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MODIFICATION EXPONENTIAL EULER TYPE
SPLINES DERIVED FROM APOSTOL-EULER

NUMBERS AND POLYNOMIALS OF COMPLEX
ORDER

Damla Gun and Yilmaz Simsek∗

The purpose of this paper is to give formulas and Recurrence relations for

the Apostol-Euler numbers and polynomials of order with complex numbers

with the aid of the Euler operator and partial derivatives of the generating

function. Relations among the these numbers and polynomials of neqative

integer order, the beta-type rational functions, finite combinatorial sums,

the Stirling numbers, and the Lah numbers are given. Finally, new classes of

polynomials and modification exponential Euler type splines are constructed.

1. INTRODUCTION

More recently, using not only generating functions with their functional equa-
tions, but also other methods, many researches have studied several properties and
relationships involving the higher-order of Apostol-Euler numbers and polynomials.
The motivation of this article is to give not only several general properties and re-
lationships including the Apostol-Euler numbers and polynomials of higher-order,
the Stirling numbers of the second kind, and the Catalan numbers, but also to
construct genearlized exponential Euler type splines. Some sepcial values and nu-
merical examplaes of these results are given. Relations between the Apoatol-Euler
polynomials and exponential Euler type splines are given.
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Isaac Jacob Schoenberg [15]-[16], who was known as father of splines, con-
structed the cardinal splines, the exponential splines, the exponential Euler type
splines, and other splines. Splines have many application in several areas of the
many different sciences involving computer geometric modeling, signal processing,
data analysis, visualization, numerical simulation, probability, quadrature formu-
lae, approximation theory, and other sciences.

In this section, we also present some well-known families of the special num-
bers and polynomials with their generating functions. These numbers and polyno-
mials will be used in the next sections.

Let α, λ ∈ C. The Apostol-Euler numbers and polynomials of order α are
respectively defined by

(1) Fα (t;λ) =
2α

(λet + 1)
α =

∞∑
n=0

E(α)
n (λ)

tn

n!

and

(2) Fα (t, x;λ) = extFα (t;λ) =

∞∑
n=0

E(α)
n (x;λ)

tn

n!
,

where |t| < π when λ = 1; |t| < |log(−λ)| when λ ̸= 1, and also 1α = 1 (cf. [5, p.
253], [10], [11], [12], [24, p. 93]).

When x = 0, (2) reduces to (1). That is, E(α)
n (λ) = E(α)

n (0;λ). Putting λ = 1

in (2), we have the Euler polynomials E
(α)
n (x) of order α. It clear that for α = 1,

we have the following Euler polynomials and numbers respectively

En (x) = E(1)
n (x)

and
En = En (0)

(cf. [1]-[24, p. 93]).

Substituting α = 1 into (1), we have the Apostol-Euler numbers

En (λ) = E(1)
n (λ)

(cf. [1]-[24, p. 93]).

By using (1) and (2), one can easily get the following known formulas:

(3) E(α)
n (x;λ) =

n∑
k=0

(
n

k

)
xn−kE(α)

k (λ)

and

(4) E(β+γ)
n (λ) =

n∑
k=0

(
n

k

)
E(β)
k (λ) E(γ)

n−k (λ)
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(cf. [11], [12], [24, p. 93]).

Let λ be a complex number with λ ̸= 1. The Frobenius-Euler numbers

H
(α)
n (λ) are defined by means of the following generating function:

FH (t;λ, α) =

(
1− λ

et − λ

)α

=

∞∑
n=0

H(α)
n (λ)

tn

n!

(cf. [2], [9], [16], [18], [22], [24]).

Setting α = 1 in (2), we have

(5) 2xn = λ

n∑
j=0

(
n

j

) j∑
v=0

(
j

v

)
xj−vEv (λ) +

n∑
j=0

(
n

j

)
xn−jEj (λ) .

When x = 0, the equation (5) reduces to the following known results:

E0 (λ) =
2

λ+ 1

and for n > 1, we have

En (1;λ) = − 1

λ
En (λ) .

