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ASYMPTOTIC EXPANSIONS FOR THE WALLIS
SEQUENCE AND SOME NEW MATHEMATICAL

CONSTANTS ASSOCIATED WITH THE
GLAISHER-KINKELIN AND CHOI-SRIVASTAVA

CONSTANTS

Xue-Feng Han, Chao-Ping Chen∗ and H. M. Srivastava

The celebrated Wallis sequence Wn, which is defined by Wn :=
∏n

k=1
4k2

4k2−1
,

is known to have the limit π
2
as n → ∞. Without using the Bernoulli numbers

Bn, the authors present several asymptotic expansions and a recurrence rela-

tion for determining the coefficients of each asymptotic expansion related to

the Wallis sequence Wn and the newly-introduced constants D and E, which

are analogous to the Glaisher-Kinkelin constant A and the Choi-Srivastava

constants B and C.

1. INTRODUCTION, MOTIVATION AND PRELIMINARIES

The famous Wallis sequence Wn, defined by

Wn :=

n∏
k=1

4k2

4k2 − 1
(n ∈ N := {1, 2, 3, · · · }),
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has the limit value

W∞ := lim
n→∞

Wn =

∞∏
k=1

4k2

4k2 − 1
=

π

2
,

which was established by Wallis in 1655 (see also [12, p. 68]). Several elementary
proofs of this well-known result can be found in, for example, [3, 48, 69].

An interesting geometric construction that produces the above limit value can
be found in the work of Myerson [56]. Many formulas exist for the representation
of π, and a collection of these formulas is listed in [63, 64]. For a history of π, see
[2, 10, 12, 33].

Some inequalities and asymptotic formulas associated with the Wallis se-
quence Wn can be found in [13, 21, 32, 35, 40, 44, 45, 46, 47, 49, 50, 51, 52,
53, 55, 58]. For example, Deng et al. [32] proved, for all n ∈ N, that

π

2

(
1− 1

4n+ α

)
< Wn ≦

π

2

(
1− 1

4n+ β

)
with the best possible constants α and β given by

α =
5

2
and β =

32− 9π

3π − 8
= 2.614909986 · · · ,

respectively.

Chen and Paris [21] showed that the following asymptotic expansion holds
true for the Wallis sequence Wn:

Wn ∼ π

2
exp

 ∞∑
j=1

νj
nj


=

π

2
exp

(
− 1

4n
+

1

8n2
− 5

96n3
+

1

64n4
− 1

320n5
+

1

384n6
− 25

7168n7
+ · · ·

)
,(1)

with the coefficients νj given by

νj =
(−1)j+1

(
(4− 21−j)Bj+1 − (j + 1) · 2−j

)
j(j + 1)

(j ≧ 1),(2)

where Bn (n ∈ N0 := N ∪ {0}) denote the Bernoulli numbers defined by the
following generating function:

z

ez − 1
=

∞∑
n=0

Bn
zn

n!
(|z| < 2π).

By applying Lemma 3 in [19], Chen and Paris [21] deduced the following asymptotic
expansion from (1):

(3) Wn ∼ π

2

∞∑
j=0

µj

nj
,
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where the coefficients µj are given by the recurrence relation:

µ0 = 1, and µj =
1

j

j∑
k=1

k νk µj−k (j ≧ 1)

and the coefficients νj are given in (2). This produces the expansion in the inverse
powers of n given by

Wn ∼ π

2

(
1− 1

4n
+

5

32n2
− 11

128n3
+

83

2048n4
− 143

8192n5

+
625

65536n6
− 1843

262144n7
+ · · ·

)
(n → ∞).

The main object of the present paper is to first provide a recurrence relation
for determining the coefficients of n−j in the expansion (1) without the help of the
Bernoulli numbers Bn. We also derive a recurrence relation for determining the
coefficients of n−j in the expansion (3) without using the coefficients νj .

