymbol{n}_{[k+1]}} \phi_{s_{n_{k+1}}}(x)\right] \\ \vdots = P_1(x) + P_2(x),$$

where P_1 and P_2 stand for the first and second functions in the above two square brackets, respectively. Since $\phi_{n_{k+1}}(x)$ is completely monotonic on $(-\rho, \infty)$ and $G_{n_{[k]}}(x; \beta_{n_{[k]}})$ is so by the induction assumption, the function

$$P_1(x) = \phi_{n_{k+1}}(x) G_{\boldsymbol{n}_{[k]}}\left(x; \beta_{\boldsymbol{n}_{[k]}}\right)$$

is also completely monotonic on $(-\rho, \infty)$. While $P_2(x)$ can be written as

$$P_{2}(x) = \beta_{\boldsymbol{n}_{[k]}} \left[\phi_{s_{n_{k}}}(x) \phi_{n_{k+1}}(x) - \frac{\beta_{\boldsymbol{n}_{[k+1]}}}{\beta_{\boldsymbol{n}_{[k]}}} \phi_{s_{n_{k+1}}}(x) \right],$$

where

$$s_{n_{k}} + n_{k+1} = \sum_{i=1}^{k} n_{i} + n_{k+1} = s_{n_{k+1}},$$

$$\frac{\beta_{\boldsymbol{n}_{[k+1]}}}{\beta_{\boldsymbol{n}_{[k]}}} = \frac{\prod_{i=1}^{k+1} (n_{i} - 1)!}{(s_{n_{k+1}} - 1)!} / \frac{\prod_{i=1}^{k} (n_{i} - 1)!}{(s_{n_{k}} - 1)!} = \frac{(s_{n_{k}} - 1)! (n_{k+1} - 1)!}{(s_{n_{k+1}} - 1)!}.$$

Using Theorem 3 and Remark 4 (i) again we deduce that $P_2(x)$ is completely monotonic on $(-\rho, \infty)$. Therefore, $G_{\boldsymbol{n}_{[k+1]}}(x; \beta_{\boldsymbol{n}_{[k+1]}})$ is completely monotonic on $(-\rho, \infty)$, and by induction, it is completely monotonic on $(-\rho, \infty)$ for all $k \geq 2$. This by induction completes the proof.

4. COROLLARIES

In this section, we give some consequences of Theorems 5 and 7. Taking $\boldsymbol{m}_{[n]} = (m+n-1,...,m+n-1)$ and $\boldsymbol{n}_{[n]} = (n,...,n,mn)$ implies that $\boldsymbol{m}_{[n]} \prec \boldsymbol{n}_{[n]}$. By Theorem 5 we have

Corollary 14. Let $m, n \in \mathbb{N}$, let the function $F_{m,n,\lambda_{m,n}} = \phi_{m+n-1}^n - \lambda_{m,n} \phi_n^{n-1} \phi_{mn}$ be defined on $(-\rho, \infty)$, where ϕ_n is defined on $(-\rho, \infty)$ by (1) and $\rho = \min\{r, s\}$. Then the following statements hold:

(i) If 0 < |r-s| < 1, then the function $F_{m,n,\lambda_{m,n}}$ is completely monotonic on $(-\rho, \infty)$ if and only if

$$\lambda_{m,n} \leq \frac{\Gamma^n \left(m+n-1\right)}{\Gamma^{n-1} \left(n\right) \Gamma \left(mn\right)} = c_{m,n}.$$

In particular, letting $r = s \to 0$, the function $\psi_{m+n-1}^n - c_{m,n} \psi_n^{n-1} \psi_{mn}$ is completely monotonic on $(0, \infty)$.

(ii) If |r-s| > 1, then the function $F_{m,n,\lambda_{m,n}}$ is completely monotonic on $(-\rho,\infty)$ if and only if $\lambda_{m,n} \ge c_{m,n}$.

(iii) If |r-s| > 0, then the function $-F_{m,n,c_{m+1,n+1}}$ is completely monotonic on $(-\rho,\infty)$. In particular, letting $r = s \to 0$, the function $-\psi_{m+n-1}^n + c_{m+1,n+1}\psi_n^{n-1}\psi_{mn}$ is completely monotonic on $(0,\infty)$.