By using (1), for n ∈ N0 := N ∪ {0}, we have

E(α)
n (λ) =

2α

(λ+ 1)
αH

(α)
n

(
− 1

λ

)
(cf. [15], [17], [24]). Substituting α = λ = 1 into the above relation, the numbers

E(1)
n (1) reduces to the Euler numbers:

En = Hn (−1) = E(1)
n (1)

(cf. [15]).

By using (1), one has the following known formula:

(6) E(α)
n (λ) =

∂n

∂tn
{Fα (t;λ)} |

t=0
.

Let k ∈ N0. The Stirling numbers of the second kind, S2 (n, k) are defined by

FS(t; k) =
(et − 1)

k!

k

=

∞∑
n=0

S2 (n, k)
tn

n!

(cf. [3], [10], [11], [18], [24]).

We also need the following notations and definitions: The falling factorial is
given by

x(n) =

{
x (x− 1) . . . (x− n+ 1) ,

1,
n ∈ N
n = 0
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the rising factorial (the Pochhammer symbol) is given by

(x)(n) =

{
x (x+ 1) . . . (x+ n− 1) ,

1,
n ∈ N
n = 0;

and using the Pochhammer symbol, we have

(7) (x)(n) =

n∑
k=0

|S1 (n, k)|xk =

n∑
k=1

L (n, k)x(k),

where L (n, k) the note the Lah numbers which are defined by:

L (n, k) = (−1)
n n!

k!

(
n− 1

k − 1

)
and

|L (n, k)| =
n!

k!

(
n− 1

k − 1

)
(cf. [1], [4], [14], [22], [24]).

We briefly summarize the results which will be given in next sections on
newly constructed splines involving the Apostol-Euler numbers and polynomials of
complex order.

In Section 2, using the Euler operator, we give some novel computational

formulas for the numbers E(α)
n (λ) the polynomials E(α)

n (x;λ) .

In Section 3, we give some new formulas and recurrence relations with the
aid of partial derivatives equations for the function Fα (t;λ) .

In Section 4, we present some combinatorial sums involving beta-type rational
functions, the Apostol-Euler numbers of order −m and the Stirling numbers of the
second kind.

In Section 5, we construct new classes polynomials and new family of mod-
ification exponential Euler type splines of degree n with order α. We give some
properties of these polynomials and splines. After that, the last section of the
article is the conclusion section.

2. COMPUTATIONAL FORMULAS FOR THE NUMBERS E(α)
n (λ)

AND THE POLYNOMIALS E(α)
n (x;λ)

In this section, we assume that |λ| < 1. By applying the Umbral calculus

convention method to the generating function for the numbers E(α)
n (λ) and binomial

series in the equation (1), we present some novel computational formulas for the

numbers E(α)
n (λ). By using these formulas, we also give computational formulas

for the polynomials E(α)
n (x;λ).



Modification exponential Euler type splines derived from Apostol-Euler ... 201

2α =

∞∑
k=0

(
α

k

)
λk

∞∑
n=0

(
E(α) (λ) + k

)n tn

n!
.

After equalizing the coefficients of tn in the previous equation and making the
necessary calculations, the following results are obtained:

For n = 0, we have

2α =

∞∑
k=0

(
α

k

)
λk

(
E(α) (λ) + k

)0

,

which implies

E(α)
0 (λ) =

2α

(1 + λ)
α .

For n ≥ 1, we have
∞∑
k=0

(
α

k

)
λk

(
E(α) (λ) + k

)n

= 0,

where we mention that after expanding binomial expansion in the previous equa-

tion, each index of
(
E(α) (λ)

)n
is to be replaced by the corresponding suffix: E(α)

n (λ),
which represented the Apostol-Euler numbers of order α. Therefore, we have

(8)

n∑
j=0

(
n

j

)
E(α)
n−j (λ)

∞∑
k=0

(
α

k

)
λkkj = 0,

where |λ| < 1. By combining the following well-known Euler operator (cf. [13])

ϑ = λ
d

dλ

to the function (1 + λ)α, we have the following well-known formula:

(9) ϑj {(1 + λ)α} =

j∑
k=0

S2(j, k)λ
k dk

dλk
{(1 + λ)α}

after that combining the above formula with the equation (8), we arrive at the
following theorem:

Theorem 1. Let n ∈ N0. We have

n∑
j=0

(
n

j

)
E(α)
n−j (λ)

j∑
k=0

S2(j, k)λ
k dk

dλk
{(1 + λ)α} = 0.

