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COMPLETE MONOTONICITY INVOLVING THE
DIVIDED DIFFERENCE OF POLYGAMMA

FUNCTIONS

Zhen-Hang Yang and Jing-Feng Tian∗

For r, s ∈ R and ρ = min {r, s}, let

D [x+ r, x+ s;ψn−1] ≡ −ϕn (x)

be the divided difference of the functions ψn−1 = (−1)n ψ(n−1) (n ∈ N) on
(−ρ,∞), where ψ(n) stands for the polygamma functions. In this paper, we
present the necessary and sufficient conditions for the functions

x 7→
k∏

i=1

ϕmi (x)− λk

k∏
i=1

ϕni (x) ,

x 7→
k∏

i=1

ϕni (x)− µkϕsnk
(x)

to be completely monotonic on (−ρ,∞), where mi, ni ∈ N for i = 1, .., k
with k ≥ 2 and snk =

∑k
i=1 ni. These generalize known results and gives an

answer to a problem.

1. INTRODUCTION

Recall that a function f is said to be completely monotonic on an interval
I if f has derivatives of all orders on I and (−1)

n
f (n) (x) ≥ 0 for x ∈ I and
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n ∈ N0 = N ∪ {0} (see [8, 29]). A obvious observation is that, if f (x) and g (x)
are completely monotonic on I, then pf (x) + qg (x) for p, q > 0 and f (x) g (x) are
also completely monotonic on I (see [18, Theorem 1]).

The Euler’s gamma and psi (digamma) functions are defined, for x > 0, by

Γ (x) =

∫ ∞

0

e−ttx−1dt, ψ (x) =
Γ′ (x)

Γ (x)
,

respectively. The derivatives ψ(n) (x) for n ∈ N are called polygamma functions.
The functions ψ(n) (x) for n ∈ N0 have the following integral and series represen-
tations [1, Sections 6.3, 6.4])

ψ (x) = −γ +

∫ ∞

0

e−t − e−xt

1− e−t
dt = −γ − 1

x
+

∞∑
k=1

1

k (x+ k)
,

(−1)
n−1

ψ(n) (x) =

∫ ∞

0

tn

1− e−t
e−xtdt =

n!

xn+1
+ n!

∞∑
k=1

1

(x+ k)
n+1 ,

where γ = 0.57721... is Euler’s constant.

Denote by ψn = (−1)
n−1

ψ(n) =
∣∣ψ(n)

∣∣, n ∈ N0. Clearly, ψn for n ∈
N is completely monotonic on (0,∞). More properties, including monotonic-
ity, convexity, complete monotonicity and inequalities, of ψn can be found in
[2, 3, 4, 5, 6, 7, 9, 10, 12, 13, 14, 15, 16, 19, 20, 24, 25, 30], and recent
papers [11, 21, 22, 23, 26, 27, 28, 31, 32, 33, 34, 35].

For r, s ∈ R and n ∈ N, let ϕ[r,s]n (x) be defined on (−min {r, s} ,∞) by

(1) ϕ[r,s]n (x) =


(−1)

n−1 ψ
(n−1) (x+ r)− ψ(n−1) (x+ s)

r − s
if r ̸= s,

(−1)
n−1

ψ(n) (x+ s) = ψn (x+ s) if r = s,

or equivalently,

ϕ[r,s]n (x) =

∫ r

s
ψn (x+ t) dt

r − s
if r ̸= s and ϕ[s,s]n (x) = ψn (x+ s) .

It was shown in [33] that, for r ≥ s, the function x 7→ ϕ
[r,s]
n (x) has the asymptotic

relations

(2) (x+ s)
n ϕ

[r,s]
n (x)

(n− 1)!
= 1− n (r − s− 1)

2

1

x+ r
+O

(
(x+ r)

−2
)

as x→ ∞, and

(3)

lim
x→−s+

(x+ s)
n ϕ

[r,s]
n (x)

(n− 1)!
=

1

|r − s|
if r ̸= s,

lim
x→−s+

(x+ s)
n+1 ϕ

[r,s]
n (x)

n!
= 1 if r = s.
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Let x[k] = (xi)1≤i≤k = (x1, x2, ..., xk) and y[k] = (yi)1≤i≤k = (y1, y2, ..., yk) ∈ Rk.
A k-tuple x[k] is said to be strictly majorized by another k-tuple y[k] (in symbol
x[k] ≺ y[k]) if xi ≥ xi+1, yi ≥ yi+1 for 1 ≤ i ≤ k − 1 with x[k] ̸= y[k],

j∑
i=1

xi ≤
j∑

i=1

yi for 1 ≤ j ≤ k − 1 and

k∑
i=1

xi =

k∑
i=1

yi

(see [17, p. 8, Definition A.1]). In what follows, we will use another equivalent
definition of x[k] ≺ y[k], which can be stated as follows:

Definition 1. Let x[k] = (xi)1≤i≤k = (x1, x2, ..., xk) and y[k] = (yi)1≤i≤k =

(y1, y2, ..., yk) ∈ Rk. The k-tuple x[k] is said to be strictly majorized by another
k-tuple y[k], denoted by x[k] ≺ y[k] or y[k] ≻ x[k], if x[k] ̸= y[k],

x1 ≤ x2 ≤ · · · ≤ xk, y1 ≤ y2 ≤ · · · ≤ yk,
j∑

i=1

xi ≥
j∑

i=1

yi for j = 1, ..., k − 1 and

k∑
i=1

xi =

k∑
i=1

yi.

For the sake of statements and proofs in the sequel, we also need several
assumptions and notations:

(i) n∗
[k] = (n∗i )1≤i≤k, n

′
[k] = (n′i)1≤i≤k and (n+ 1)[k] = (ni + 1)1≤i≤k;

(ii) αm[k],n[k]
and βn[k]

are defined by

(4) αm[k],n[k]
=

k∏
i=1

Γ (mi)

Γ (ni)
and βn[k]

=

∏k
i=1 Γ (ni)

Γ (snk
)

,

where snk
=

∑k
i=1 ni.

