
Applicable Analysis and Discrete Mathematics
available online at http://pefmath.etf.rs

Appl. Anal. Discrete Math. 17 (2023), 232–248.

https://doi.org/10.2298/AADM220824008H

ANISOTROPIC DISCRETE BOUNDARY VALUE

PROBLEMS

Omar Hammouti, Said Taarabti ∗ and Ravi P. Agarwal

For an anisotropic discrete nonlinear problem with variable exponent, we
demonstrate both the existence and multiplicity of nontrivial solutions in
this study. The variational principle and critical point theory are the key
techniques employed here.

1. INRODUCTION

For the following discrete problem, our primary focus in this research is on
existence and multiplicity results,

(P )

{
−∆(|∆u(t− 1)|p(t−1)−2∆u(t− 1)) = g(t, u(t)), t ∈ [1, N ]Z,
u(0) = u(N + 1) = 0,

where N ≥ 2 is an integer, [1, N ]Z is the discrete interval {1, 2, 3..., N}, ∆ is the
forward difference operator defined by ∆u(t) = u(t + 1) − u(t) and g : [1, N ]Z ×
R −→ R is a continuous function, i.e. for any fixed t ∈ [1, N ]Z a function g(t, .) is
continuous. For the function p : [0, N ]Z −→ [2,∞[ denote

p+ = max
t∈[0,N ]Z

p(t) and p− = min
t∈[0,N ]Z

p(t).

As usual, a solution of (P ) is a function u : [0, N + 1]Z −→ R which satisfies both
equations of (P ).
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We would like to point out that issue (P ) is a discrete equivalent of the
variable exponent anisotropic problem

(1)

−
N∑
i=1

∂

∂xi

(
| ∂u
∂xi

|pi(x)−2 ∂u

∂xi

)
= g(x, u), x ∈ Ω,

u = 0, x ∈ ∂Ω.

Where Ω ⊂ RN , N ≥ 3, is bounded domain with smooth boundary, g ∈ C
(
Ω× R,R

)
is given function that satisfy certain properties, pi(x) are a continuous functions
on Ω, with pi(x) ≥ 2 for (i, x) ∈ [1, N ]Z × Ω.

Difference equations naturally emerge as discrete analogues, numerical solu-
tions, and delay differential equations that model a variety of distinct processes in
statistics, computing, mechanical engineering, control systems, artificial or biolog-
ical neural networks, and economics (for example [1, 16, 17] ). The existence and
multiplicity solutions to boundary value issues for difference equations with the
p(.)-Laplacian operator have recently attracted more attention. Fixed point theo-
rems in cones are typically used to get this results on this issue (see [2, 3, 18, 19]
and references therein). Upper and lower solution method is yet another instru-
ment in the study of nonlinear difference equations (see, for instance [5, 10, 11]
and references therein). It is widely recognized that, critical point theory, varia-
tional methods and also monotonicity methods are powerful tools to investigate
the existence and multiplicity of solutions of various problems, see the monographs
[4, 6, 7, 8, 13, 14, 20, 22, 23, 25, 26, 27, 28, 29, 30].

The authors S. Heidarkhani et al. [26] proved the existence of at least one
solution for the following problem

(Pα)

{
−∆(α(t)|∆u(t− 1)|p(t−1)−2∆u(t− 1)) = f(t, u(t)), t ∈ [1, N ]Z,

u(0) = u(N + 1) = 0,

where α : [1, N+1]Z −→ (0,+∞),and its parametric version by employing Recceri’s
variational principe, requiring an algebraic condition on the nonlinear term f . In
[27], the established the existence of at least three solutions by applying Bonanno’s

theorem, for the problem (P f,g
λ,µ) in which two parameters are involved, where

(P f,g
λ,µ)

{
−∆(α(t)|∆u(t− 1)|p(t−1)−2∆u(t− 1)) = λf(t, u(t)) + µg(t, u(t)), t ∈ [1, N ]Z,

u(0) = u(N + 1) = 0,

with α > 0, µ ≥ 0 and f, g : [1, N ]Z × R −→ R are two continuous functions.