After performing the above similar operations, the following presumably well-

known result is obtained for the Apostol-Euler polynomials, E(α)
n (x;λ):
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Corollary 2. Let n ∈ N0. We have

∞∑
k=0

(
α

k

)
λk

(
E(α) (x;λ) + k

)n

= 2αxn,

where |λ| < 1.

By using the above result, the following corollary is also given for the Apostol-

Euler numbers, E(α)
n (λ):

Corollary 3. Let n ∈ N0. We have

∞∑
k=0

(
α

k

)
λk

n∑
j=0

(
n

j

)
kn−j

j∑
v=0

(
j

v

)
xj−vE(α)

v (λ) = 2αxn,

where |λ| < 1.

Remark 4. We note that Bayad et al. [1], [2], gave integral representation with
analytic continuation for the generalized Hurwitz-Lerch zeta functions of complex
number order. Using these functions, they gave some different formulas involving
some interesting the Apostol-Euler-Nörlund polynomials of complex number order

related to the numbers E(α)
n (λ) and the polynomials E(α)

n (x;λ).

3. FORMULAS AND RECURRENCE RELATIONS ARISING FROM
PARTIAL DERIVATIVES EQUATIONS FOR THE FUNCTION

Fα (t;λ)

In this section, we can give successive partial derivatives of the function
Fα (t;λ) with respect to t. By using these partial derivatives, we derive partial
derivatives equations for the functions Fα (t;λ) and Fα (t, x;λ).

We now give the following successive partial derivatives of the function Fα (t;λ)
with respect to t, we get the following partial derivatives equations for the function
Fα (t;λ):

(10)
∂

∂t
{Fα (t;λ)} = −1

2
λαFα+1 (t, 1;λ) ,

(11)
∂2

∂t2
{Fα (t;λ)} = −1

2
λαFα+1 (t, 1;λ) +

1

4
λ2α (α+ 1)Fα+2 (t, 2;λ) ,

∂3

∂t3
{Fα (t;λ)} = −1

2
λαFα+1 (t, 1;λ)(12)

+
3

4
λ2α (α+ 1)Fα+2 (t, 2;λ)

−1

8
λ3α (α+ 1) (α+ 2)Fα+3 (t, 3;λ)
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and

∂4

∂t4
{Fα (t;λ)} = −1

2
λαFα+1 (t, 1;λ)(13)

+
7

4
λ2α (α+ 1)Fα+2 (t, 2;λ)

−6

8
λ3α (α+ 1) (α+ 2)Fα+3 (t, 3;λ)

+
1

16
λ4α (α+ 1) (α+ 2) (α+ 3)Fα+4 (t, 4;λ) .

By using the above equations, we obtain the following recurrence relations, respec-
tively:

(14) E(α)
n+1 (λ) = −λα

2
E(α+1)
n (1;λ) ,

(15) E(α)
n+2 (λ) = −λα

2
E(α+1)
n (1;λ) +

1

4
λ2α (α+ 1) E(α+2)

n (2;λ) ,

E(α)
n+3 (λ) = −λα

2
E(α+1)
n (1;λ) +

3

4
λ2α (α+ 1) E(α+2)

n (2;λ)(16)

−1

8
λ3α (α+ 1) (α+ 2) E(α+3)

n (3;λ)

and

E(α)
n+4 (λ) = −λα

2
E(α+1)
n (1;λ) +

7

4
λ2α (α+ 1) E(α+2)

n (2;λ)(17)

−6

8
λ3α (α+ 1) (α+ 2) E(α+3)

n (3;λ)

+
1

16
λ4α (α+ 1) (α+ 2) (α+ 3) E(α+4)

n (4;λ) .

In order to understand how can the above formulas can be proved, we briefly explain
the proof of equation (17). The proof of equation (14), (15), and (16) follow along
the same ways as the proof of (17), and so we skip them.