The double gamma function Γ2 and the multiple gamma functions Γn were
introduced and investigated by Barnes in a series of papers [4, 5, 6, 7]. In fact,
Barnes applied these functions in the theories of elliptic functions and theta func-
tions. Nonetheless, except possibly for the citations of Γ2 in the exercises by Whit-
taker and Watson [70, p. 264] and also by Gradshteyn and Ryzhik [38, p. 661,
Entry 6.441 (4); p. 937, Entry 8.333], these functions were revived only in about
the middle of the 1980s in the study of the determinants of the Laplacians on the
n-dimensional unit sphere Sn (see, for example, [26, 43, 57, 61, 67, 68]). The
theory of the double gamma function Γ2 has indeed found interesting applications
in many other recent investigations (see, for details, [65, 66]).

Barnes [4] defined the double gamma function (or the Barnes G-function)
Γ2 = 1/G, which satisfies each of the following properties:

(i) G(z + 1) = Γ(z)G(z) for all complex z;

(ii) G(1) = 1;

(iii) As n → ∞,

lnG(z + n+ 2) =
n+ 1 + z

2
ln(2π) +

(
n2

2
+ n+

5

12
+

z2

2
+ (n+ 1)z

)
lnn

− 3n2

4
− n− nz − lnA+

1

12
+O(n−1),

where Γ is the familiar (Euler’s) gamma function and A is called the Glaisher-
Kinkelin constant defined by

(4) lnA = lim
n→∞

{
ln

(
n∏

k=1

kk

)
−
(
n2

2
+

n

2
+

1

12

)
lnn+

n2

4

}
,
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the numerical value of A being 1.28242713 · · · .
The Glaisher-Kinkelin constant A can be expressed as follows (see [36]):

A = lim
n→∞

n−n2/2−n/2−1/12en
2/4

n∏
k=1

kk,

e1/12

A
= lim

n→∞

G(n+ 1)

nn2/2−1/12(2π)n/2e−3n2/4
,

and (see [25, p. 129, Eq. (3.22)])

(5) A = e
1
12−ζ′(−1) = (2π)1/12

[
eγπ

2/6−ζ′(2)
]1/(2π2)

,

where ζ ′(z) is the derivative of the Riemann zeta function ζ(z) (see [30]).

The Glaisher-Kinkelin constant A has drawn attention in many works (see,
for example, [16, 20, 25, 29, 30]; see also [4]). One section in the book by Finch
[37, pp. 135–138] was devoted to introduce this Glaisher-Kinkelin constant A.
Moreover, the Glaisher-Kinkelin constant A plays an important role in the study
of the Barnes G-function (see, for details, [66, Section 1.4]).

The following integral representation for the remainder RN (z) of the explicit
expression for the Barnes G-function was established by Ferreira and López [36,
Theorem 1].

Theorem 1. An integral representation for the remainder RN (z) in the following
explicit expression for the Barnes G-function:

lnG(z + 1) =
1

4
z2 + z ln Γ(z + 1)−

(
1

2
z2 +

1

2
z +

1

12

)
ln z − lnA

+

N−1∑
k=1

B2k+2

2k(2k + 1)(2k + 2)z2k
+RN (z) (N ∈ N; |Arg(z)| < π)

where B2k+2 are the Bernoulli numbers, is given for ℜ(z) > 0 by

RN (z) =

∫ ∞

0

(
t

et − 1
−

2N∑
k=0

Bk

k!
tk

)
e−zt

t3
dt

(
ℜ(z) > 0

)
.