The objective of the present paper is to establish first the existence of at least
two solutions of (P ), and leter, the existence of 2N nontrivial solutions by employing
(Mountain Pass Lemma [24]) and (Lemma 2.11 [2]). Precisely, in Theorem 1 we
establish the existence of at least two non-negative and non-positive solutions for the
problem (P ), by employing variational methods, requiring an algebraic condition on
the nonlinear term g. Also in Theorem 3, the existence of two nontrivial solutions
are established by assuming the suitable conditions on nonlinear terms.
Finally in Theorem 5, we obtain 2N nontrivial solutions.
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We present Examples 2, 4, 6 in which the hypotheses of Theorems 1, 3, 5 are
fulfilled, respectively.

Through the use of min-max techniques and the Mountain Pass Theorem, we
will investigate the existence and multiplicity of nontrivial solutions to the equation
(P ).

Let

G(t, x) =

∫ x

0

g(t, s)ds for (t, x) ∈ [1, N ]Z × R.

We set the following conditions in order to state our main findings:

(G1) There exists η with η <
1(√

N(N + 1)
)p− such that

lim sup
|x|→∞

p+G(t, x)

|x|p− ≤ η, ∀t ∈ [1, N ]Z.

(G2) lim
|x|→∞

(
G(t, x)− p−

(p+)2
λ1|x|p

+

)
= −∞, ∀t ∈ [1, N ]Z where

(2) λ1 = inf


N+1∑
t=1

|∆u(t− 1)|p−

N∑
t=1

|u(t)|p+

| u ∈ HN⧹{0}

 ,

with

(3) HN = {u : [0, N + 1]Z −→ R | u(0) = u(N + 1) = 0 },

It is easy to see that 0 < λ1 < ∞.

(G3) There exists δ > 2p
+

(N + 1)
p+

2 such that

lim inf
|x|→∞

p−G(t, x)

|x|p+ ≥ δ, ∀t ∈ [1, N ]Z.

(G4) lim
|x|→0

G(t, x)

|x|p+ = 0, ∀t ∈ [1, N ]Z.

(G5) G⋆ = lim inf
x→0

p−G(t, x)

|x|p− > 2p
−
(N + 1)

p−
2 , ∀t ∈ [1, N ]Z.

(G6) g(t, x) is odd in x, i.e., g(t,−x) = −g(t, x) for (t, x) ∈ [1, N ]Z × R.

The following theorems are the key findings of this study.
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Theorem 1. Suppose that (G1) and g(t, 0) = 0 for any t ∈ [1, N ]Z, hence, there
are at least two non-negative and non-positive solutions to the problem (P ).

Example 2. Put g : [1, N ]Z × R −→ R by the formula

g(t, x) =
p−| sin t|

2p+
(√

N(N + 1)
)p− |x|p

−−2x.

Clearly,

G(t, x) =
| sin t|

2p+
(√

N(N + 1)
)p− |x|p

−
, for all (t, x) ∈ [1, N ]Z × R.

It’s simple to observe that G satisfy the condition (G1) with η =
1

2
(√

N(N + 1)
)p−

and g(t, 0) = 0, ∀t ∈ [1, N ]Z.

Theorem 3. Suppose that (G2) and (G5) hold, then the problem (P ) has at least
two nontrivial solutions.

Example 4. Consider the continuous function g : [1, N ]Z × R −→ R represented
by the following formula

g(t, x) = 2p
−
(N + 1)

p−
2 et|x|p

−−2x.

Clearly, we have

G(t, x) =
2p

−

p−
(N + 1)

p−
2 et|x|p

−
, for all (t, x) ∈ [1, N ]Z × R.