Combining (1) with (13), we get

∞∑
n=4

E(α)
n (λ)

tn−4

(n− 4)!
= −1

2
λα

∞∑
n=0

E(α+1)
n (1;λ)

tn

n!

+
7

4
λ2α (α+ 1)

∞∑
n=0

E(α+2)
n (2;λ)

tn

n!

−6

8
λ3α (α+ 1) (α+ 2)

∞∑
n=0

E(α+3)
n (3;λ)

tn

n!

+
1

16
λ4α (α+ 1) (α+ 2) (α+ 3)

∞∑
n=0

E(α+4)
n (4;λ)

tn

n!
.
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After some elementary calculations and then comparing the coefficients of tn

n! on
both sides of the above equation, we arrive at equation (17).

By examining partial derivatives equations from (14) to (17), we arrive at the
following question:

E(α)
n+d (λ) = −λα

2
E(α+1)
n (1;λ) + x1

λ2

22
(α)

(2) E(α+2)
n (2;λ)(18)

+x2
λ3

23
(α)

(3) E(α+3)
n (3;λ) + . . .

+xk
λk+1

2k+1
(α)

(k+1) E(α+k+1)
n (k + 1;λ) + . . .

+xd−1
λd

2d
(α)

(d) E(α+d)
n (d;λ) .

How can compute the coefficients x1, x2,. . . ,xd−1 in the above equation?

In order to prove the above question, we give the partial derivative of the
function Fα (t;λ) with respect to t to derive the following higher order partial
differential equation:

Theorem 5. Let d ∈ N. Then we have

(19)
∂d

∂td
{Fα (t;λ)} =

d∑
j=1

(−1)
j λ

j

2j
(α)

(j)
S2 (d, j)Fα+j (t, j;λ) .

Proof. With the aid of the mathematical induction method, higher order partial
differential equation formula (19) follows immediately from (10) to (13) and also
(9).

Substituting (7) into (19) yields the following higher order partial differential
formula for the function Fα (t;λ):

Corollary 6. Let d ∈ N. Then we have

(20)
∂d

∂td
{Fα (t;λ)} =

d∑
j=1

(−1)
j λ

j

2j
S2 (d, j)Fα+j (t, j;λ)

j∑
k=1

|L (j, k)|α(k).

Theorem 7. (Recurrence relation) Let d ∈ N and n ∈ N0. Then we have

(21) E(α)
n+d (λ) =

d∑
j=0

(−1)
j+1

(
λ

2

)j+1

(α)
(j+1)

S2 (d, j + 1) E(α+j+1)
n (j + 1;λ) .

Proof. By combining (1) with (19) and (2), we obtain

∞∑
n=d

E(α)
n (λ)

tn−d

(n− d)!
=

d∑
j=1

(−1)
j λ

j

2j
(α)

(j)
S2 (d, j)

∞∑
n=0

E(α+j)
n (j, λ)

tn

n!
.

After some elementary calculations and comparing the coefficients of tn

n! on both
sides of the above equation, we arrive at the desired result.
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Remark 8. Proof of (21) is also given by the mathematical induction method,
which follow along the same ways as the proof of (19), and so we skip them.

It is time to give solution of the question with the aid of (21). By comparing

the coefficients of E(α+k+1)
n (k + 1;λ) on right hand sides of the equation (21) and

(18), we obtain

x1 = S2 (d, 2) ,

x2 = S2 (d, 3) ,

...

xd−1 = S2 (d, d) .

Putting α = 1
2 in (21), we get

E(
1
2 )

n+d (λ) =

d∑
j=0

(−1)
j+1

(
λ

2

)j+1 (
1

2

)(j+1)

S2 (d, j + 1) E(
3
2+j)

n (j + 1;λ) .

Since (
1

2

)(j)

=
(j + 1)!

4j Cj ,

where Cj denotes the well-known Catalan numbers, which are given by

(22) Cj =
1

j + 1

(
2j

j

)
,

after some elementary calculation, we obtain the following corollary:

Corollary 9. Let d ∈ N and n ∈ N0. Then we have

(23) E(
1
2 )

n+d (λ) =

d∑
j=0

(−1)
j+1

(
λ

2

)j+1
(j + 2)!