Taking $n_i = n$ for i = 1, ..., k in Theorem 7 we have

Corollary 15. Let $n, k \in \mathbb{N}$ with $k \geq 2$ and let ϕ_n be defined on $(-\rho, \infty)$ by (1), where $\rho = \min\{r, s\}$. The following statements hold:

(i) For 0 < |r-s| < 1, the functions $\phi_n^k - \mu_k \phi_{kn}$ and its negativity are completely monotonic on $(-\rho, \infty)$ if and only if

$$\mu_k \leq \frac{\Gamma^k(n)}{\Gamma(kn)} \text{ and } \mu_k \geq |r-s|^{1-k} \frac{\Gamma^k(n)}{\Gamma(kn)},$$

respectively. In particular, the function $\psi_n^k - \mu_k \psi_{kn}$ is completely monotonic on $(0,\infty)$ if and only if $\mu_k \leq \Gamma^k(n) / \Gamma(kn)$.

(ii) For |r-s| > 1, the function $\phi_n^k - \mu_k \phi_{kn}$ and its negativity are completely monotonic on $(-\rho, \infty)$ if and only if

$$\mu_k \leq |r-s|^{1-k} \frac{\Gamma^k(n)}{\Gamma(kn)} \quad and \quad \mu_k \geq \frac{\Gamma^k(n)}{\Gamma(kn)},$$

respectively.

Remark 16. Taking k = 2 in the above proposition, we see that the function $x \mapsto \psi_n^2(x) - \mu_2 \psi_{2n}(x)$ is completely monotonic on $(0, \infty)$ if and only if $\mu_2 \leq \Gamma^2(n) / \Gamma(2n)$, which was proven in [21, Theorem 3.2] by Qi.

Corollary 17. Let $m, n \in \mathbb{N}$ and let ϕ_n be defined on $(-\rho, \infty)$ by (1), where $\rho = \min\{r, s\}$. The following statements are valid:

(i) For 0 < |r - s| < 1, the functions

$$\begin{aligned} f_{m,n,\lambda_{31}}^{[1]} &= \phi_n \phi_{m+1} \phi_{m+n} - \lambda_{31} \phi_n \phi_m \phi_{m+n+1}, \\ f_{m,n,\lambda_{32}}^{[2]} &= \phi_{n+1} \phi_m \phi_{m+n} - \lambda_{32} \phi_n \phi_m \phi_{m+n+1} \end{aligned}$$

are both completely monotonic on $(-\rho, \infty)$ if and only if $\lambda_{31} \leq m/(m+n)$ and $\lambda_{32} \leq n/(m+n)$.

(ii) For |r-s| > 1, the functions $-f_{m,n,\lambda_{31}}^{[1]}$ and $-f_{m,n,\lambda_{32}}^{[2]}$ are both completely monotonic on $(-\rho,\infty)$ if and only if $\lambda_{31} \ge m/(m+n)$ and $\lambda_{32} \ge n/(m+n)$.

(iii) For |r-s| > 0, the functions $-f_{m,n,\lambda_{310}}^{[1]}$ and $-f_{m,n,\lambda_{320}}^{[2]}$ are completely monotonic on $(-\rho, \infty)$, where

$$\lambda_{310} = \frac{m+1}{m+n+1}$$
 and $\lambda_{320} = \frac{n+1}{m+n+1}$

Proof. It is easy to check that

$$(m+1, m+n) \prec (m, m+n+1)$$
 and $(n+1, m+n) \prec (n, m+n+1)$.