Direct calculations give

lim
|x|→∞

(
G(t, x)− p−

(p+)2
λ1|x|p

+

)
= −∞

and

lim inf
x→0

p−G(t, x)

|x|p− = 2p
−
(N + 1)

p−
2 et > 2p

−
(N + 1)

p−
2 .

Thus G satisfies the conditions (G2) and (G5).

Theorem 5. Assume that (G3), (G4) and (G6) are satisfied, then the problem (P )
has at least 2N nontrivial solutions.

Example 6. Take the function g : [1, N ]Z × R −→ R given by

g(t, x) =

{
| cos t|(1 + p+ ln |x|)|x|p+−2x, |x| > 1, t ∈ [1, N ]Z,

| cos t||x|p+−1x, |x| ≤ 1, t ∈ [1, N ]Z.
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By the expression of g, we have

G(t, x) =

{
| cos t|(|x|p+

ln |x|+ 1
p++1 ), |x| > 1, t ∈ [1, N ]Z,

1
p++1 | cos t||x|

p++1, |x| ≤ 1, t ∈ [1, N ]Z.

Direct calculations give

lim inf
|x|→∞

G(t, x)

|x|p+ = +∞ and lim
|x|→0

G(t, x)

|x|p+ = 0, for any t ∈ [1, N ]Z.

We see that (G3), (G4) and (G6) are fulfilled.

The structure of this paper is as follows: The second part introduces the
knowledge of space theory and related lemmas, the third part presents the main
results and proofs.

2. VARIATIONAL STRUCTURE AND SOME LEMMAS

The vector space HN defined in (3) is an N -dimensional Hilbert space with
the inner product

⟨u, v⟩ =
N∑
t=1

∆u(t− 1)∆v(t− 1), ∀u, v ∈ HN ,

while the corresponding norm is given by

∥u∥ =

(
N+1∑
t=1

|∆u(t− 1)|2
) 1

2

.

We recall some auxiliary results which we use through the paper.

Lemma 7. (see [15]) For every u ∈ HN , we have

(A1)
N+1∑
t=1

|∆u(t− 1)|p(t−1) ≥ N
p+−2

2 ∥u∥p+

, with ∥u∥ ≤ 1.

(A2)
N+1∑
t=1

|∆u(t− 1)|p(t−1) ≥ N
2−p−

2 ||u||p− − (N + 1), with ∥u∥ > 1.

(A3)
N∑
t=1

|u(t)|m ≤ N(N + 1)m−1
N+1∑
t=1

|∆u(t− 1)|m, ∀m > 1.

(A4) max
t∈[1,N ]Z

|u(t)| < (N + 1)
1
q

(
N+1∑
t=1

|∆u(t− 1)|p
) 1

p

, ∀p, q > 1 with
1

p
+

1

q
= 1.
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(A5)
N+1∑
t=1

|∆u(t− 1)|m ≤ 2m
N∑
t=1

|u(t)|m, ∀m ≥ 2.

(A6)
N+1∑
t=1

|∆u(t− 1)|p(t−1) ≤ (N + 1)||u||p+

+ (N + 1).

(A7)
N+1∑
t=1

|∆u(t− 1)|m ≤ (N + 1)||u||m, ∀m ≥ 1.

(A8)
N+1∑
t=1

|∆u(t− 1)|m ≥ (N + 1)
2−m

2 ||u||m, ∀m ≥ 2.

Let u ∈ HN , we consider the functional as follows

(4) Φ(u) = −
N+1∑
t=1

1

p(t− 1)
|∆u(t− 1)|p(t−1) +

N∑
t=1

G(t, u(t)).