4j+1
Cj+1S2 (d, j + 1) E(j+

3
2 )

n (j + 1;λ) .

By using equations (22) and (23), we get

E(
1
2 )

n+d (λ) =

d∑
j=0

(−1)
j+1

(
λ

2

)j+1
(j + 1)!

4j+1

(
2j + 2

j + 1

)
S2 (d, j + 1) E(j+

3
2 )

n (j + 1;λ) .

When n = 0, equation (23) reduces to the following result:

Corollary 10. Let d ∈ N. Then we have

E(
1
2 )

d (λ) =

d∑
j=1

(−1)
j
λj (j + 1)!

22j−
1
2 (λ+ 1)

j+ 1
2

CjS2 (d, j) .
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Theorem 11. Let d ∈ N. Then we have

(24) E(α)
d (λ) = 2α

d∑
j=1

(−1)
j
λjS2 (d, j)

(α)
(j)

(λ+ 1)
α+j

.

Proof. It is known that

(25)
∂d

∂td
{Fα (t;λ)} |t=0 = E(α)

d (λ) .

Substituting t = 0 into (19) and combining the final equation with (25), we get

(26)
∂d

∂td
{Fα (t;λ)} |t=0 = E(α)

d (λ) =

d∑
j=1

(−1)
j λ

j

2j
(α)

(j)
S2 (d, j)Fα+j (0, j;λ) .

Substituting t = 0 into (1) and assuming 00 = 1, we have

Fα+j (0, j;λ) =
2α+j

(λ+ 1)
α+j

= E(α+j)
0 (λ) .

Combining the above equation with (26), we get

E(α)
d (λ) =

d∑
j=1

(−1)
j λ

j

2j
(α)

(j)
S2 (d, j) E(α+j)

0 (λ) .

After some calculations, we arrive at the desired result.

Remark 12. Here we note that different proof of the equation (24) was also given
by [10] and see also [24].

For n = 0, 1, 2, 3, 4, 5, and α ∈ C, using (24), we give few values of the

numbers E(α)
n (λ) as follows:

E(α)
0 (λ) =

2α

(λ+ 1)
α ,

E(α)
1 (λ) =

−αλ2α

(λ+ 1)
α+1 ,

E(α)
2 (λ) =

−αλ2α

(λ+ 1)
α+1 +

α (α+ 1)λ22α

(λ+ 1)
α+2 ,

E(α)
3 (λ) =

−αλ2α

(λ+ 1)
α+1 +

3α (α+ 1)λ22α

(λ+ 1)
α+2 − α (α+ 1) (α+ 2)λ32α

(λ+ 1)
α+3 ,
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E(α)
4 (λ) =

−αλ2α

(λ+ 1)
α+1 +

7α (α+ 1)λ22α

(λ+ 1)
α+2 − 6α (α+ 1) (α+ 2)λ32α

(λ+ 1)
α+3

+
α (α+ 1) (α+ 2) (α+ 3)λ42α

(λ+ 1)
α+4 ,

E(α)
5 (λ) =

−αλ2α

(λ+ 1)
α+1 +

15α (α+ 1)λ22α

(λ+ 1)
α+2 − 25α (α+ 1) (α+ 2)λ32α

(λ+ 1)
α+3

+
10α (α+ 1) (α+ 2) (α+ 3)λ42α

(λ+ 1)
α+4

−α (α+ 1) (α+ 2) (α+ 3) (α+ 4)λ52α

(λ+ 1)
α+5 ,

and so on.