Estimates for |RN (z)| were also found by Ferreira and López [36], showing
that the expansion is indeed an asymptotic expansion of lnG(z + 1) in the sec-
tors of the complex plane cut along the negative real axis. Pedersen [59, Theorem
1.1] proved that, for any N ≧ 1, the function x 7→ (−1)NRN (x) is completely
monotonic on (0,∞). Other asymptotic relations (avoiding the ln Γ term) was
given by Ruijsenaars [62] and investigated by Pedersen [60], Koumandos [41], and
by Koumandos and Pedersen [42]. Some upper and lower bounds for the double
gamma function were derived in terms of the gamma, psi and polygamma functions
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(see [8, 9, 14, 22]). Chen [15] and Mortici [54] established several inequalities and
asymptotic expansions for lnA in (4). Chen and Lin [20] and Chen [16] presented
a class of asymptotic expansions related to the Glaisher-Kinkelin constant A and
the Barnes G-function. Recently, Chen and Srivastava [23] presented a number of
potentially useful properties of the Barnes G-function. The properties considered
here include, for example, its integral representation, complete monotonicity, and
continued-fraction approximation. We also derive continued-fraction approxima-
tions of the Glaisher-Kinkelin constant A and the Choi-Srivastava constants B and
C, which are analogous to the Glaisher-Kinkelin constant A and are given by (see
[29, p.102] and [30])

lnB = lim
n→∞

{
n∑

k=1

k2 ln k −
(
n3

3
+

n2

2
+

n

6

)
lnn+

n3

9
− n

12

}

and

lnC = lim
n→∞

{
n∑

k=1

k3 ln k −
(
n4

4
+

n3

2
+

n2

4
− 1

120

)
lnn+

n4

16
− n2

12

}

for which the approximate numerical values are given by

B = 1.03091675 · · · and C = 0.97955746 · · · .

As x → ∞, the Stirling formula for the Barnes G-function can be found as
follows (see [65, p. 26]):

lnG(x+ 1) =
x

2
ln(2π)− lnA+

1

12
− 3x2

4
+

(
x2

2
− 1

12

)
lnx+O(x−1).(6)

Chen [17] applied the formula (6) to produce the following complete asymptotic
expansion:

lnG(x+ 1) ∼ x

2
ln(2π)− lnA+

1

12
− 3x2

4
+

(
x2

2
− 1

12

)
lnx

− 1

240x2
+

1

1008x4
− 1

1440x6
+

1

1056x8
− 691

327600x10
+ · · ·(7)

and derived a recurrence relation for determining the coefficients of 1/xj (j ≧ 2)
occurring in the expansion (7).

Just as the expression of the Glaisher-Kinkelin constant A in (5), the Choi-
Srivastava constants B and C are also known to be expressible in terms of special
values of the derivative of the Riemann zeta function ζ(s) as follows (see [30] and
[31, Eq. (1.9)]):

lnB = −ζ ′(−2) and lnC = − 11

720
− ζ ′(−3).(8)
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Chen [15] established the asymptotic expansions related to the Glaisher-
Kinkelin constant A and the Choi-Srivastava constants B and C. Mortici [54]
also dealt with the same problem. Cheng and Chen [24] and Chen and Choi [18]
established some novel asymptotic expansions of the Glaisher-Kinkelin constant A
and the Choi-Srivastava constants B and C. Also, by using the Bernoulli numbers
Bn, Chen [15] established the asymptotic expansions related to the constants A,
B and C.

Recently, Chen [17] derived a recurrence relation for determining the coeffi-
cients of each asymptotic expansion related to the constants A, B and C, without
using the Bernoulli numbers Bn. More precisely, Chen [17] proved the following
results:

n∑
k=1

k ln k −
(
n2

2
+

n

2
+

1

12

)
lnn+

n2

4

∼ lnA+
1

720n2
− 1

5040n4
+

1

10080n6
− 1

9504n8
+ · · · ,

n∑
k=1

k2 ln k −
(
n3

3
+

n2

2
+

n

6

)
lnn+

n3

9
− n

12

∼ lnB − 1

360n
+

1

7560n3
− 1

25200n5
+

1

33264n7
− 691

16216200n9
+ · · ·

and
n∑

k=1

k3 ln k −
(
n4

4
+

n3

2
+

n2

4
− 1

120

)
lnn+

n4

16
− n2

12

∼ lnC − 1

5040n2
+

1

33600n4
− 1

66528n6
+

691

43243200n8
− 1

34320n10
+ · · · ,

as n → ∞ in each case.