It’s simple to see that Φ ∈ C1(HN ,R) and its derivative Φ′(u) at u ∈ HN is defined
by

(5) Φ′(u).v = −
N+1∑
t=1

|∆u(t− 1)|p(t−1)−2∆u(t− 1)∆v(t− 1) +

N∑
t=1

g(t, u(t))v(t),

for any v ∈ HN .
The summation by parts rule allows us to express Φ′ as

Φ′(u).v =

N∑
t=1

[
∆(|∆u(t− 1)|p(t−1)−2∆u(t− 1)) + g(t, u(t))

]
v(t),

for any v ∈ HN .
Finding the solutions to the equation (P ) is equal to getting the critical point of
the functional Φ.

The truncated problem is what we’ll focus at next.

(P±)

{
−∆(|∆u(t− 1)|p(t−1)−2∆u(t− 1)) = g±(t, u(t)), t ∈ [1, N ]Z,
u(0) = u(N + 1) = 0,

where

(6) g±(t, x) =

{
g(t, x) , if± x ≥ 0,

0 , otherwise.

The positive and negative components of u are denoted by u+ = max(u, 0) and
u− = max(−u, 0), respectively, for u ∈ HN .

It is clear to see that u+ ≥ 0, u− ≥ 0, u = u+ − u−, u+.u− = 0, u± =
1

2
(|u| ± u) and u± ≤ |u|.
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Lemma 8. All solutions of (P+) (resp. (P−)) are non-negative (resp. non positive)
solutions of (P ).

Proof.
Define Φ± : HN −→ R,

Φ±(u) = −
N+1∑
t=1

1

p(t− 1)
|∆u(t− 1)|p(t−1) +

N∑
t=1

G±(t, u(t))

= −
N+1∑
t=1

1

p(t− 1)
|∆u(t− 1)|p(t−1) +

N∑
t=1

G(t, u±(t)),

where G±(t, x) =
∫ x

0
g±(t, s)ds.

Firstly we show that ∆u+(t− 1)∆u−(t− 1) ≤ 0 and

|∆u−(t− 1)| ≤ |∆u(t− 1)|.

Indeed,

∆u+(t− 1)∆u−(t− 1) = (u+(t)− u+(t− 1))(u−(t)− u−(t− 1))

= u+(t)u−(t)− u+(t)u−(t− 1)

− u+(t− 1)u−(t) + u+(t− 1)u−(t− 1)

= −u+(t)u−(t− 1)− u+(t− 1)u−(t) ≤ 0.

And

|∆u−(t− 1)| = |u−(t)− u−(t− 1)|

= |1
2
(|u(t)| − u(t))− 1

2
(|u(t− 1)| − u(t− 1))|

=
1

2
||u(t)| − |u(t− 1)| − (u(t)− u(t− 1))|

≤ 1

2
[||u(t)| − |u(t− 1)||+ |u(t)− u(t− 1)|]

≤ 1

2
[|u(t)− u(t− 1)|+ |u(t)− u(t− 1)|]

≤ |∆u(t− 1)|.

Let u be a solution of (P+), or equivalently u be a critical point of Φ+. Taking
v = u− in

⟨Φ′
+(u), v⟩ = −

N+1∑
t=1

|∆u(t− 1)|p(t−1)−2∆u(t− 1)∆v(t− 1) +
N∑
t=1

g+(t, u(t))v(t),
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we have

⟨Φ′
+(u), u

−⟩ = −
N+1∑
t=1

|∆u(t− 1)|p(t−1)−2∆u(t− 1)∆u−(t− 1)

= −
N+1∑
t=1

|∆u(t− 1)|p(t−1)−2∆(u+(t− 1)− u−(t− 1))∆u−(t− 1)

= −
N+1∑
t=1

|∆u(t− 1)|p(t−1)−2∆u+(t− 1)∆u−(t− 1)

−
N+1∑
t=1

|∆u(t− 1)|p(t−1)−2(∆u−(t− 1))2.

Therefore, we deduce that

N+1∑
t=1

|∆u(t− 1)|p(t−1)−2
[
−∆u+(t− 1)∆u−(t− 1)

]

+

N+1∑
t=1

|∆u(t− 1)|p(t−1)−2(∆u−(t− 1))2 = 0.