For n = 0, 1 and using (24), we give few values of the numbers E(α)
n (λ) as

follows:

E(0)
0 (λ) = 1,

E(1)
0 (λ) = E0 (λ) =

2

λ+ 1
,

E(2)
0 (λ) =

4

(λ+ 1)
2 ,

E(3)
0 (λ) =

8

(λ+ 1)
3 , · · · ,

E(−1)
0 (λ) =

λ+ 1

2
,

E(−2)
0 (λ) =

(λ+ 1)
2

4
,

E(−3)
0 (λ) =

(λ+ 1)
3

8
, · · · ,

E(
2
3 )

0 (λ) =
2

2
3

(λ+ 1)
2
3

,

E(0)
1 (λ) = 0,

E1 (λ) =
−2λ

(λ+ 1)
2 ,

E(2)
1 (λ) =

−8λ

(λ+ 1)
3 ,

E(3)
1 (λ) =

−24λ

(λ+ 1)
4 ,



208 Damla Gun and Yilmaz Simsek

and so on.

Example 13. Substituting α = i and λ = −1 + i with i2 = −1 into (24), we get

E(i)
d (i− 1) = 2i

d∑
j=1

(−1)
j
(i− 1)

j
S2 (d, j)

(i)
(j)

ii+j
.

Since

(i)
(j)

=

j∑
k=0

|S1 (j, k)|
(
cos

(
kπ

2

)
+ i sin

(
kπ

2

))
=

j∑
k=0

|S1 (j, k)| e
kπi
2

and
(i− 1)

j
= ej(ln

√
2+ 3πi

4 ),

we obtain

E(i)
d (i− 1) =

d∑
j=1

j∑
k=0

(−1)
j
S2 (d, j) |S1 (j, k)| e(j ln

√
2+π

2 )

×
(
cos

(
(2k + j)π

4

)
+ i sin

(
(2k + j)π

4

))
.

4. COMBINATORIAL SUMS INVOLVING SPECIAL NUMBERS
AND FUNCTIONS

In this section, we give some combinatorial sums involving beta-type rational
functions, the Apostol-Euler numbers of order −m and the Stirling numbers of the
second kind.

Substituting α = −m (m ∈ N) into (24), we get

(27) E(−m)
d (λ) = 2−m

d∑
j=1

(−1)
j
λjS2 (d, j)

(−m)
(j)

(λ+ 1)
−m+j

.

Combining (27) with the following beta-type rational functions

(28) Mj,m(λ) =λj (λ+ 1)
m−j

,

where j,m ∈ N0 (cf. [19, Definition 1.1]), we arrive at the following result.

Corollary 14. Let d,m ∈ N. Then we have

(29) E(−m)
d (λ) = 2−m

d∑
j=1

(
m

j

)
j!S2 (d, j)Mj,m(λ).
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It is known that E(−m)
d (λ) is a rational function with variable λ. Integrating

both sides of the equation (29) from −1 to 0 with respect to λ, we obtain

0∫
−1

E(−m)
d (λ) dλ = 2−m

d∑
j=1

(
m

j

)
j!S2 (d, j)

0∫
−1

Mj,m(λ)dλ.

Combining the above equation with the following integral formulas for the
function Mj,m(λ), which given by Simsek [19, Eqs. (18)-(19)],

0∫
−1

Mj,m(λ)dλ =

m−j∑
k=0

(−1)m−k

(
m− j

k

)
1

m+ 1− k

and
0∫

−1

Mj,m(λ)dλ = (−1)j
1

(m+ 1)
(
m
j

) ,
we get

(30)

0∫
−1

E(−m)
d (λ) dλ = 2−m

d∑
j=1

(
m

j

)
j!S2 (d, j)

m−j∑
k=0

(−1)m−k

(
m− j

k

)
1

m+ 1− k

and

(31)

0∫
−1

E(−m)
d (λ) dλ =

1

2m (m+ 1)

d∑
j=1

(−1)jj!S2 (d, j) .

By substituting the following well-known formula:

d∑
j=1

(−1)jj!S2 (d, j) = (−1)d

(cf. [6, P. 117, Eq. (9.12)]), into (31), we get

0∫
−1

E(−m)
d (λ) dλ =

(−1)d

2m (m+ 1)
.

Combining (30) and (31) yields the following theorem:

Theorem 15. Let d,m ∈ N. Then we have

d∑
j=1

m−j∑
k=0

(−1)m−k

(
m

j

)(
m− j

k

)
j!S2 (d, j)

m+ 1− k
=

(−1)d

m+ 1
.
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Substituting α = β + γ into (24), we get

E(β+γ)
d (λ) = 2β+γ

d∑
j=1

(−1)
j
λjS2 (d, j)

(β + γ)
(j)

(λ+ 1)
β+γ+j

.