(i) For 0 < |r - s| < 1, the complete monotonicity of ϕ_n and ϕ_m , and Theorem 5 (i) imply that the functions

$$\begin{aligned} f_{m,n,\lambda_{31}}^{[1]} &= \phi_n \left(\phi_{m+1} \phi_{m+n} - \lambda_{31} \phi_m \phi_{m+n+1} \right) \\ f_{m,n,\lambda_{32}}^{[2]} &= \phi_m \left(\phi_{n+1} \phi_{m+n} - \lambda_{32} \phi_n \phi_{m+n+1} \right) \end{aligned}$$

are both completely monotonic on $(-\rho, \infty)$ if and only if

$$\lambda_{31} \leq \frac{m! (m+n-1)!}{(m-1)! (m+n)!} = \frac{m}{m+n},$$

$$\lambda_{32} \leq \frac{n! (m+n-1)!}{(n-1)! (m+n)!} = \frac{n}{m+n}.$$

(ii) Similarly, for |r-s| > 1, by Theorem 5 (ii) the functions $-f_{m,n,\lambda_{31}}^{[1]}$ and $-f_{m,n,\lambda_{32}}^{[2]}$ are both completely monotonic on $(-\rho,\infty)$ if and only if $\lambda_{31} \ge m/(m+n)$ and $\lambda_{32} \ge n/(m+n)$.

(iii) A direct computation yields

$$\lambda_{310} = \frac{(m+1)! (m+n)!}{m! (m+n+1)!} = \frac{m+1}{m+n+1},$$

$$\lambda_{320} = \frac{(n+1)! (m+n)!}{n! (m+n+1)!} = \frac{n+1}{m+n+1}.$$

For |r-s| > 0, by Theorem 5 (iii) the functions $-f_{m,n,\lambda_{310}}^{[1]}$ and $-f_{m,n,\lambda_{320}}^{[2]}$ are both completely monotonic on $(-\rho, \infty)$. This completes the proof.

Note that

$$f_{m,n,\lambda_{31}}^{[1]} + f_{m,n,\lambda_{32}}^{[2]}$$

= $\phi_n \phi_{m+1} \phi_{m+n} + \phi_{n+1} \phi_m \phi_{m+n} - (\lambda_{31} + \lambda_{32}) \phi_n \phi_m \phi_{m+n+1}$
= $-\phi_{m+n} (\phi_n \phi_m)' - (\lambda_{31} + \lambda_{32}) \phi_n \phi_m \phi_{m+n+1}.$

From Corollary 17 we get immediately the following corollary.

Corollary 18. Let $m, n \in \mathbb{N}$ and let ϕ_n be defined on $(-\rho, \infty)$ by (1), where $\rho = \min\{r, s\}$. The following statements hold:

(i) For 0 < |r - s| < 1, the function

$$f_{m,n,\lambda_3} = -\phi_{m+n} \left(\phi_n \phi_m\right)' - \lambda_3 \phi_{m+n+1} \phi_n \phi_m$$

is completely monotonic on $(-\rho, \infty)$ if and only if $\lambda_3 \leq 1$. In particular, the function $-\psi_{m+n} (\psi_n \psi_m)' - \psi_{m+n+1} \psi_n \psi_m$ is completely monotonic on $(0, \infty)$.

(ii) For |r-s| > 1, the function f_{m,n,λ_3} is completely monotonic on $(-\rho, \infty)$ if and only if $\lambda_3 \ge 1$.

(iii) For |r-s| > 0, the functions $-f_{m,n,\lambda_{30}}$ is completely monotonic on $(0,\infty)$, where $\lambda_{30} = (m+n+2)/(m+n+1)$. In particular, the function

$$\psi_{m+n} (\psi_n \psi_m)' + \frac{m+n+2}{m+n+1} \psi_{m+n+1} \psi_n \psi_m$$

is completely monotonic on $(0, \infty)$.

Remark 19. Qi [22, Remark 17] guessed that, for $m, n \in \mathbb{N}$ the function

$$\psi^{(m+n)} \left(\psi^{(m)}\psi^{(n)}\right)' - \psi^{(m+n+1)}\psi^{(m)}\psi^{(n)}$$

should be completely monotonic on $(0,\infty)$. Since $\psi_n = (-1)^{n-1} \psi^{(n)}$, we have

$$-\psi_{m+n} \left(\psi_n \psi_m\right)' - \psi_n \psi_m \psi_{m+n+1} = -\psi^{(m+n)} \left(\psi^{(m)} \psi^{(n)}\right)' - \psi^{(m+n+1)} \psi^{(m)} \psi^{(n)},$$

which is completely monotonic on $(0,\infty)$ by Corollary 18 (i). Similarly, by Corollary 18 (iii), the function

$$\psi_{m+n} (\psi_n \psi_m)' + \frac{m+n+2}{m+n+1} \psi_{m+n+1} \psi_n \psi_m$$

= $\psi^{(m+n)} (\psi^{(m)} \psi^{(n)})' + \frac{m+n+2}{m+n+1} \psi^{(m+n+1)} \psi^{(m)} \psi^{(n)}$

is completely monotonic on $(0, \infty)$.