Since,
−∆u+(t− 1)∆u−(t− 1) ≥ 0, ∀t ∈ [1, N + 1]Z,

then, we get

|∆u(t− 1)|p(t−1)−2(∆u−(t− 1))2 = 0, ∀t ∈ [1, N + 1]Z.

On the other hand

|∆u−(t− 1)|p(t−1) = |∆u−(t− 1)|p(t−1)−2
(
∆u−(t− 1)

)2
≤ |∆u(t− 1)|p(t−1)−2

(
∆u−(t− 1)

)2
= 0,

for any t ∈ [1, N + 1]Z.
So u− = 0 and u = u+ is also a critical point of Φ with critical value Φ(u) = Φ+(u).

In a similar manner, non-positive solutions of (P ) are nontrivial critical points
of Φ−. Finished with the proof.

Lemma 9. (see [20]) Let E be a reflexive Banach space. If a functional Φ ∈
C1(E,R) is weakly lower semi continuous and anti-coercive, i.e. lim

∥u∥−→∞
Φ(u) =

−∞, then there exists u ∈ E such that Φ(u) = sup
u∈E

Φ(u) and u is also a critical

point of Φ, i.e Φ′(u) = 0. Moreover, if Φ is strictly convex, then a critical point is
unique.
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Definition 1. Let E be a real Banach space, and Φ ∈ C1(E,R) is a continuously
Fréchet differentiable functional. Φ is said to satisfy the Palais-Smale (PS) condi-
tion if every sequence (un) ⊂ E, such that (Φ(un)) is bounded and Φ′(un) → 0 as
n → ∞, has a convergent subsequence. The sequence (un) is called a (PS) sequence.

Let Br denote the open ball in E about 0 of radius r and let ∂Br the denote
its boundary.

Lemma 10. (Mountain Pass Lemma ([24]))
Let E be a real Banach space and Φ ∈ C1(E,R) satisfy the (PS) condition. If
Φ(0) = 0 and

σ1) there exist constants r, α > 0 such that Φ|∂Br ≥ α,

σ2) there exist e ∈ E\Br such that Φ(e) ≤ 0.

Then Φ possesses a critical value c ≥ α given by

c = inf
h∈Γ

max
s∈[0,1]

Φ(h(s)),

where
Γ = {h ∈ C([0, 1] , E) | h(0) = 0, h(1) = e}.

Lemma 11. (see [2]) Let E be a real Banach space and Φ ∈ C1(E,R) be even,
bounded from below, and satisfy the (PS) condition. Suppose that Φ(0) = 0 and
there is a set Ω ⊂ E such that Ω is homeomorphic to Sn−1 by an odd map and
sup
u∈Ω

Φ(u) < 0, where Sn−1 is the n − 1 dimensional unit sphere. Then, Φ has at

least n disjoint pairs of nontrivial critical points.

3. PROOFS OF THE MAIN RESULTS

Proof of Theorem 1. Since lim sup
|x|→∞

p+G(t, x)

|x|p− ≤ η, there exists R > 0

such that

(7) G(t, x) ≤ 1

p+
(η + ε)|x|p

−
for (t, |x|) ∈ [1, N ]Z × ]R,+∞[ ,

where

0 < ε <
1(√

N(N + 1)
)p− − η.

Then, by (7) and the continuity of x −→ G(t, x), there exists c > 0 such that

(8) G(t, x) ≤ 1

p+
(η + ε)|x|p

−
+ c, ∀(t, x) ∈ [1, N ]Z × R.
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Let u ∈ HN with ∥u∥ > 1. According to (8), (A3) and (A7), we obtain

N∑
t=1

G(t, u+(t)) ≤ 1

p+
(η + ε)

N∑
t=1

|u+(t)|p
−
+ cN

≤ 1

p+
(η + ε)

N∑
t=1

|u(t)|p
−
+ cN

≤ 1

p+
(η + ε)N(N + 1)p

−
∥u∥p

−
+ cN.