By substituting the following Vandermonde’s convolution formula

(β + γ)
(j)

=

j∑
v=0

(
j

v

)
(β)

(v)
(γ)

(j−v)

into the above equation, we get the following corollary:

Corollary 16. Let β, γ ∈ C, d ∈ N and n ∈ N0. Then we have

(32) E(β+γ)
d (λ) = 2β+γ

d∑
j=1

j∑
v=0

(−1)
j

(
j

v

)
(β)

(v)
(γ)

(j−v)
λjS2 (d, j)

(λ+ 1)
β+γ+j

.

By combining (4) with (32) yields the following theorem:

Theorem 17. Let β, γ ∈ C, d ∈ N and n ∈ N0. Then we have

n∑
k=0

(
n

k

)
E(β)
k (λ) E(γ)

n−k (λ)

=

d∑
j=1

j∑
v=0

(−1)
j

(
j

v

)
2−j (β)

(v)
(γ)

(j−v)
λjS2 (d, j) E(β+γ+j)

0 (λ) .

Combining (3) with (24), we arrive at the following theorem:

Theorem 18. Let n ∈ N0. Then we have

(33) E(α)
n (x, λ) = 2α

n∑
k=1

k∑
j=1

(−1)
j

(
n

k

)
λjS2 (k, j) (α)

(j)

(λ+ 1)
α+j

xn−k.

Remark 19. Here we note that different proof of the equation (33) was also given
by [10] and see also [24].

5. A NEW CLASS OF MODIFICATION EXPONENTIAL EULER
TYPE SPLINES OF DEGREE n ORDER α

In this section, we construct a new class of exponential Euler type splines of
degree n and order α (α ∈ C).
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Let α and λ be arbitrary real or complex parameters. We define monic

polynomials u
(α)
n (x;λ) with real variable x as follows:

(34) h(t, x;λ, α) =

(
1 + λ

λet + 1

)α

etx =

∞∑
n=0

u(α)n (x;λ)
tn

n!
,

where |t| < π when λ = 1; |t| < |log(−λ)| when λ ̸= 1, and also 1α = 1. When
α = 0, we have

u(0)n (x;λ) = xn.

We have the following functional equations:

h(t, x;λ, α) =

(
1 + λ

2

)α

Fα (t, x;λ)

and

h(t, 0;λ, α) =

(
1 + λ

2

)α

Fα (t;λ) .

Using the above equations, we have

(35) u(α)n (x;λ) =

(
1 + λ

2

)α

E(α)
n (x;λ)

and

u(α)n (λ) =

(
1 + λ

2

)α

E(α)
n (λ) .

A relation between the polynomials u
(α)
n (x;λ) and H

(α)
n (x;λ) is given by

u(α)n (x;λ) = H(α)
n

(
x;− 1

λ

)
.

We also define

(36) qn (λ;α)= (1 + λ)
n
u(α)n (λ) .

By using (36), we give few values of the polynomial

q0 (λ;α) = 1,

q1 (λ;α) = −αλ,

q2 (λ;α) = −αλ (λ+ 1) + α (α+ 1)λ2,

q3 (λ;α) = −αλ (λ+ 1)
2
+ 3α (α+ 1)λ2 (λ+ 1)− α (α+ 1) (α+ 2)λ3,

q4 (λ;α) = −αλ (λ+ 1)
3
+ 7α (α+ 1)λ2 (λ+ 1)

2 − 6α (α+ 1) (α+ 2)λ3 (λ+ 1)

+α (α+ 1) (α+ 2) (α+ 3)λ4,
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q5 (λ;α) = −αλ (λ+ 1)
4
+ 15α (α+ 1)λ2 (λ+ 1)

3

−25α (α+ 1) (α+ 2)λ3 (λ+ 1)
2

+10α (α+ 1) (α+ 2) (α+ 3)λ4 (λ+ 1)

−α (α+ 1) (α+ 2) (α+ 3) (α+ 4)λ5,

and so on.