Let F
[r,s]
m[k],n[k]

(x;λk) and G
[r,s]
n[k]

(x;µk) be defined on (−min {r, s} ,∞) by

F [r,s]
m[k],n[k]

(x;λk) =

k∏
i=1

ϕ[r,s]mi
(x)− λk

k∏
i=1

ϕ[r,s]ni
(x) ,(5)

G[r,s]
n[k]

(x;µk) =

k∏
i=1

ϕ[r,s]ni
(x)− µkϕ

[r,s]
snk

(x) ,(6)

where λk, µk ∈ R, snk
=

∑k
i=1 ni, k ≥ 2. In particular, due to ϕ

[0,0]
n (x) = ψn (x),

we have

Fm[k],n[k]
(x;λk) = F [0,0]

m[k],n[k]
(x;λk) =

k∏
i=1

ψmi (x)− λk

k∏
i=1

ψni (x) ,(7)

Gn[k]
(x;µk) = G[0,0]

n[k]
(x;µk) =

k∏
i=1

ψni
(x)− µkψsnk

(x) .(8)
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In 2017, Yang [33] obtained the complete monotonicity of the function

x 7→ ϕ
[r,s]
n+1 (x)

2 − λϕ[r,s]n (x)ϕ
[r,s]
n+2 (x)

on (−min {r, s} ,∞), which extended Alzer and Wells’s result in [5, Corollary 2.3].
In 2019, Qi and Agarwal [23] proposed an problem on the complete monotonicity
of the function

x 7→ ϕ
[r,s]
n+1 (x)

2 − λϕ
[r,s]
n−k+1 (x)ϕ

[r,s]
n+k+1 (x)

on (−min {r, s} ,∞), where k, n ∈ N. Later, Gao [11] considered the complete

monotonicity of the functions F
[c,0]
m[2],n[2]

(x;λ2) and G
[c,0]
n[2]

(x;µ2) on (0,∞), where
m1,m2, n1, n2 ∈ N0 satisfying

(9) n2 > m2 ≥ m1 > n1 and n1 + n2 = m1 +m2,

and c > 0. Precisely, Gao’s result can be stated as two theorems (see also [21, 22]).

Theorem 2. Let m1,m2, n1, n2 ∈ N satisfying (9) and λ2 ∈ R, c > 0. Then the
following statements are valid:

(i) For 0 < c < 1, F
[c,0]
m[2],n[2]

(x;λ2) is completely monotonic on (0,∞) if and
only if λ2 ≤ αm[2],n[2]

, where αm[k],n[k]
is given in (4).

(ii) For c > 1, −F [c,0]
m[2],n[2]

(x;λ2) is completely monotonic on (0,∞) if and
only if λ2 ≥ αm[2],n[2]

.

(iii) For c > 0, −F [c,0]
m[2],n[2]

(
x;α(m+1)[2],(n+1)[2]

)
is completely monotonic on

(0,∞).

Theorem 3. Let n1, n2 ∈ N and µ2 ∈ R, c > 0. Then the following statements
are valid:

(i) For 0 < c < 1, G
[c,0]
n[2]

(x;µ2) and −G[c,0]
n[2]

(x;µ2) are completely monotonic
on (0,∞) if and only if µ2 ≤ βn[2]

and µ2 ≥ c−1βn[2]
, respectively, where βn[2]

is
given in (4).

(ii) For c > 1, G
[c,0]
n[2]

(x;µ2) and −G[c,0]
n[2]

(x;µ2) are completely monotonic on
(0,∞) if and only if µ2 ≤ c−1βn[2]

and µ2 ≥ βn[2]
, respectively.

Remark 4. (i) Clearly, the conditions (9) imply (m1,m2) ≺ (n1, n2).

(ii) Let c = |r − s| and ρ = min {r, s}. We see clearly that

F [|r−s|,0]
m[2],n[2]

(x+ ρ;λ2) = F [r,s]
m[2],n[2]

(x;λ2) and G[|r−s|,0]
n[2]

(x+ ρ;µ2) = G[r,s]
n[2]

(x;µ2) .

Then replacing (9), c, x and (0,∞) by (m1,m2) ≺ (n1, n2), |r − s|, x + ρ and
(−ρ,∞), respectively, Theorems 2 and 3 are still true.

(iii) For convenience, in what follows we always denote ϕn, Fm[k],n[k]
and

Gn[k]
for ϕ

[p,q]
n , F

[r,s]
m[k],n[k]

and G
[r,s]
n[k]

, respectively, unless special explanation.

Recently, Qi [22, Remark 19] proposed a problem on discussing necessary
and sufficient conditions for the functions Fm[k],n[k]

(x;λk) and −Fm[k],n[k]
(x;λk)

to be respectively completely monotonic on (0,∞), where m[k],n[k] ∈ Nk
0 .
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Motivated by Theorems 2, 3 and Remark 4, as well Qi’s problem mentioned
above, it is the aim of this paper to give generalizations of Theorems 2 and 3. Our
first result is the following theorem.

Theorem 5. Let m[k] = (m1, ...,mk) and n[k] = (n1, ..., nk) ∈ Nk for k ≥ 2 satisfy
m[k] ≺ n[k], let αm[k],n[k]

be given by (4), and let the function Fm[k],n[k]
(x;λk) be

defined on (−ρ,∞) by (5), where ρ = min {r, s}. Then the following statements
hold:

(i) If 0 < |r − s| < 1, then the function x 7→ Fm[k],n[k]
(x;λk) is completely

monotonic on (−ρ,∞) if and only if λk ≤ αm[k],n[k]
.

(ii) If |r − s| > 1, then the function x 7→ −Fm[k],n[k]
(x;λk) is completely

monotonic on (−ρ,∞) if and only if λk ≥ αm[k],n[k]
.

(iii) For |r − s| > 0, the function x 7→ −Fm[k],n[k]

(
x;α(m+1)[k],(n+1)[k]

)
is

completely monotonic on (−ρ,∞).

Let r → s = 0 in Theorem 5, we can prove the following corollary.

Corollary 6. Let m[k] = (m1, ...,mk) and n[k] = (n1, ..., nk) ∈ Nk for k ≥ 2 satisfy
m[k] ≺ n[k], let αm[k],n[k]

be given by (4), and let the function Fm[k],n[k]
(x;λk) be

defined on (0,∞) by (7). Then the following statements are valid:

(i) The function x 7→ Fm[k],n[k]
(x;λk) is completely monotonic on (0,∞) if

and only if λk ≤ αm[k],n[k]
.

(ii) The function x 7→ −Fm[k],n[k]
(x;λk) is completely monotonic on (0,∞)

if and only if λk ≥ α(m+1)[k],(n+1)[k]
.

Our second result is stated as follows.

Theorem 7. Let ni ∈ N, i = 1, 2, ..., k with k ≥ 2, and snk
=

∑k
i=1 ni, let βn[k]

be
given by (4), and let the function Gn[k]

(x;µk) be defined by (6). Then the following
statements hold:

(i) For 0 < |r − s| < 1, x 7→ Gn[k]
(x;µk) and x 7→ −Gn[k]

(x;µk) are com-

pletely monotonic on (−ρ,∞) if and only if µk ≤ βn[k]
and µk ≥ |r − s|1−k

βn[k]
,

respectively.

(ii) For |r − s| > 1, the functions x 7→ Gn[k]
(x;µk) and x 7→ −Gn[k]

(x;µk)

are completely monotonic on (−ρ,∞) if and only if µk ≤ |r − s|1−k
βn[k]

and µk ≥
βn[k]

, respectively.

Let r → s = 0 in Theorem 7, the following proposition is immediate.

Corollary 8. Let ni ∈ N, i = 1, 2, ..., k with k ≥ 2, and snk
=

∑k
i=1 ni, and let

the function Gn[k]
(x;µk) be given by (8). Then the function x 7→ Gn[k]

(x;µk) is
completely monotonic on (0,∞) if and only if µk ≤ βn[k]

.