Using the preceding inequality and (A2), we get

Φ+(u) ≤
N(N + 1)p

−

p+

(η + ε)− 1(√
N(N + 1)

)p−

 ∥u∥p
−
+

N + 1

p+
+ cN.

Since ε <
1(√

N(N + 1)
)p− − η, then Φ+(u) → −∞ as ∥u∥ → +∞. Thus, Φ+ is

anti-coercive and bounded from above, hence there is a maximum point of Φ+ at
some u+ ∈ HN i.e., Φ+(u+) = sup

u∈HN

Φ(u), which is a critical point of Φ+.

As a result, the issue (P+) has a solution that is a non-negative solution to
the problem (P ) according to the Lemma 8.

We demonstrate that there is also a non-positive solution using Φ− in a similar
manner. The proof of Theorem 1 is now finished.

Proof of Theorem 3. From (G5), there exist ρ > 0 such that

G(t, x) ≥ 1

p−
(G⋆ − ε)|x|p

−
for all (t, |x|) ∈ [1, N ]Z × [0, ρ],

where ε > 0 satisfies

(9) ε < G⋆ − 2p
−
(N + 1)

p−
2 .

Let u ∈ HN , ∥u∥ ≤ r with r = min

{
ρ√

N + 1
, 1

}
. By (A4) it follows

|u(t)| ≤ max
t∈[1,N ]Z

|u(t)| ≤ ρ, ∀t ∈ [1, N ]Z.

So, by (A5) and (A8), we have

(10)

N∑
t=1

G(t, u(t)) ≥ 1

p−
(G⋆ − ε)× 2−p−

(N + 1)
2−p−

2 ∥u∥p
−
.
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However, considering that ∥u∥ ≤ 1 then |∆u(t− 1)| ≤ 1 for any t ∈ [1, N + 1]Z.
Therefore, using (A7) we get

N+1∑
t=1

|∆u(t− 1)|p(t−1) ≤
N+1∑
t=1

|∆u(t− 1)|p
−

≤ (N + 1)∥u∥p
−
.

We combined the previous inequality with (10), we obtain

Φ(u) ≥ 2−p−

p−
(N + 1)

2−p−
2

(
(G⋆ − ε)− 2p

−
(N + 1)

p−
2

)
∥u∥p

−
.

Take α =
2−p−

p−
(N + 1)

2−p−
2

(
(G⋆ − ε)− 2p

−
(N + 1)

p−
2

)
rp

−
> 0. Then,

(11) Φ(u) ≥ α > 0, ∀u ∈ ∂Br.

The existence of constants α > 0 and r > 0 such that Φ|∂Br ≥ α is also demon-
strated by our research. This means that the requirement σ1) of the Mountain Pass
Lemma is satisfied by Φ. Clear the Φ(0) = 0 setting. We must confirm all other
assumptions in order to use the Mountain Pass Lemma.

We demonstrate the anti-coercive of Φ through contradiction. Let K ∈ R
and (un) ⊂ HN such that

∥un∥ −→ ∞ and Φ(un) ≥ K.

Putting vn =
un

∥un∥
, one has ∥vn∥ = 1. Since dimHN < ∞, there exists v ∈ HN

such that

∥vn − v∥ −→ 0, as n → ∞ and ∥v∥ = 1.