The qn (λ;α) polynomial is related to beta-type rational functions. That is,

q0 (λ;α) = M0,0(λ),

q1 (λ;α) = −αM1,1(λ),

q2 (λ;α) = −αM1,2(λ) + α (α+ 1)M2,2(λ),

q3 (λ;α) = −αM1,3(λ) + 3α (α+ 1)M2,3(λ)− α (α+ 1) (α+ 2)M3,3(λ),

q4 (λ;α) = −αM1,4(λ) + 7α (α+ 1)M2,4(λ)− 6α (α+ 1) (α+ 2)M3,4(λ)

+α (α+ 1) (α+ 2) (α+ 3)M4,4(λ),

q5 (λ;α) = −αM1,5(λ) + 15α (α+ 1)M2,5(λ)− 25α (α+ 1) (α+ 2)M3,5(λ)

+10α (α+ 1) (α+ 2) (α+ 3)M4,5(λ)

−α (α+ 1) (α+ 2) (α+ 3) (α+ 4)M5,5(λ),

and so on.

In the above equations, we observe that in the definition Mj,m(λ), j =
1, 2, . . . ,m. Thus the Mj,m(λ) reduces to the beta polynomials of degree n, for de-
tail see [19, Definition 1.2.]. Therefore, using the mathematical induction method,
we arrive the following theorem involving explicit formula for the polynomials
qn (λ;α):

Theorem 20. Let n ∈ N0. Then we have

qn (λ;α) =

n∑
j=1

(−1)jS2(n, j)(α)
(n)Mj,n(λ).

Let n ∈ N0. We define the following a new class of modification exponential
Euler type splines of degree n with order α:

(37) Y (x;λ;n, α) =
u
(α)
n

(
x;− 1

λ

)
u
(α)
n

(
− 1

λ

) .

We define

(38) sn(x;λ;α) = Y (x;λ;n, α)

if 0 ≤ x < 1. Thus

(39) Y (x;λ;n, α) =
H

(α)
n (x, λ)

H
(α)
n (λ)

.
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5.1 Some properties of the Y (x;λ;n, α)

Here, we give some properties of the Y (x;λ;n, α). According to the equation (35),
we have

Y (x;λ;n, α) ∈ Cn−1(R)

and
Y (0;λ;n, α) = 1.

Remark 21. When α = 1, the equation (39) reduces to the following exponential
Euler splines of degree n:

sn(x;u) = Y (x;u;n, 1).

According to Schoneberg’s work [15] and [16], extending definition in (38) to all
real numbers x with the aid of the following functional equation

sn(x+ 1;u) = usn(x;u).

Since sn(x;u) ∈ Cn−1(R), it is clear to see that if 0 ≤ x < 1, then the polynomial

sn(x;u) =
Hn(x;u)

Hn(0;u)

is a member of the class of ordinary of order n, that is exponential Euler splines of
degree n with knots at the integer v. For v ∈ Z, sn(v;u) = uv (cf. for detail, see
[15], [16]).

6. CONCLUSION

In this article, using functional equations and partial derivatives equations
of generating functions for the Apostol-Euler numbers and polynomials of complex
order, some new and applicable formulas and relations were given. In addition
to these, partial derivative equations including the Stirling numbers and the Lah
numbers of the second kind were found with the help of successive partial derivatives
of generating functions for these numbers and polynomials. By using these partial
differential equations, novel recurrence relations for the Apostol-Euler numbers were
given. With these aid of relations, the relations among beta type rational functions,
finite combinatorial sums, and the Stirling numbers were also found. In addition,
new polynomial classes containing Stirling numbers and beta type rational functions
and exponential Euler type splines of degree n involving the Apostol-Euler numbers
and polynomials of complex order were constructed. Then, some properties of these
polynomials and splines were studied. The results of this article were examined in
relation to previous studies.
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Since the results obtained in this article have the potential to contribute to
fields such as Applicable Analysis, Differential and Difference Equations, Special
Functions, Combinatorics and also Discrete Mathematics, we will investigate future
applications of the exponential the exponential Euler type splines.
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