=

5. CONCLUSIONS

In this paper, we found the necessary and sufficient conditions for the functions $F_{\boldsymbol{m}_{[k]},\boldsymbol{n}_{[k]}}(x;\lambda_{k})$ and $G_{\boldsymbol{n}_{[k]}}(x;\mu_{k})$, defined by (5) and (6), respectively, to be completely monotonic on $(-\min\{r,s\},\infty)$, which generalize Gao's results in [11]. In particular, the functions $\pm F_{\boldsymbol{m}_{[k]},\boldsymbol{n}_{[k]}}(x;\lambda_{k})$ are completely monotonic in xon $(0,\infty)$ if and only if $\lambda_{k} \leq \alpha_{\boldsymbol{m}_{[k]},\boldsymbol{n}_{[k]}}(\lambda_{k} \geq \alpha_{(\boldsymbol{m}+1)_{[k]},(\boldsymbol{n}+1)_{[k]}})$, and the function $G_{\boldsymbol{n}_{[k]}}(x;\mu_{k})$ is completely monotonic in x on $(0,\infty)$ if and only if $\mu_{k} \leq \beta_{\boldsymbol{n}_{[k]}}$, where $\alpha_{\boldsymbol{m}_{[k]},\boldsymbol{n}_{[k]}}$ and $\beta_{\boldsymbol{n}_{[k]}}$ are given in (4). This offers an answer to Qi's problem in [22].

REFERENCES

- M. ABRAMOWITZ, I. A. STEGUN: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover Publications, New York and Washington, 1972.
- H. ALZER: Inequalities for the gamma and polygamma functions. Abh. Math. Sem. Univ. Hamburg, 68 (1998), 363–372.
- 3. H. ALZER: Sharp inequalities for the digamma and polygamma functions. Forum Math., 16 (2004), 181–221.
- H. ALZER: A functional inequality for the polygamma functions. Bull. Aust. Math. Soc., 72 (3) (2005), 455–459.
- H. ALZER, J. WELLS: Inequalities for the polygamma functions. SIAM J. Math. Anal., 29 (1998), 1459–1466.
- N. BATIR: Some new inequalities for gamma and polygamma functions. J. Inequal. Pure Appl. Math., 6 (4) (2005), Article 103, 9 pages.
- N. BATIR: On some properties of digamma and polygamma functions. J. Math. Anal. Appl., 328 (1) (2007), 452–465.
- 8. S. BERNSTEIN: Sur les fonctions absolument monotones. Acta Math., 52 (1928), 1–66.
- C.-P. CHEN: Inequalities for the polygamma functions with application. Gen. Math., 13 (3) (2005), 65–72.
- P. GAO: Some monotonicity properties of gamma and q-gamma functions. ISRN Math. Anal., 2011 (2011), Article ID 375715, 15 pages.
- P. GAO: Some completely monotonic functions involving the polygamma functions. J. Inequal. Appl., **2019** (2019), Paper No. 218, 9 pages.
- B.-N. GUO, R.-J. CHEN, F. QI: A class of completely monotonic functions involving the polygamma functions. J. Math. Anal. Approx. Theory, 1 (2) (2006), 124–134.
- B.-N. GUO, F. QI: A completely monotonic function involving the tri-gamma function and with degree one. Appl. Math. Comput., 218 (19) (2012), 9890–9897.
- B.-N. GUO, F. QI: Refinements of lower bounds for polygamma functions. Proc. Amer. Math. Soc., 141 (3) (2013), 1007–1015.
- B.-N. GUO, F. QI, J.-L. ZHAO, Q.-M. LUO: Sharp inequalities for polygamma functions. Math. Slovaca, 65 (1) (2015), 103–120.

