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A NOTE ON DEGENERATE MULTI-POLY-BERNOULLI
NUMBERS AND POLYNOMIALS

Taekyun Kim∗ and Dae San Kim

In this paper, we consider the degenerate multi-poly-Bernoulli numbers and
polynomials which are defined by means of the multiple polylogarithms and
degenerate versions of the multi-poly-Bernoulli numbers and polynomials.
We investigate some properties for those numbers and polynomials. In ad-
dition, we give some identities and relations for the degenerate multi-poly-
Bernoulli numbers and polynomials.

1. INTRODUCTION

In recent years, we have witnessed that explorations for degenerate versions
of some special polynomials and transcendental functions have been very rewarding
and fruitful. Indeed, the study of degenerate versions has applications to differen-
tial equations, identities of symmetry and probability theory as well as to number
theory and combinatorics. Indeed, infinitely many families of linear and non-linear
ordinary differential equations, satisfied by the generating functions of some degen-
erate special polynomials and numbers, were found with the purpose of discovering
some new combinatorial identities for those polynomials and numbers (see [13]). As
to identities of symmetry, abundant identities of symmetry for various degenerate
versions of many special polynomials have been investigated by using p-adic inte-
grals and p-adic and q-integrals (see [17]). For probability theory, some identities
connecting some special numbers and moments of random variables were derived
from the generating functions of the moments of certain random variables (see [19]).
It is noteworthy that study of degenerate versions of some polynomials and num-
bers is not only limited to special polynomials and numbers but also extended to
transcendental functions like gamma functions (see [16]).
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In this paper, we consider the degenerate multi-poly-Bernoulli numbers and
polynomials (see (15)) which are defined by means of the multiple polylogarithms
and degenerate versions of the multi-poly-Bernoulli numbers and polynomials stud-
ied earlier in the literature (see [2]). We investigate some properties for those
numbers and polynomials. In addition, we give some identities and relations for
the degenerate multi-poly-Bernoulli numbers and polynomials. For the rest of this
section, we recall the facts that needed throughout this paper.

For any 0 ̸= λ ∈ R, Carlitz considered the higher-order degenerate Bernoulli
polynomials given by

(1)

(
t

(1 + λt)
1
λ − 1

)r

(1 + λt)
x
λ =
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n=0

β
(r)
n,λ(x)

tn

n!
, (see [3]).

When x = 0, β
(r)
n,λ = β

(r)
n,λ(0) are called the higher-order degenerate Bernoulli num-

bers.

For k ∈ Z, the polylogarithm function is defined by

(2) Lik(x) =

∞∑
n=1

xn

nk
, (see [1, 12, 23]).

Note that Li1(x) =

∞∑
n=1

xn

n!
= − log(1− x).

As is known, the poly-Bernoulli polynomials are defined by
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n!
, (see [12]).

When x = 0, B
(k)
n = B

(k)
n (0) are called the poly-Bernoulli numbers. Note that

B
(1)
n = Bn(x), where Bn(x) are the ordinary Bernoulli polynomials given by

∞∑
n=0

Bn(x)
tn

n!
=

t

et − 1
ext, (see [1− 3, 6− 12, 14− 16, 18, 20− 27]).

The polyexponential functions were first studied by Hardy [4,5] and reconsidered
by Kim as an inverse to the polylogarithm functions which were introduced by
Kanako [8]. The degenerate exponential functions are defined by

(4) exλ(t) = (1 + λt)
x
λ , eλ(t) = e1λ(t) = (1 + λt)

1
λ , (see [11]).

Here we observe that

(5) exλ(t) =

∞∑
n=0

(x)n,λ
tn

n!
, (see [11]),

where (x)0,λ = 1, (x)n,λ = x(x− λ) · · · (x− (n− 1)λ), (n ≥ 1).
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It is well known that the Stirling numbers of the second kind are defined by

(6)
1

k!
(et − 1)k =

∞∑
n=k

S2(n, k)
tn

n!
, (n ≥ 0), (see [11, 12, 15, 20, 21]).

Also, the signed Stirling numbers of the first kind are given by

1

k!
(log(1 + t))k =

∞∑
n=k

S1(n, k)
tn

n!
, (n ≥ 0).(7)

For k1, k2, . . . , kr ∈ Z, the multiple polylogarithm is defined by

(8) Lik1,k2,...,kr
(x) =

∑
0<n1<n2<···<nr

xnr

nk1
1 nk2

2 · · ·nkr
r

, (see [26]),

where the sum is over all integers n1, n2, . . . , nr satisfying 0 < n1 < n2 < · · · < nr.
Note here that (8) reduces to (2) for r = 1.
About twenty years ago, the first author introduced the generalized Bernoulli num-

bers B
(k1,k2,...,kr)
n of order r (see [14]) which are given by

(9)
r!Lik1,k2,...,kr (1− e−t)

(et − 1)r
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n

tn
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.