Remark 9. Clearly, Corollaries 6 and 8 solve partly Qi’s problem in [22, Remark
19].
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The proofs of main results are given in Section 3. In Section 4, we list several
consequences of main results.

2. LEMMAS

To prove main results, we need the following lemmas.

Lemma 10. Let mi, ni ∈ N for i = 1, ..., k with k ≥ 2 satisfy
∑k

i=1mi =
∑k

i=1 ni,
and let ϕn (x) be defined on (−ρ,∞) by (1), where ρ = min {r, s}. Then

(10) lim
x→−ρ+

k∏
i=1

ϕmi (x)

ϕni
(x)

=


k∏

i=1

Γ (mi)

Γ (ni)
= αm[k],n[k]

if |r − s| > 0,

k∏
i=1

Γ (mi + 1)

Γ (ni + 1)
= α(m+1)[k],(n+1)[k]

if r = s,

(11) lim
x→∞

k∏
i=1

ϕmi
(x)

ϕni
(x)

=

k∏
i=1

Γ (mi)

Γ (ni)
= αm[k],n[k]

.

Proof. Assume that ρ = min {r, s} = s. When r > s, using the first limit relation
of (3) we have

lim
x→−s+

k∏
i=1

ϕmi
(x)

ϕni (x)
= lim

x→−s+

k∏
i=1

(mi − 1)! (x+ s)
−mi / (r − s)

(ni − 1)! (x+ s)
−ni / (r − s)

=

k∏
i=1

(mi − 1)!

(ni − 1)!
.

When r = s, using the second limit relation of (3) we have

lim
x→−s+

k∏
i=1

ϕmi
(x)

ϕni
(x)

= lim
x→−s+

k∏
i=1

mi! (x+ s)
−mi−1

ni! (x+ s)
−ni−1 =

k∏
i=1

mi!

ni!
.

By the asymptotic formula (2) it is deduced that

k∏
i=1

ϕmi (x)

ϕni
(x)

∼
k∏

i=1

(mi − 1)! (x+ s)
−mi

(ni − 1)! (x+ s)
−ni

→
k∏

i=1

(mi − 1)!

(ni − 1)!

as x→ ∞, which completes the proof.

Remark 11. Assume that r > s. Then from (10) and (11) we have

lim
x→−s+

k∏
i=1

ϕmi (x)

ϕni
(x)

= lim
x→∞

k∏
i=1

ϕmi (x)

ϕni
(x)

= αm[k],n[k]
.

Therefore, for r > s, the function
∏k

i=1 (ϕmi/ϕni) is not monotonic on (−s,∞).
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Lemma 12. For k, ℓ ∈ N with ℓ ≤ k − 1, let m[k+1] = (mi)1≤i≤k+1 and n[k+1] =

(ni)1≤i≤k+1 ∈ Nk+1 satisfy m[k+1] ≺ n[k+1], and let n∗i = ni for 1 ≤ i ≤ k − ℓ,
n∗k−ℓ+1 = nk−ℓ+1 + nk−ℓ+2 −mk+1, n

∗
i = ni+1 for k − ℓ + 2 ≤ i ≤ k and ℓ ≥ 2.

Suppose that

(12) n1 ≤ m1 ≤ m2 ≤ · · · ≤ mk ≤ mk+1 < nk−ℓ+2 ≤ nk−ℓ+3 ≤ · · · ≤ nk+1.

Then m[k] ≺ n∗
[k] if nk−ℓ+1 ≤ mk+1. Moreover, we have

αm[k+1],n[k+1]

αm[k],n
∗
[k]

= αm′
[2]

,n′
[2]
,(13)

α(m+1)[k+1],(n+1)[k+1]

α(m+1)[k],(n+1)∗[k]

= α(m′+1)[2],(n
′+1)[2]

,(14)

where m′
[2] = (m′

1,m
′
2) =

(
n∗k−ℓ+1,mk+1

)
and n′

[2] = (n′1, n
′
2) = (nk−ℓ+1, nk−ℓ+2).

Proof. (i) Due to m[k+1] ≺ n[k+1] and nk−ℓ+1 ≤ mk+1, it is easy to check that

n∗k−ℓ+2 − n∗k−ℓ+1 = nk−ℓ+3 − (nk−ℓ+1 + nk−ℓ+2 −mk+1) ≥ 0,

n∗k−ℓ+1 − n∗k−ℓ = (nk−ℓ+1 + nk−ℓ+2 −mk+1)− nk−ℓ > 0.

From the above two inequalities we get that

n∗k = nk+1 ≥ nk = n∗k−1 ≥ · · · ≥ nk−ℓ+3 = n∗k−ℓ+2 ≥ n∗k−ℓ+1 > n∗k−ℓ

= nk−ℓ ≥ nk−ℓ−1 = n∗k−ℓ−1 ≥ · · · ≥ n∗1.

For 1 ≤ j ≤ k − ℓ, it is clear that

j∑
i=1

mi ≥
j∑

i=1

ni =

j∑
i=1

n∗i .

For k − ℓ+1 ≤ j ≤ k, we have

j∑
i=1

mi −
j∑

i=1

n∗i =

j∑
i=1

mi −
k−ℓ∑
i=1

n∗i − n∗k−ℓ+1 −
j∑

i=k−ℓ+2

n∗i

=

j∑
i=1

mi −
k−ℓ∑
i=1

ni −
j+1∑

i=k−ℓ+3

ni − (nk−ℓ+1 + nk−ℓ+2 −mk+1)

=

j+1∑
i=1

mi −
j+1∑
i=1

ni + (mk+1 −mj+1) ≥ 0,

where the equality holds when j = k. These show that m[k] ≺ n∗
[k].

(ii) A direct computation yields

αm[k+1],n[k+1]

αm[k],n
∗
[k]

=

∏k+1
i=1 (Γ (mi) /Γ (ni))∏k
i=1 (Γ (mi) /Γ (n∗i ))

=
Γ
(
n∗k−ℓ+1

)
Γ (mk+1)

Γ (nk−ℓ+1) Γ (nk−ℓ+2)
= αm′

[2]
,n′

[2]
,
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and

α(m+1)[k+1],(n+1)[k+1]

α(m+1)[k],(n+1)∗[k]

=

∏k+1
i=1 (Γ (mi + 1) /Γ (ni + 1))∏k
i=1 (Γ (mi + 1) /Γ (n∗i + 1))

=
Γ (mk+1 + 1)Γ

(
n∗k−ℓ+1 + 1

)
Γ (nk−ℓ+1 + 1)Γ (nk−ℓ+2 + 1)

= αm′
[2]

,n′
[2]
,

thereby completing the proof.