In particular v ̸= 0, we pose Λ = {t ∈ [1, N ]Z/ v(t) ̸= 0}.
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For t ∈ Λ, |un(t)| −→ ∞. Using (2), we have

K ≤ −1

p+

 ∑
|∆un(t−1)|>1

|∆u(t− 1)|p(t−1) +
∑

|∆un(t−1)|≤1

|∆u(t− 1)|p(t−1)


+

N∑
t=1

G(t, un(t))

≤ −1

p+

 ∑
|∆un(t−1)|>1

|∆u(t− 1)|p
−
+

∑
|∆un(t−1)|≤1

|∆u(t− 1)|p
+


+

N∑
t=1

G(t, un(t))

=
−1

p+

 N∑
t=1

|∆u(t− 1)|p
−
+

∑
|∆un(t−1)|≤1

|∆u(t− 1)|p
+

−
∑

|∆un(t−1)|≤1

|∆u(t− 1)|p
−


+

N∑
t=1

G(t, un(t))

≤ −1

p+

[
λ1

N∑
t=1

|un(t)|p
+

− (N + 1)

]
+

N∑
t=1

[
G(t, un(t))−

p−

(p+)2
λ1|un(t)|p

+

]

+
p−

(p+)2
λ1

N∑
t=1

|un(t)|p
+

≤ λ1
−1

p+

(
1− p−

p+

) N∑
t=1

|un(t)|p
+

+

N∑
t=1

[
G(t, un(t))−

p−

(p+)2
λ1|un(t)|p

+

]
≤
∑
t∈Λ

[
G(t, un(t))−

p−

(p+)2
λ1|un(t)|p

+

]
+

∑
t∈[1,N ]Z⧹Λ

[
G(t, un(t))−

p−

(p+)2
λ1|un(t)|p

+

]
.

From the condition (G2), we deduce that∑
t∈Λ

[
G(t, un(t))−

p−

(p+)2
λ1|un(t)|p

+

]
−→ −∞, as n → ∞.

The sequence (un(t)) is bounded for any t ∈ [1, N ]Z⧹Λ and G is continuous, then
there exists a constant M ∈ R such that∑

t∈[1,N ]Z⧹Λ

[
G(t, un(t))−

p−

(p+)2
λ1|un(t)|p

+

]
≤ M.
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Therefore, we get

K ≤
∑
t∈Λ

[
G(t, un(t))−

p−

(p+)2
λ1|un(t)|p

+

]
+M −→ −∞, as n → ∞.

This is absurd. As a result, Φ is anti-coercive toward HN . In order to guarantee
that Φ(u) < 0 and that any (PS) sequence (un) is bounded, we can choose u
that is sufficiently large. We can see that Φ fulfills the (PS) requirement since the
dimension of HN is finite. According to the Mountain Pass Lemma, Φ has a critical
value

c ≥ α > 0,

where

c = inf
h∈Γ

max
s∈[0,1]

Φ(h(s)),

and

Γ = {h ∈ C([0, 1] , HN )/ h(0) = 0, h(1) = u}.

Let u1 ∈ HN be a critical point associated to the critical value c of Φ, i.e., Φ(u1) = c.
Hence, u1 is nontrivial solution of the problem (P ).

Since Φ is anti-coercive and bounded from above, then there is a maximum
point of Φ at some u2 ∈ HN , i.e., Φ(u2) = sup

u∈HN

Φ(u). Using the preceding equality

and (11), we obtain

Φ(u2) = sup
u∈HN

Φ(u) ≥ sup
u∈∂Br

Φ(u) > 0.

Hence u2 is nontrivial solution of the problem (P ).

If u1 ̸= u2, then we have two nontrivial solutions u1 and u2. Otherwise,
suppose u1 = u2, then inf

h∈Γ
max
s∈[0,1]

Φ(h(s)) = sup
u∈HN

Φ(u). Therefore, we have Φ(u1) ≤

max
s∈[0,1]

Φ(h(s)) ≤ Φ(u2), ∀h ∈ Γ.

Since u1 = u2, we deduce that Φ(u1) = max
s∈[0,1]

Φ(h(s)), ∀h ∈ Γ. By the conti-

nuity of Φ(h(s)) with respect to s, Φ(0) = 0 and Φ(u) < 0 imply that there exists
s1 ∈ ]0, 1[ such that Φ(u1) = Φ(h(s1)). Choose h2, h3 ∈ Γ such that

{h2(s) | s ∈ ]0, 1[} ∩ {h3(s) | s ∈ [0, 1]} = ∅,

then there exists s2, s3 ∈ ]0, 1[ such that

Φ(h2(s2)) = Φ(h3(s3)) = Φ(u1) = max
s∈[0,1]

Φ(h(s)).