In our present investigation, we introduce two new mathematical constants
D and E, which are analogous to the constants A, B and C, defined by

lnD = lim
n→∞

{
n∑

k=1

k4 ln k −
(
1

5
n5 +

1

2
n4 +

1

3
n3 − 1

30
n

)
lnn

+
1

25
n5 − 1

12
n3 +

13

360
n

}
(9)

and

lnE = lim
n→∞

{
n∑

k=1

k5 ln k −
(
1

6
n6 +

1

2
n5 +

5

12
n4 − 1

12
n2 +

1

252

)
lnn

+
1

36
n6 − 1

12
n4 +

47

720
n2

}
,(10)
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respectively, approximate numerical values of D and E being given by

D = 0.99204797 · · · and E = 1.00968038 · · · .

We also derive a recurrence relation for determining the coefficients of each of the
asymptotic expansions, which are related to the constants D and E, without using
the Bernoulli numbers Bn.

Remark. We thank a referee for drawing our attention toward the related de-
velopments in [1, 11, 27]. The mathematical constants D and E, which we have
introduced and studied in this work, were studied in a generalized form which in-
cludes the Glaisher-Kinkelin constant A as well as the Choi-srivastava constants B
and C (see, for details, [1, 11]; see also [25, p. 131, Eq. (4.10)] for the corrected
form of [1, p. 198, Eq. (20)] as well as [27]).

2. ASYMPTOTIC EXPANSIONS FOR THE WALLIS SEQUENCE

Theorem 2 below provides a recurrence relation for determining the coeffi-
cients of n−j in the expansion (1), without the help of the Bernoulli numbers Bn.

Theorem 2. As n → ∞, the following asymptotic expansion holds true:

Wn ∼ π

2
exp

( ∞∑
k=1

νk
nk

)
,

where the coefficients νj are given by the recurrence relation given by

ν1 = −1

4
and νk =

(−1)k

k

3k+1 − 2k+2 + 1

2k+1(k + 1)
−

k−1∑
j=1

νj(−1)j
(

k

k − j + 1

)
(11)

for k ≧ 2.

Proof. Upon setting

Pn = ln

(
2

π
Wn

)
and Qn =

∞∑
k=1

νk
nk

,

we can let Pn ∼ Qn and

∆Pn := Pn+1 − Pn ∼ Qn+1 −Qn =: ∆Qn

as n → ∞, where νk are real numbers to be determined.
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By making use of the fact that

Wn =
π

2
· 1

n+ 1
2

(
Γ(n+ 1)

Γ(n+ 1
2 )

)2

=
π

2
· Γ(n+ 1)2

Γ(n+ 1
2 )Γ(n+ 3

2 )
,

we obtain

∆Pn = 2 ln

(
1 +

1

n

)
− ln

(
1 +

1

2n

)
− ln

(
1 +

3

2n

)
=

∞∑
k=2

(−1)k(3k − 2k+1 + 1)

2kk
n−k.(12)

Also, by direct computation, we get

∞∑
k=1

νk
(n+ 1)k

=

∞∑
k=1

νk
nk

(
1 +

1

n

)−k

=

∞∑
k=1

νk
nk

∞∑
j=0

(
−k

j

)
1

nj

=

∞∑
k=1

νk
nk

∞∑
j=0

(−1)j
(
k + j − 1

j

)
1

nj

=

∞∑
k=1


k∑

j=1

νj(−1)k−j

(
k − 1

k − j

) n−k.(13)

We thus find that

∆Qn =

∞∑
k=2


k∑

j=1

νj(−1)k−j

(
k − 1

k − j

)
− νk

 n−k.(14)