Lemma 13. Let n1, n2, ..., nk ∈ N with k ≥ 2 and let ϕn (x) be defined on (−ρ,∞)
by (1), where ρ = min {r, s}. Then we have

lim
x→−ρ+

∏k
i=1 ϕni (x)

ϕsnk
(x)

=


∏k

i=1 Γ (ni)

|r − s|k−1
Γ (snk

)
=

βn[k]

|r − s|k−1
if r ̸= s,

∞ if r = s,

lim
x→∞

∏k
i=1 ϕni

(x)

ϕsnk
(x)

=

∏k
i=1 Γ (ni)

Γ (snk
)

= βn[k]
,

where snk
=

∑k
i=1 ni.

Proof. Assume that ρ = min {r, s} = s. When r > s, using the first limit relation
of (3) we have

lim
x→−s+

∏k
i=1 ϕni

(x)

ϕsnk
(x)

= lim
x→−s+

∏k
i=1

[
(ni − 1)! (x+ s)

−ni / (r − s)
]

(snk
− 1)! (x+ s)

−snk / (r − s)

=

∏k
i=1 Γ (ni)

|r − s|k−1
Γ (snk

)
.

When r = s, using the second limit relation of (3) we have

lim
x→−s+

∏k
i=1 ϕni

(x)

ϕsnk
(x)

= lim
x→−s+

∏k
i=1 ni! (x+ s)

−ni−1

snk
! (x+ s)

−snk
−1

=

∏k
i=1 ni!

snk
!

lim
x→−s+

1

(x+ s)
k
= ∞.

By the asymptotic formula (2) it is deduced that∏k
i=1 ϕni

(x)

ϕsnk
(x)

∼
∏k

i=1 (ni − 1)! (x+ s)
−ni

(snk
− 1)! (x+ s)

−snk
→

∏k
i=1 (ni − 1)!

(snk
− 1)!

as x→ ∞, which completes the proof.

3. PROOFS OF MAIN RESULTS

We are now in a position to prove our main results.
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3.1 Proofs of Theorem 5

(i) For 0 < |r − s| < 1, the necessary condition for Fm[k],n[k]
(x;λk) to be completely

monotonic on (−ρ,∞) follows from the limit relation

λk ≤ lim
x→∞

∏k
i=1 ϕmi

(x)∏k
i=1 ϕni (x)

= αm[k],n[k]
:= λ

[0]
k ,

where the limit relation holds due to (11). To prove that Fm[k],n[k]
(x;λk) is com-

pletely monotonic on (−ρ,∞) if λk ≤ λ
[0]
k , it suffices to prove Fm[k],n[k]

(
x;λ

[0]
k

)
is

completely monotonic on (−ρ,∞). By virtu of Theorem 2 (i) and Remark 4 (ii) we

see that Fm[k],n[k]

(
x;λ

[0]
k

)
is completely monotonic on (−ρ,∞) for k = 2. Suppose

that Fm[k],n[k]

(
x;λ

[0]
k

)
is completely monotonic on (−ρ,∞) for certain k ≥ 2. If

we prove that Fm[k+1],n[k+1]

(
x;λ

[0]
k+1

)
is completely monotonic on (−ρ,∞), then

by induction, Fm[k],n[k]

(
x;λ

[0]
k

)
is completely monotonic on (−ρ,∞) for all k ≥ 2.

Since m[k+1] ≺ n[k+1], we have

(15) n1 ≤ m1 ≤ m2 ≤ · · · ≤ mk ≤ mk+1 ≤ nk+1.

We now prove that Fm[k+1],n[k+1]

(
x;λ

[0]
k+1

)
is completely monotonic on (−ρ,∞)

stepwise. To this end, we first write

(16)

Fm[k+1],n[k+1]

(
x;λ

[0]
k+1

)
= Fm[k+1],n[k+1]

(
x;αm[k+1],n[k+1]

)
=

[
k+1∏
i=1

ϕmi (x)− αm[k],n
∗
[k]
ϕmk+1

(x)
k∏

i=1

ϕn∗
i
(x)

]

+αm[k],n
∗
[k]

[
ϕmk+1

(x)
k∏

i=1

ϕn∗
i
(x)−

αm[k+1],n[k+1]

αm[k],n
∗
[k]

k+1∏
i=1

ϕni (x)

]
:= S1 (x) + αm[k],n

∗
[k]

× S2 (x) .

It is easy to check that

S1 (x) = ϕmk+1
(x)

[
k∏

i=1

ϕmi
(x)− αm[k],n

∗
[k]

k∏
i=1

ϕn∗
i
(x)

]
= ϕmk+1

(x)Fm[k],n
∗
[k]

(
x;αm[k],n

∗
[k]

)
.

If m[k] ≺ n∗
[k], then by the induction assumption Fm[k],n

∗
[k]

(
x;αm[k],n

∗
[k]

)
is com-

pletely monotonic on (−ρ,∞). Since ϕmk+1
(x) is completely monotonic on (−ρ,∞),

we see that S1 (x) is completely monotonic on (−ρ,∞) if m[k] ≺ n∗
[k].
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Step 1: Let n∗i = ni for i = 1, ..., k − 1 and n∗k = nk + nk+1 −mk+1. Taking
ℓ = 1 in Lemma 12 gives that m[k] ≺ n∗

[k] and (13) holds. Therefore, S1 (x) in (16)

is completely monotonic on (−ρ,∞). While S2 (x) in (16) can be written as

S2 (x) =

[
k−1∏
i=1

ϕni (x)

][
ϕn∗

k
(x)ϕmk+1

(x)−
αm[k+1],n[k+1]

αm[k],n
∗
[k]

ϕnk
(x)ϕnk+1 (x)

]

=

[
k−1∏
i=1

ϕni
(x)

]
Fm′

[2]
,n′

[2]

(
x;αm′

[2]
,n′

[2]

)
,

where m′
[2] = (m′

1,m
′
2) = (n∗k,mk+1), n

′
[2] = (n′1, n

′
2) = (nk, nk+1).

Case 1.1: nk ≤ mk+1. Since n∗k = nk + nk+1 − mk+1 ≥ nk,mk+1 ≥ nk
and n∗k +mk+1 = nk + nk+1, we have (n∗k,mk+1) ≺ (nk, nk+1) if n∗k ≤ mk+1 and
(mk+1, n

∗
k) ≺ (nk, nk+1) if n

∗
k > mk+1. Using Theorem 2 (i) and Remark 4 (ii) we

see that Fm′
[2]

,n′
[2]

(
x;αm′

[2]
,n′

[2]

)
is completely monotonic on (−ρ,∞). Moreover,

the functions ϕni
(x) for i = 1, ..., k−1 are clearly completely monotonic on (−ρ,∞).

Then S2 (x) is also completely monotonic on (−ρ,∞). It follows from the relation

(16) that Fm[k+1],n[k+1]

(
x;λ

[0]
k+1

)
is completely monotonic on (−ρ,∞).

Case 1.2: nk > mk+1. This together with the relation (15) yields

(17) n1 ≤ m1 ≤ m2 ≤ · · · ≤ mk ≤ mk+1 < nk ≤ nk+1.