- A.-J. LI, C.-P. CHENG: Some completely monotonic functions involving the gamma and polygamma functions. J. Korean Math. Soc., 45 (1) (2008), 273–287.
- 17. A. W. MARSHALL, I. OLKIN: Inequalities: Theory of majorization and its applications. Academic Press, New York, 1979.
- K. S. MILLER, S. G. SAMKO: Completely monotonic functions. Integral Transform. Spec. Funct., 12 (4) (2001), 389–402.
- C. MORTICI: Very accurate estimates of the polygamma functions. Asymptot. Anal., 68 (3) (2010), 125–134.
- F. QI: Bounds for the ratio of two gamma functions. J. Inequal. Appl., 2010 (2010), Article ID 493058, 84 pages.
- F. QI: Lower bound of sectional curvature of Fisher-Rao manifold of beta distributions and complete monotonicity of functions involving polygamma functions. Results Math., 76 (4) (2021), Paper No. 217, 16 pages.
- F. QI: Decraesing monotonicity of two ratios defined by three or four polygamma functions. Comptes Rendus Mathématique, 360 (2022), 89–101.
- F. QI, R. P. AGARWAL: On complete monotonicity for several classes of functions related to ratios of gamma functions. J. Inequal. Appl., **2019** (2019), Paper No. 36, 42 pages.
- F. QI, B.-N. GUO: Necessary and sufficient conditions for functions involving the tri-and tetra-gamma functions to be completely monotonic. Adv. Appl. Math., 44 (1) (2010), 71–83.
- F. QI, S. GUO, B.-N. GUO: Complete monotonicity of some functions involving polygamma functions. J. Comput. Appl. Math., 233 (2010), 2149–2160.
- J.-F. TIAN, Z. YANG: Asymptotic expansions of Gurland's ratio and sharp bounds for their remainders. J. Math. Anal. Appl., 493 (2021), Paper No. 124545, 19 pages.
- J.-F. TIAN, Z.-H. YANG: Logarithmically complete monotonicity of ratios of q-gamma functions. J. Math. Anal. Appl., 508 (1) (2022), Paper No. 125868, 13 pages.
- J.-F. TIAN, Z.-H. YANG: New properties of the divided difference of psi and polygamma functions. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 115 (2021), Paper No. 147, 23 pages.
- 29. D. V. WIDDER: The Laplace Transform. Princeton University Press, Princeton, 1946.
- 30. Z. YANG, J.-F. TIAN: Complete monotonicity of the remainder of the asymptotic series for the ratio of two gamma functions. J. Math. Anal. Appl., 517 (2) (2023), Paper No. 126649, 15 pages.
- Z. YANG, J.-F. TIAN: A comparison theorem for two divided differences and applications to special functions. J. Math. Anal. Appl., 464 (2018), 580–595.
- Z.-H. YANG: Approximations for certain hyperbolic functions by partial sums of their Taylor series and completely monotonic functions related to gamma function. J. Math. Anal. Appl., 441 (2016), 549–564.
- Z.-H. YANG: Some properties of the divided difference of psi and polygamma functions. J. Math. Anal. Appl., 455 (2017), 761–777.
- 34. Z.-H. YANG, J.-F. TIAN: Monotonicity, convexity, and complete monotonicity of two functions related to the gamma function. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 113 (4) (2019), 3603–3617.

 Z.-H. YANG, J.-F. TIAN: A class of completely mixed monotonic function involving gamma function with applications. Proc. Amer. Math. Soc., 146 (11) (2018), 4707– 4721.

Zhen-Hang Yang

(Received 30. 06. 2021.) (Revised 31. 03. 2023.)

Department of Science and Technology, (Revised State Grid Zhejiang Electric Power Company Research Institute, Hangzhou, P. R. China E-mail: yzhkm@163.com

Jing-Feng Tian

Department of Mathematics and Physics, North China Electric Power University, Baoding, P. R. China E-mail: *tianjf@ncepu.edu.cn*