Now, upon equating the coefficients of n−k on the right-hand sides of (12)
and (14), we have

(−1)k(3k − 2k+1 + 1)

2kk
=

k∑
j=1

νj(−1)k−j

(
k − 1

k − j

)
− νk

=

k−1∑
j=1

νj(−1)k−j

(
k − 1

k − j

)
and

3k − 2k+1 + 1

2kk
=

k−1∑
j=1

νj(−1)j
(
k − 1

k − j

)

=

k−2∑
j=1

νj(−1)j
(
k − 1

k − j

)
+ (−1)k−1(k − 1)νk−1 (k ≧ 2),
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where (and elsewhere in this paper) an empty sum is understood to be zero.

For k = 2, we obtain ν1 = − 1
4 . Also, for k ≧ 3, we have

νk−1 =
(−1)k−1

k − 1

3k − 2k+1 + 1

2kk
−

k−2∑
j=1

νj(−1)j
(
k − 1

k − j

) ,

which can be written precisely as (11). The proof of Theorem 2 is thus completed.

Our next result (Theorem 3) provides a recurrence relation for determining
the coefficients of n−j in the expansion (3) without the coefficients νj .

Theorem 3. As n → ∞, the following asymptotic expansion holds true:

Wn ∼ π

2

∞∑
k=0

µk

nk
,

where the coefficients µk are given by the recurrence relation:

µ0 = 1, µ1 = −1

4
, and µk = −1

k

2k2 − 2k + 1

4
µk−1 +

k−2∑
j=0

µj

(
k

k − j + 1

)
(15)

for k ≧ 2.

Proof. We first set

Un =
2

π
Wn and Vn =

∞∑
k=0

µk

nk
,

where µ0 = 1. We can then let Un ∼ Vn and

Un

Un−1
∼ Vn

Vn−1
(n → ∞),

where µk are real numbers to be determined as follows:

4n2

4n2 − 1
∼

∞∑
k=0

µk

nk

∞∑
k=0

µk

(n−1)k

,

which yields

∞∑
k=0

µk

(n− 1)k
∼
(
1− 1

4n2

) ∞∑
k=0

µk

nk
= µ0 +

µ1

n
+

∞∑
k=2

(
µk − µk−2

4

) 1

nk
.(16)
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Now, by direct computation, we get

∞∑
k=0

µk

(n− 1)k
=

∞∑
k=0

µk

nk

(
1− 1

n

)−k

=

∞∑
k=0

µk

nk

∞∑
j=0

(−1)j
(
−k

j

)
1

nj

=

∞∑
k=0

µk

nk

∞∑
j=0

(
k + j − 1

j

)
1

nj
=

∞∑
k=0

k∑
j=0

µj

(
k − 1

k − j

)
1

nk

= µ0 +
µ1

n
+

∞∑
k=2

k∑
j=0

µj

(
k − 1

k − j

)
1

nk
.(17)

Thus, upon equating the coefficients of n−k on the right-hand sides of (16) and
(17), we find that

µk − µk−2

4
=

k∑
j=0

µj

(
k − 1

k − j

)
(k ≧ 2)

and

−µk−2

4
=

k−1∑
j=0

µj

(
k − 1

k − j

)
=

k−2∑
j=0

µj

(
k − 1

k − j

)
+ (k − 1)µk−1

=

k−3∑
j=0

µj

(
k − 1

k − j

)
+

(k − 1)(k − 2)

2
µk−2 + (k − 1)µk−1.

For k = 2, we obtain µ1 = − 1
4 . Also, for k ≧ 3. we have

µk−1 = − 1

k − 1


(
1

4
+

(k − 1)(k − 2)

2

)
µk−2 +

k−3∑
j=0

µj

(
k − 1

k − j

) ,

which can be written precisely as (15). This completes our proof of Theorem 3.