To prove that Fm[k+1],n[k+1]

(
x;λ

[0]
k+1

)
is completely monotonic on (−ρ,∞) in this

case, it suffices to prove that Fm[k+1],n[k+1]

(
x;λ

[0]
k+1

)
is completely monotonic on

(−ρ,∞) under the relation (17), which is given by Step 2.

Step 2: Let n∗i = ni for i = 1, ..., k − 2, n∗k−1 = nk−1 + nk − mk+1 and
n∗k = nk+1.

Case 2.1: nk−1 ≤ mk+1. Taking ℓ = 2 in Lemma 12 gives that m[k] ≺ n∗
[k]

and (13) holds. Hence, by the induction assumption S1 (x) in the relation (16) is
completely monotonic on (−ρ,∞). While S2 (x) in (16) can be written as

S2 (x) =

∏k+1
i=1 ϕni

(x)

ϕnk−1
(x)ϕnk

(x)

[
ϕn∗

k−1
(x)ϕmk+1

(x)− αm′
[2]

,n′
[2]
ϕnk−1

(x)ϕnk
(x)

]
=

[
ϕnk+1

(x)

k−2∏
i=1

ϕni (x)

]
Fm′

[2]
,n′

[2]

(
x;αm′

[2]
,n′

[2]

)
,

where m′
[2] = (m′

1,m
′
2) =

(
n∗k−1,mk+1

)
, n′

[2] = (n′1, n
′
2) = (nk−1, nk).

Since n∗k−1 = nk−1 + nk −mk+1 > nk−1, mk+1 ≥ nk−1 and n∗k−1 +mk+1 =

nk−1+nk, we have
(
n∗k−1,mk+1

)
≺ (nk−1, nk) if n

∗
k−1 ≤ mk+1 and

(
mk+1, n

∗
k−1

)
≺

(nk−1, nk) if n
∗
k−1 > mk+1, which implies that Fm′

[2]
,n′

[2]

(
x;αm′

[2]
,n′

[2]

)
is completely

monotonic on (−ρ,∞). Moreover, the functions ϕni (x) for i = 1, ..., k+1 are clearly
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completely monotonic on (−ρ,∞), so is S2 (x). Hence Fm[k+1],n[k+1]

(
x;λ

[0]
k+1

)
is

completely monotonic on (−ρ,∞).

Case 2.2: nk−1 > mk+1. This together with the relation (17) yields

(18) n1 ≤ m1 ≤ m2 ≤ · · · ≤ mk ≤ mk+1 < nk−1 ≤ nk ≤ nk+1.

To prove that Fm[k+1],n[k+1]

(
x;λ

[0]
k+1

)
is completely monotonic on (−ρ,∞) in this

case, it suffices to prove that Fm[k+1],n[k+1]

(
x;λ

[0]
k+1

)
is completely monotonic on

(−ρ,∞) under the relation (18), which is given by Step 3.

Step 3: Let n∗i = ni for i = 1, ..., k − 3, n∗k−2 = nk−2 + nk−1 − mk+1,
n∗k−1 = nk, and n

∗
k = nk+1.

Case 3.1: nk−2 ≤ mk+1. Taking ℓ = 3 in Lemma 12 gives that m[k] ≺
n∗

[k] and (13) holds. By the induction assumption S1 (x) in the relation (16) is

completely monotonic on (−ρ,∞). While S2 (x) in (16) can be written as

S2 (x) =

∏k+1
i=1 ϕni

(x)

ϕnk−2
(x)ϕnk−1

(x)

[
ϕn∗

k−2
(x)ϕmk+1

(x)− αm′
[2]

,n′
[2]
ϕnk−2

(x)ϕnk−1
(x)

]
=

[
ϕnk

(x)ϕnk+1
(x)

k−3∏
i=1

ϕni
(x)

]
Fm′

[2]
,n′

[2]

(
x;αm′

[2]
,n′

[2]

)
,

where m′
[2] = (m′

1,m
′
2) =

(
n∗k−2,mk+1

)
, n′

[2] = (n′1, n
′
2) = (nk−2, nk−1).

Since n∗k−2 = nk−2 + nk−1 − mk+1 > nk−2, mk+1 ≥ nk−2 and n∗k−2 +

mk+1 = nk−2 + nk−1, we have
(
n∗k−2,mk+1

)
≺ (nk−2, nk−1) if n∗k−2 ≤ mk+1

and
(
mk+1, n

∗
k−2

)
≺ (nk−2, nk−1) if n

∗
k−2 > mk+1, which implies that the function

Fm′
[2]

,n′
[2]

(
x;αm′

[2]
,n′

[2]

)
is completely monotonic on (−ρ,∞). This together with

the facts that the functions ϕni
(x) for i = 1, ..., k+1 are clearly completely mono-

tonic on (−ρ,∞) means that S2 (x) is completely monotonic on (−ρ,∞), and so is

Fm[k+1],n[k+1]

(
x;λ

[0]
k+1

)
.

Case 3.2: nk−2 > mk+1. This together with the relation (18) yields

(19) n1 ≤ m1 ≤ m2 ≤ · · · ≤ mk ≤ mk+1 < nk−2 ≤ nk−1 ≤ nk ≤ nk+1.

To prove that Fm[k+1],n[k+1]

(
x;λ

[0]
k+1

)
is completely monotonic on (−ρ,∞) in this

case, it suffices to prove that Fm[k+1],n[k+1]

(
x;λ

[0]
k+1

)
is completely monotonic on

(−ρ,∞) under the relation (19), which is given by Step 4.

Repeating such step ℓ − 1 times, it remains to prove that Fm[k+1],n[k+1](
x;λ

[0]
k+1

)
is completely monotonic on (−ρ,∞) under the relation (12).

Step ℓ: Let n∗i = ni for 1 ≤ i ≤ k − ℓ, n∗k−ℓ+1 = nk−ℓ+1 + nk−ℓ+2 −mk+1,
n∗i = ni+1 for k − ℓ+ 2 ≤ i ≤ k.
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Case ℓ.1: nk−ℓ+1 ≤ mk+1. Lemma 12 indicates that m[k] ≺ n∗
[k] and (13)

holds. By the induction assumption S1 (x) in the relation (16) is completely mono-
tonic on (−ρ,∞). While S2 (x) in (16) can be written as

S2 (x) =

∏k+1
i=1 ϕni

(x)

ϕnk−ℓ+1
(x)ϕnk−ℓ+2

(x)

×
[
ϕn∗

k−ℓ+1
(x)ϕmk+1

(x)− αm′
[2]

,n′
[2]
ϕnk−ℓ+1

(x)ϕnk−ℓ+2
(x)

]
=

[
k−ℓ∏
i=1

ϕni
(x)

k+1∏
i=k−ℓ+3

ϕni
(x)

]
Fm′

[2]
,n′

[2]

(
x;αm′

[2]
,n′

[2]

)
,

where m′
[2] = (m′

1,m
′
2) =

(
n∗k−ℓ+1,mk+1

)
, n′

[2] = (n′1, n
′
2) = (nk−ℓ+1, nk−ℓ+2).