Thus, we get two different critical points of Φ on HN denoted by v2 = h2(s2),
v3 = h3(s3) that are nontrivial solutions of problem (P ). The proof of Theorem 3
is complete.
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Proof of Theorem 5. Let Φ be defined by (4). Then, it is clear that
Φ(0) = 0 and Φ is even by (G6).
From (G3), there exists R > 0 such that

(12) G(t, x) ≥ 1

p−
(δ − ε)|x|p

+

, ∀(t, |x|) ∈ [1, N ]Z × ]R,+∞[ ,

where

(13) 0 < ε < δ − 2p
+

(N + 1)
p+

2 .

On the other hand, by continuity of x −→ G(t, x) − 1

p−
(δ − ε)|x|p+

, there exists

d > 0 such that

(14) G(t, x)− 1

p−
(δ − ε)|x|p

+

≥ −d, ∀(t, |x|) ∈ [1, N ]Z × [0, R] .

Thus, we deduce that

(15) G(t, x) ≥ 1

p−
(δ − ε)|x|p

+

− d, ∀(t, x) ∈ [1, N ]Z × R.

Let u ∈ HN . According to (A5), (A8) and (15), we obtain

N∑
t=1

G(t, u(t)) ≥ 1

p−
(δ − ε)

N∑
t=1

|u(t)|p
+

− dN

≥ 2−p+

p−
(N + 1)

2−p+

2 (δ − ε)∥u∥p
+

− dN.(16)

Using the preceding inequality and (A6), we get

Φ(u) ≥ N + 1

p−

[
2−p+

(N + 1)
−p+

2 (δ − ε)− 1

]
∥u∥p

+

− dN − N + 1

p−
.

Then, in view of (13), Φ(u) → ∞ as ∥u∥ → ∞. Thus Φ is bounded from below,
coercive and any (PS) sequence (un) is bounded. In view of the fact that the
dimension of HN is finite, we see that Φ satisfies the (PS) condition.
Using the condition (G4), for any ε > 0 there exists η > 0 such that

(17) |G(t, x)| ≤ ε|x|p
+

, ∀(t, |x|) ∈ [1, N ]Z × [0, η] .

Let u ∈ HN , ∥u∥ ≤ τ with τ = min

{
η√

N + 1
, 1

}
. From (A4) it follows

|u(t)| ≤ max
t∈[1,N ]Z

|u(t)| ≤ η, ∀t ∈ [1, N ]Z.
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Therefore,

(18) |G(t, u(t))| ≤ ε|u(t)|p
+

, ∀t ∈ [1, N ]Z.

Define

Ω =

{
u ∈ HN |

N∑
t=1

|u(t)|2 =
τ2

4

}
.

Let SN−1 be the unit sphere in RN and define Ψ : Ω −→ SN−1 by

Ψ(u) =
2

τ
u.

Then, Ψ is an odd homeomorphism between Ω and SN−1. For u ∈ Ω, by (A5)
clearly ∥u∥ ≤ τ . According to (18), (A1), (A3) and (A7), we obtain

Φ(u) ≤
[
−1

p+
N

p+−2
2 + εN(N + 1)p

+

]
∥u∥p

+

.

Let us choose ε > 0 such that ε <
N

p+−4
2 (N + 1)−p+

p+
. It follows that Φ(u) < 0

and sup
u∈Ω

Φ(u) < 0.

Hence, all the conditions of Lemma 11 are satisfied, so Φ has at least 2N nontrivial
critical points, which are nontrivial solutions of the problem (P ). The proof of
Theorem 5 is now complete.
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