3. ASYMPTOTIC EXPANSIONS RELATED TO THE CONSTANTS
D AND E

In this section, we first recall the Euler-Maclaurin summation formula as
follows (see, for example, [39, p. 318]; see also [34]):

(18)

n∑
k=1

f(k) ∼ C0 +

∫ n

a

f(x) dx+
1

2
f(n) +

∞∑
r=1

B2r

(2r)!
f (2r−1)(n),

where C0 is an arbitrary constant to be determined in each special case and the
B2k are the Bernoulli numbers. Indeed, if we set

f(x) = x4 lnx and f(x) = x5 lnx
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in (18) with a = 1, we are led to (9) and (10), respectively.

As in the cases of lnA in (5), lnB and lnC in (8), we can also express lnD
and lnE as special cases of ζ ′(s). In this connection, by using the Euler-Maclaurin
summation formula (18), we can obtain a number of analytical representations of
ζ(s), such as the known result recorded by Hardy [39, p. 333]:

ζ(s) = lim
n→∞

{
n∑

k=1

k−s − n1−s

1− s
− 1

2
n−s

} (
ℜ(z) > −1

)
,

ζ(s) = lim
n→∞

{
n∑

k=1

k−s − n1−s

1− s
− 1

2
n−s +

1

12
sn−s−1

} (
ℜ(z) > −3

)
,

ζ(s) = lim
n→∞

{
n∑

k=1

k−s − n1−s

1− s
− 1

2
n−s +

1

12
sn−s−1

− 1

720
s(s+ 1)(s+ 2)n−s−3

} (
ℜ(z) > −5

)
(19)

and

ζ(s) = lim
n→∞

{
n∑

k=1

k−s − n1−s

1− s
− 1

2
n−s +

1

12
sn−s−1 − 1

720
s(s+ 1)(s+ 2)n−s−3

+
1

30240
s(s+ 1)(s+ 2)(s+ 3)(s+ 4)n−s−5

} (
ℜ(z) > −7

)
.

(20)

By first differentiating both sides of (19) with respect to s and then setting
s = −4, we obtain

−ζ ′(−4) = lim
n→∞

{
n∑

k=1

k4 ln k −
(
1

5
n5 +

1

2
n4 +

1

3
n3 − 1

30
n

)
lnn

+
1

25
n5 − 1

12
n3 +

13

360
n

}
,

which, when compared with (9), yields

lnD = −ζ ′(−4).

Also, by first differentiating both sides of (20) with respect to s and then
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setting s = −5, we obtain

137

15120
− ζ ′(−5) = lim

n→∞

{
n∑

k=1

k5 ln k −
(
1

6
n6 +

1

2
n5 +

5

12
n4 − 1

12
n2 +

1

252

)
lnn

+
1

36
n6 − 1

12
n4 +

47

720
n2

}
,

which, when compared with (10), yields

lnE =
137

15120
− ζ ′(−5).

Without using the Bernoulli numbers, Theorems 4 and 5 provide a recurrence
relation for determining the coefficients of each asymptotic expansion related to the
above-defined constants D and E in (9) and (10), respectively.

Theorem 4. As n → ∞, the following asymptotic expansion holds true:

n∑
k=1

k4 ln k −
(
1

5
n5 +

1

2
n4 +

1

3
n3 − 1

30
n

)
lnn+

1

25
n5 − 1

12
n3 +

13

360
n

∼ lnD +

∞∑
k=1

dk
nk

,

where the coefficients dk are given by the recurrence relation:

dk =
(−1)k+1(k + 14)

30(k + 2)(k + 4)(k + 5)(k + 6)
− 1

k

k−1∑
j=1

dj(−1)k−j

(
k

k − j + 1

)
(k ≧ 2)

(21)

together with d1 = 1
1260 . In terms of the constant D defined by (9), it is asserted

that

n∑
k=1

k4 ln k −
(
1

5
n5 +

1

2
n4 +

1

3
n3 − 1

30
n

)
lnn+

1

25
n5 − 1

12
n3 +

13

360
n

∼ lnD +
1

1260n
− 1

25200n3
+

1

83160n5
− 691

75675600n7
+ · · · .