Since n∗k−ℓ+1 = nk−ℓ+1 + nk−ℓ+2 − mk+1 > nk−ℓ+1 and mk+1 ≥ nk−ℓ+1, we

have
(
n∗k−ℓ+1,mk+1

)
≺ (nk−ℓ+1, nk−ℓ+2) if n

∗
k−ℓ+1 ≤ mk+1 and

(
mk+1, n

∗
k−ℓ+1

)
≺

(nk−ℓ+1, nk−ℓ+2) if n∗k−ℓ+1 > mk+1, which implies that Fm′
[2]

,n′
[2]

(
x;αm′

[2]
,n′

[2]

)
is completely monotonic on (−ρ,∞). In view of that the functions ϕni (x) for
i = 1, ..., k + 1 are clearly completely monotonic on (−ρ,∞), so is S2 (x), and so is

Fm[k+1],n[k+1]

(
x;λ

[0]
k+1

)
.

Case ℓ.2: nk−ℓ+1 > mk+1. This together with the relation (12) yields

(20) n1 ≤ m1 ≤ m2 ≤ · · · ≤ mk ≤ mk+1 < nk−ℓ+1 ≤ nk−ℓ+2 ≤ · · · ≤ nk+1.

To prove that Fm[k+1],n[k+1]

(
x;λ

[0]
k+1

)
is completely monotonic on (−ρ,∞) in this

case, it suffices to prove that Fm[k+1],n[k+1]

(
x;λ

[0]
k+1

)
is completely monotonic on

(−ρ,∞) under the relation (20), which is given by Step ℓ+ 1.

Repeating such step k−1 times, it remains to prove that Fm[k+1],n[k+1]

(
x;λ

[0]
k+1

)
is completely monotonic on (−ρ,∞) under the relation

(21) n1 ≤ m1 ≤ · · · ≤ mk ≤ mk+1 < n2 ≤ n3 ≤ · · · ≤ nk ≤ nk+1.

Step k. We write

Fm[k+1],n[k+1]

(
x;λ

[0]
k+1

)
= Fm[k+1],n[k+1]

(
x;αm[k+1],n[k+1]

)
=

[
k+1∏
i=1

ϕmi
(x)− αm∗

[k]
,n∗

[k]
ϕm1

(x)
k∏

i=1

ϕn∗
i
(x)

]

+αm∗
[k]

,n∗
[k]

[
ϕm1

(x)
k∏

i=1

ϕn∗
i
(x)−

αm[k+1],n[k+1]

αm∗
[k]

,n∗
[k]

k+1∏
i=1

ϕni
(x)

]
:= I1 (x) + αm∗

[k]
,n∗

[k]
I2 (x) ,



150 Zhen-Hang Yang and Jing-Feng Tian

where m∗
k = (m∗

1, ...,m
∗
k) = (m2,m3, ...,mk+1), m

′
2 = (m′

1,m
′
2) = (m1, n

∗
1), n

′
2 =

(n′1, n
′
2) = (n1, n2), n

∗
k = (n∗1, ..., n

∗
k) = (n1 + n2 −m1, n3, ..., nk+1).

An easy verification shows that

m∗
k = (m2,m3, ...,mk+1) ≺ (n1 + n2 −m1, n3, ..., nk+1) = n∗

k.

By the induction assumption Fm∗
[k]

,n∗
[k]

(
x;αm∗

[k]
,n∗

[k]

)
is completely monotonic on

(−ρ,∞).

Since m1 ≥ n1 and n∗1 = n1 + n2 −m1 ≥ n1, we have (m1, n
∗
1) ≺ (n1, n2) if

m1 ≤ n∗1 and (n∗1,m1) ≺ (n1, n2) if m1 > n∗1. Moreover, it is readily seen that

αm[k+1],n[k+1]

αm∗
[k]

,n∗
[k]

=

∏k+1
i=1 (Γ (mi) /Γ (ni))∏k
i=1 (Γ (m∗

i ) /Γ (n∗i ))
=

Γ (n∗1) Γ (m1)

Γ (n1) Γ (n2)
= αm′

[2]
,n′

[2]
.

It follows that that Fm′
[2]

,n′
[2]

(
x;αm′

[2]
,n′

[2]

)
is completely monotonic on (−ρ,∞).

Note that I1 (x) and I2 (x) can be written as

I1 (x) = ϕm1 (x)

[
k∏

i=1

ϕm∗
i
(x)− αm∗

[k]
,n∗

[k]

k∏
i=1

ϕn∗
i
(x)

]
= ϕm1 (x)Fm∗

[k]
,n∗

[k]

(
x;αm∗

[k]
,n∗

[k]

)
,

I2 (x) =

[
k+1∏
i=3

ϕni
(x)

] [
ϕn∗

1
(x)ϕm1

(x)− αm′
[2]

,n′
[2]
ϕn1

(x)ϕn2
(x)

]
=

[
k+1∏
i=3

ϕni
(x)

]
Fm′

[2]
,n′

[2]

(
x;αm′

[2]
,n′

[2]

)
.

By the induction assumption I1 (x) is completely monotonic on (−ρ,∞).

Since ϕm1 (x) and ϕni (x) for 1 ≤ i ≤ k + 1 are completely monotonic on

(−ρ,∞), we deduce that Fm[k+1],n[k+1]

(
x;λ

[0]
k+1

)
represented by (16) is completely

monotonic on (−ρ,∞).

Taking into account the above k times steps, we find Fm[k+1],n[k+1]

(
x;λ

[0]
k+1

)
is

completely monotonic on (−ρ,∞). By induction Fm[k],n[k]

(
x;λ

[0]
k+1

)
is completely

monotonic on (−ρ,∞) for all k ≥ 2, thereby completing the proof of the first
statement.

(ii) For |r − s| > 1, the necessary condition for −Fm[k],n[k]
(x;λk) is com-

pletely monotonic on (−ρ,∞) follows from the limit relation

λk ≥ lim
x→−ρ+

∏k
i=1 ϕmi

(x)∏k
i=1 ϕni

(x)
= αm[k],n[k]

= λ
[0]
k ,



Complete monotonicity involving polygamma functions 151

where the limit relation holds due to (10).

Similarly, to prove that−Fm[k],n[k]
(x;λk) is completely monotonic on (−ρ,∞)

if λk ≥ λ
[0]
k , it suffices to prove −Fm[k],n[k]

(
x;λ

[0]
k

)
is completely monotonic on

(−ρ,∞). By Theorem 2 (ii) and Remark 4 (ii) we see that −Fm[k],n[k]

(
x;λ

[0]
k

)
is

completely monotonic on (−ρ,∞) for k = 2. Suppose that −Fm[k],n[k]

(
x;λ

[0]
k

)
is

completely monotonic on (−ρ,∞) for certain k ≥ 2. Clearly, multiplying by “−1”
on each side in those equations containing letters “F”, “S” and “I” in the proof

of the first assertion, we find that −Fm[k+1],n[k+1]

(
x;λ

[0]
k+1

)
is completely mono-

tonic on (−ρ,∞). By induction, −Fm[k],n[k]

(
x;λ

[0]
k

)
is completely monotonic on

(−ρ,∞) for all k ≥ 2.