Actually, the r! in (9) does not appear in [14]. However, the present definition is

more convenient, since B
(1,1,...,1)
n = B

(r)
n are the Bernoulli numbers of order r (see

(14)). These numbers would have been called the multi-poly-Bernoulli numbers,
since it is a multiple version of poly-Bernoulli numbers (see (3)). Furthermore, we
may consider the multi-poly-Bernoulli polynomials, which are natural extensions
of the multi-poly-Bernoulli numbers, given by

(10)
r!Lik1,k2,...,kr

(1− e−t)

(et − 1)r
ext =
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n=0
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n (x)

tn

n!
.

The multi-poly-Bernoulli polynomials are multiple versions of the poly-Bernoulli
polynomials in (3). We let the interested reader refer to [1] for the detailed prop-
erties on those polynomials.

2. DEGENERATE MULTI-POLY-BERNOULLI NUMBERS AND
POLYNOMIALS

From (8), we note that
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Let us take kr = 1. Then, from (11), we have

d
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∑
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Thus, by (12), we get
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By integration by parts, from (13), we note that
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By induction, we get
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)r
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xl
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where S1(l, r) (respectively, |S1(l, r)| = S1(l, r)(−1)l−r) are the signed (respectively,
unsigned) Stirling numbers of the first kind (see (7)).

Now, we consider the degenerate multi-poly-Bernoulli polynomials which are
degenerate versions of the multi-poly-Bernoulli polynomials in (10) and given by

(15)
r!Lik1,k2,...,kr (1− e−t)(

eλ(t)− 1
)r exλ(t) =
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β
(k1,k2,...,kr)
n,λ (x)

tn

n!
,

(see (4)). When x = 0, β
(k1,k2,...,kr)
n,λ = β

(k1,k2,...,kr)
n,λ (0) are called the degenerate

multi-poly-Bernoulli numbers.
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From (15) and recalling (5), we note that

∞∑
n=0

β
(k1,k2,...,kr)
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Thus, by (16), we get
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From (1), (14) and (15), we note that

(18) β

r−times︷ ︸︸ ︷
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(r)
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Thus, from (17) and (18), we obtain the following result.

Proposition 1. For n ≥ 0, we have
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Now, from (19), we have

∞∑
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where βn,λ are the Carlitz’s degenerate Bernoulli numbers with β
(1)
n,λ = βn,λ. There-

fore, by (20), we obtain the following theorem.

Theorem 2. For k1, k2, . . . , kr ∈ Z and n ≥ 0, we have
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Replacing kr by −kr in (21), we obtain the following corollary.

Corollary 3. For k1, k2, . . . , kr ∈ Z and n ≥ 0, we have
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From (15), we have
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Therefore, from (22) we obtain the following theorem.

Theorem 4. For n, r ≥ 1 and k1, k2, . . . , kr ∈ Z, we have
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By the definition of degenerate multi-poly-Bernoulli polynomials, we get
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Thus, from (23) we obtain

β
(k1,...,kr)
n,λ (x+ y) =

n∑
l=0

(
n

l

)
β
(k1,...,kr)
l,λ (x)(y)n−l,λ, (n ≥ 0).

3. CONCLUSION

In [3], Carlitz initiated study of degenerate versions of Bernoulli and Euler
polynomials, namely the degenerate Bernoulli and Euler polynomials. In recent
years, some mathematicians intensively studied various versions of many special
numbers and polynomials and quite a few interesting results were found about them
(see [9,10,12,15,16,18,17-22,24,26]). As we mentioned in the Introduction, study of
degenerate versions is not limited only to polynomials but can be extended also to
transcendental functions like gamma functions (see [16]).

In this paper, we considered the degenerate multi-poly-Bernoulli numbers
and polynomials which are defined by means of the multiple polylogarithms. They
are degenerate versions of the multi-poly-Bernoulli numbers and polynomials, and
multiple versions of the degenerate poly-Bernoulli numbers and polynomials (r = 1
case of (15)). We investigated some properties for those numbers and polynomials.
In fact, among other things, we derived some explicit expressions of the degenerate
multi-poly-Bernoulli numbers and polynomials.

It is one of our future projects to continue this line of research and find
applications not only in mathematics but also in science and engineering.

Acknowledgements. We would like to thank the referees for their helpful sug-
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