Proof. If we set

Xn =

n∑
k=1

k4 ln k −
(
1

5
n5 +

1

2
n4 +

1

3
n3 − 1

30
n

)
lnn

+
1

25
n5 − 1

12
n3 +

13

360
n− lnD
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and

Yn =

∞∑
k=1

dk
nk

,

then we can let Xn ∼ Yn and

∆Xn := Xn+1 −Xn ∼ Yn+1 − Yn =: ∆Yn (n → ∞),

where dk are real numbers to be determined. Indeed, after some elementary trans-
formations, we find that

∆Xn =

(
−1

5
n5 − 1

2
n4 − 1

3
n3 +

1

30
n

)
ln

(
1 +

1

n

)
+

2

5
n3 − 1

20
n+

1

5
n4 +

3

20
n2 − 13

1800

=

∞∑
k=2

(−1)k−1(k − 1)(k + 13)

30(k + 1)(k + 3)(k + 4)(k + 5)

1

nk
.(22)

Thus, by using (13), we obtain

∆Vn =

∞∑
k=2


k∑

j=1

dj(−1)k−j

(
k − 1

k − j

)
− dk

 1

nk
.(23)

Upon equating the coefficients of n−k on the right-hand sides of (22) and
(23), we get

(−1)k−1(k − 1)(k + 13)

30(k + 1)(k + 3)(k + 4)(k + 5)
=

k∑
j=1

dj(−1)k−j

(
k − 1

k − j

)
− dk

=

k−1∑
j=1

dj(−1)k−j

(
k − 1

k − j

)

=

k−2∑
j=1

dj(−1)k−j

(
k − 1

k − j

)
− (k − 1)dk−1 (k ≧ 2),

which, for k = 2, yields d1 = 1
1260 . Moreover, for k ≧ 3, we have

dk−1 =
(−1)k(k + 13)

30(k + 1)(k + 3)(k + 4)(k + 5)
+

1

k − 1

k−2∑
j=1

dj(−1)k−j

(
k − 1

k − j

)
,

which can be written as (21). The proof of Theorem 4 is now complete.
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Theorem 5. As n → ∞, the following asymptotic expansion holds true:

n∑
k=1

k5 ln k −
(
1

6
n6 +

1

2
n5 +

5

12
n4 − 1

12
n2 +

1

252

)
lnn+

1

36
n6 − 1

12
n4 +

47

720
n2

∼ lnE +

∞∑
k=1

ek
nk

,

where the coefficients ek are given by the recurrence relation:

ek =
(−1)k(k − 1)(141 + 22k + k2)

252(k + 1)(k + 3)(k + 5)(k + 6)(k + 7)
− 1

k

k−1∑
j=1

ej(−1)k−j

(
k

k − j + 1

)
(k ≧ 2)

(24)

together with e1 = 0. Furthermore, in terms of the constant E defined by (10), it
is asserted that

n∑
k=1

k5 ln k −
(
1

6
n6 +

1

2
n5 +

5

12
n4 − 1

12
n2 +

1

252

)
lnn+

1

36
n6 − 1

12
n4 +

47

720
n2

∼ lnE +
1

10080n2
− 1

66528n4
+

691

90810720n6
− 1

123552n8
+ · · · .