(iii) Using the same technic as the proof of part (ii) and noting that the
identity (14), the third assertion follows. This completes the proof.

3.2 Proof of Corollary 6

(i) Taking r → s = 0 in Theorem 5 (i) gives the first statement.

(ii) If −Fm[k],n[k]
(x;λk) is completely monotonic on (0,∞), then

−Fm[k],n[k]
(x;λk) = −

k∏
i=1

ψmi
(x) + λk

k∏
i=1

ψni
(x) ≥ 0

for all x > 0, and then,

λk ≥ lim
x→0+

∏k
i=1 ψmi (x)∏k
i=1 ψni

(x)
=

k∏
i=1

mi!

ni!
= α(m+1)[k],(n+1)[k]

,

where the equality holds due to the limit relation (10) for r → s = 0, which proves
the necessity.

Suppose that λk ≥ α(m+1)[k],(n+1)[k]
. To prove the sufficiency, we note that

−Fm[k],n[k]
(x;λk) = −Fm[k],n[k]

(
x;α(m+1)[k],(n+1)[k]

)
+
(
λk − α(m+1)[k],(n+1)[k]

) k∏
i=1

ψni (x) .

Taking r → s = 0 in Theorem 5 (iii), we find that −Fm[k],n[k]

(
x;α(m+1)[k],(n+1)[k]

)
is completely monotonic on (0,∞); the functions ψni (x) for i = 1, ..., k are com-
pletely monotonic on (0,∞). Consequently, −Fm[k],n[k]

(x;λk) is completely mono-
tonic on (0,∞) if λk ≥ α(m+1)[k],(n+1)[k]

, which proves the sufficiency, and the proof

is done.
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3.3 Proof of Theorem 7

We only prove that the functions Gn[k]
(x;µk) is completely monotonic on (−ρ,∞)

if and only if µk ≤ βn[k]
in the case of 0 < |r − s| < 1, other statements in the cases

of 0 < |r − s| < (>) 1 can be proven in the same way.

For 0 < |r − s| < 1, if the functions Gn[k]
(x;µk) is completely monotonic on

(−ρ,∞) then Gn[k]
(x;µk) ≥ 0 for all x > −ρ, which implies

µk ≤ lim
x→∞

∏k
i=1 ϕni

(x)

ϕsnk
(x)

=

∏k
i=1 Γ (ni)

Γ (snk
)

= βn[k]
.

Suppose that µk ≤ βn[k]
. Since

Gn[k]
(x;µk) =

k∏
i=1

ϕni (x)− βn[k]
ϕsnk

(x) +
(
βn[k]

− µk

)
ϕsnk

(x) ,

and ϕsnk
(x) is completely monotonic on (−ρ,∞), to prove that Gn[k]

(x;µk) is

completely monotonic on (−ρ,∞), it suffices to prove that Gn[k]

(
x;βn[k]

)
is com-

pletely monotonic on (−ρ,∞), which can be proven by induction. By Theorem 3
and Remark 4 (i), we see that Gn[k]

(
x;βn[k]

)
is completely monotonic on (−ρ,∞)

for k = 2. Assume that Gn[k]

(
x;βn[k]

)
is completely monotonic on (−ρ,∞) for

certain k ≥ 2. Note that

Gn[k+1]

(
x;βn[k+1]

)
=

[
k+1∏
i=1

ϕni
(x)− βn[k]

ϕsnk
(x)ϕnk+1

(x)

]
+
[
βn[k]

ϕsnk
(x)ϕnk+1

(x)− βn[k+1]
ϕsnk+1

(x)
]

: = P1 (x) + P2 (x) ,

where P1 and P2 stand for the first and second functions in the above two square
brackets, respectively. Since ϕnk+1

(x) is completely monotonic on (−ρ,∞) and
Gn[k]

(
x;βn[k]

)
is so by the induction assumption, the function

P1 (x) = ϕnk+1
(x)Gn[k]

(
x;βn[k]

)
is also completely monotonic on (−ρ,∞). While P2 (x) can be written as

P2 (x) = βn[k]

[
ϕsnk

(x)ϕnk+1
(x)−

βn[k+1]

βn[k]

ϕsnk+1
(x)

]
,

where

snk
+ nk+1 =

k∑
i=1

ni + nk+1 = snk+1
,

βn[k+1]

βn[k]

=

∏k+1
i=1 (ni − 1)!(
snk+1

− 1
)
!

/ ∏k
i=1 (ni − 1)!

(snk
− 1)!

=
(snk

− 1)! (nk+1 − 1)!(
snk+1

− 1
)
!

.
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Using Theorem 3 and Remark 4 (i) again we deduce that P2 (x) is completely
monotonic on (−ρ,∞). Therefore, Gn[k+1]

(
x;βn[k+1]

)
is completely monotonic on

(−ρ,∞), and by induction, it is completely monotonic on (−ρ,∞) for all k ≥ 2.
This by induction completes the proof.

4. COROLLARIES

In this section, we give some consequences of Theorems 5 and 7. Taking
m[n] = (m+ n− 1, ...,m+ n− 1) and n[n] = (n, ..., n,mn) implies that m[n] ≺
n[n]. By Theorem 5 we have

Corollary 14. Let m,n ∈ N, let the function Fm,n,λm,n = ϕnm+n−1−λm,nϕ
n−1
n ϕmn

be defined on (−ρ,∞), where ϕn is defined on (−ρ,∞) by (1) and ρ = min {r, s}.
Then the following statements hold:

(i) If 0 < |r − s| < 1, then the function Fm,n,λm,n
is completely monotonic

on (−ρ,∞) if and only if

λm,n ≤ Γn (m+ n− 1)

Γn−1 (n) Γ (mn)
= cm,n.

In particular, letting r = s→ 0, the function ψn
m+n−1−cm,nψ

n−1
n ψmn is completely

monotonic on (0,∞).

(ii) If |r − s| > 1, then the function Fm,n,λm,n
is completely monotonic on

(−ρ,∞) if and only if λm,n ≥ cm,n.

(iii) If |r − s| > 0, then the function −Fm,n,cm+1,n+1 is completely mono-
tonic on (−ρ,∞). In particular, letting r = s → 0, the function −ψn

m+n−1 +
cm+1,n+1ψ

n−1
n ψmn is completely monotonic on (0,∞).

Taking ni = n for i = 1, ..., k in Theorem 7 we have

Corollary 15. Let n, k ∈ N with k ≥ 2 and let ϕn be defined on (−ρ,∞) by (1),
where ρ = min {r, s}. The following statements hold:

(i) For 0 < |r − s| < 1, the functions ϕkn − µkϕkn and its negativity are
completely monotonic on (−ρ,∞) if and only if

µk ≤ Γk (n)

Γ (kn)
and µk ≥ |r − s|1−k Γk (n)

Γ (kn)
,

respectively. In particular, the function ψk
n − µkψkn is completely monotonic on

(0,∞) if and only if µk ≤ Γk (n) /Γ (kn).

(ii) For |r − s| > 1, the function ϕkn−µkϕkn and its negativity are completely
monotonic on (−ρ,∞) if and only if

µk ≤ |r − s|1−k Γk (n)

Γ (kn)
and µk ≥ Γk (n)

Γ (kn)
,

respectively.
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Remark 16. Taking k = 2 in the above proposition, we see that the function
x 7→ ψ2

n (x) − µ2ψ2n (x) is completely monotonic on (0,∞) if and only if µ2 ≤
Γ2 (n) /Γ (2n), which was proven in [21, Theorem 3.2] by Qi.

Corollary 17. Let m,n ∈ N and let ϕn be defined on (−ρ,∞) by (1), where
ρ = min {r, s}. The following statements are valid:

(i) For 0 < |r − s| < 1, the functions

f
[1]
m,n,λ31

= ϕnϕm+1ϕm+n − λ31ϕnϕmϕm+n+1,

f
[2]
m,n,λ32

= ϕn+1ϕmϕm+n − λ32ϕnϕmϕm+n+1

are both completely monotonic on (−ρ,∞) if and only if λ31 ≤ m/ (m+ n) and
λ32 ≤ n/ (m+ n).

(ii) For |r − s| > 1, the functions −f [1]m,n,λ31
and −f [2]m,n,λ32

are both completely
monotonic on (−ρ,∞) if and only if λ31 ≥ m/ (m+ n) and λ32 ≥ n/ (m+ n).

(iii) For |r − s| > 0, the functions −f [1]m,n,λ310
and −f [2]m,n,λ320

are completely
monotonic on (−ρ,∞), where

λ310 =
m+ 1

m+ n+ 1
and λ320 =

n+ 1

m+ n+ 1
.

Proof. It is easy to check that

(m+ 1,m+ n) ≺ (m,m+ n+ 1) and (n+ 1,m+ n) ≺ (n,m+ n+ 1) .

(i) For 0 < |r − s| < 1, the complete monotonicity of ϕn and ϕm, and Theorem
5 (i) imply that the functions

f
[1]
m,n,λ31

= ϕn (ϕm+1ϕm+n − λ31ϕmϕm+n+1)

f
[2]
m,n,λ32

= ϕm (ϕn+1ϕm+n − λ32ϕnϕm+n+1)

are both completely monotonic on (−ρ,∞) if and only if

λ31 ≤ m! (m+ n− 1)!

(m− 1)! (m+ n)!
=

m

m+ n
,

λ32 ≤ n! (m+ n− 1)!

(n− 1)! (m+ n)!
=

n

m+ n
.

(ii) Similarly, for |r − s| > 1, by Theorem 5 (ii) the functions −f [1]m,n,λ31

and −f [2]m,n,λ32
are both completely monotonic on (−ρ,∞) if and only if λ31 ≥

m/ (m+ n) and λ32 ≥ n/ (m+ n).

(iii) A direct computation yields

λ310 =
(m+ 1)! (m+ n)!

m! (m+ n+ 1)!
=

m+ 1

m+ n+ 1
,

λ320 =
(n+ 1)! (m+ n)!

n! (m+ n+ 1)!
=

n+ 1

m+ n+ 1
.
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For |r − s| > 0, by Theorem 5 (iii) the functions −f [1]m,n,λ310
and −f [2]m,n,λ320

are both
completely monotonic on (−ρ,∞). This completes the proof.

Note that

f
[1]
m,n,λ31

+ f
[2]
m,n,λ32

= ϕnϕm+1ϕm+n + ϕn+1ϕmϕm+n − (λ31 + λ32)ϕnϕmϕm+n+1

= −ϕm+n (ϕnϕm)
′ − (λ31 + λ32)ϕnϕmϕm+n+1.

From Corollary 17 we get immediately the following corollary.

Corollary 18. Let m,n ∈ N and let ϕn be defined on (−ρ,∞) by (1), where
ρ = min {r, s}. The following statements hold:

(i) For 0 < |r − s| < 1, the function

fm,n,λ3 = −ϕm+n (ϕnϕm)
′ − λ3ϕm+n+1ϕnϕm

is completely monotonic on (−ρ,∞) if and only if λ3 ≤ 1. In particular, the
function −ψm+n (ψnψm)

′ − ψm+n+1ψnψm is completely monotonic on (0,∞).

(ii) For |r − s| > 1, the function fm,n,λ3
is completely monotonic on (−ρ,∞)

if and only if λ3 ≥ 1.

(iii) For |r − s| > 0, the functions −fm,n,λ30
is completely monotonic on

(0,∞), where λ30 = (m+ n+ 2) / (m+ n+ 1). In particular, the function

ψm+n (ψnψm)
′
+
m+ n+ 2

m+ n+ 1
ψm+n+1ψnψm

is completely monotonic on (0,∞).

Remark 19. Qi [22, Remark 17] guessed that, for m,n ∈ N the function

ψ(m+n)
(
ψ(m)ψ(n)

)′
− ψ(m+n+1)ψ(m)ψ(n)

should be completely monotonic on (0,∞). Since ψn = (−1)
n−1

ψ(n), we have

−ψm+n (ψnψm)
′ − ψnψmψm+n+1 = −ψ(m+n)

(
ψ(m)ψ(n)

)′
− ψ(m+n+1)ψ(m)ψ(n),

which is completely monotonic on (0,∞) by Corollary 18 (i). Similarly, by Corol-
lary 18 (iii), the function

ψm+n (ψnψm)
′
+
m+ n+ 2

m+ n+ 1
ψm+n+1ψnψm

= ψ(m+n)
(
ψ(m)ψ(n)

)′
+
m+ n+ 2

m+ n+ 1
ψ(m+n+1)ψ(m)ψ(n)

is completely monotonic on (0,∞).
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5. CONCLUSIONS

In this paper, we found the necessary and sufficient conditions for the func-
tions Fm[k],n[k]

(x;λk) and Gn[k]
(x;µk), defined by (5) and (6), respectively, to

be completely monotonic on (−min {r, s} ,∞), which generalize Gao’s results in
[11]. In particular, the functions ±Fm[k],n[k]

(x;λk) are completely monotonic in x
on (0,∞) if and only if λk ≤ αm[k],n[k]

(λk ≥ α(m+1)[k],(n+1)[k]
), and the function

Gn[k]
(x;µk) is completely monotonic in x on (0,∞) if and only if µk ≤ βn[k]

, where
αm[k],n[k]

and βn[k]
are given in (4). This offers an answer to Qi’s problem in [22].
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