Proof. Upon setting

In =

n∑
k=1

k5 ln k −
(
1

6
n6 +

1

2
n5 +

5

12
n4 − 1

12
n2 +

1

252

)
lnn

+
1

36
n6 − 1

12
n4 +

47

720
n2 − lnE

and

Jn =

∞∑
k=1

ek
nk

,

we can let In ∼ Jn and

∆In := In+1 − In ∼ Jn+1 − Jn =: ∆Jn (n → ∞),

where ek are real numbers to be determined. In fact, after some elementary trans-
formations, we obtain

∆In =

(
−1

6
n6 − 1

2
n5 − 5

12
n4 +

1

12
n2 − 1

252

)
ln

(
1 +

1

n

)
+

1

6
n5 +

5

12
n4 +

2

9
n3 − 1

12
n2 − 13

360
n+

7

720

=

∞∑
k=3

(−1)k(k − 1)(k − 2)(k2 + 20k + 120)

252k(k + 2)(k + 4)(k + 5)(k + 6)

1

nk
(25)
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and

∆Jn = − e1
n2

+

∞∑
k=3


k∑

j=1

ej(−1)k−j

(
k − 1

k − j

)
− ek

 1

nk
.(26)

Now, by equating the coefficients of n−k on the right-hand sides of (25) and
(26), we find that e1 = 0 and that

(−1)k(k − 1)(k − 2)(k2 + 20k + 120)

252k(k + 2)(k + 4)(k + 5)(k + 6)
=

k∑
j=1

ej(−1)k−j

(
k − 1

k − j

)
− ek

=

k−1∑
j=1

ej(−1)k−j

(
k − 1

k − j

)

=

k−2∑
j=1

ej(−1)k−j

(
k − 1

k − j

)
− (k − 1)ek−1

and

ek−1 =
1

k − 1

k−2∑
j=1

ej(−1)k−j

(
k − 1

k − j

)
− (−1)k (k − 2)(k2 + 20k + 120)

252k(k + 2)(k + 4)(k + 5)(k + 6)
(k ≧ 3),

which can be written precisely as (24). This evidently completes our proof of
Theorem 5.

4. AN OPEN PROBLEM

As the Euler-Mascheroni constant γ is involved with the classical gamma
function Γ, the constants A, B and C have appeared naturally in the theory of the
multiple gamma functions Γn (see, for example, [66, Section 1.4]) and play their
respective roles as described in ([65, p. 39, p. 247], [28, p. 523, Eq. (2.50)] and
[25]). ∫ 1

2

0

ln Γ(t+ 1) dt = −1

2
− 7

24
ln 2 +

1

4
lnπ +

3

2
lnA,(27)

∫ 1
2

0

lnG(t+ 1) dt =
1

24
(ln 2 + 1) +

1

16
lnπ − 1

4
lnA− 7

4
lnB(28)

and

∫ 3
2

0

ln Γ3(t+ 2) dt = −259

768
− 29

1920
ln 2 +

9

16
lnπ − 15

16
lnA− 5

4
lnB +

15

16
lnC,

(29)
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where Γ3 is the triple gamma function (see [66, p. 58]).

In view of (27), (28) and (29), we propose the following open problem.

Open Problem. Let α and β be two given positive numbers. Determine the
constants aj ≡ aj(α, β) and bj ≡ bj(α, β) such that∫ α

0

ln Γ4(t+ β) dt = a1 + a2 ln 2 + a3 lnπ + a4 lnA+ a5 lnB

+ a6 lnC + a7 lnD

and ∫ α

0

ln Γ5(t+ β) dt = b1 + b2 ln 2 + b3 lnπ + b4 lnA+ b5 lnB

+ b6 lnC + b7 lnD + b8 lnE.

5. CONCLUDING REMARKS AND OBSERVATIONS

In our present investigation, without using the Bernoulli numbers Bn, we have
established several asymptotic expansions and a recurrence relation for determining
the coefficients of each asymptotic expansion associated with the Wallis sequence
Wn, defined by

Wn :=

n∏
k=1

4k2

4k2 − 1
,

and the constants D and E, which are analogous to the Glaisher-Kinkelin constant
A and the Choi-Srivastava constants B and C. We have also pointed out the rel-
evant connections of the formulas and results, which we have considered in this
article, with various known or new results.
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