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NEW SHARP INEQUALITIES OF

MITRINOVIĆ-ADAMOVIĆ TYPE

Wei-Dong Jiang

In this paper, new sharp Mitrinović-Adamović inequalities for circular func-
tions are established.

1. INTRODUCTION

The following inequality

sinx

x
<

2 + cosx

3
, 0 < x <

π

2
.(1)

is known as the Cusa-Huygens inequality. This inequality has been extended and
sharpened in many different ways. In this regard, we may refer to [3, 4]. For
example, in [4], the authors find the necessary and sufficient conditions such that
the inequalities

sinx

x
> a+ b cosc x, x ∈ (0, T )

and

sinx

x
< a+ b cosc x, x ∈ (0, T )

where a, b, c ∈ R and T ∈ (0, π/2].

Recently, Bagul et al. [5] drew two conclusions about the improvement of
inequality (1).

−
(
2

3
− 2

π

)
Φ1(x) <

sinx

x
− 2 + cosx

3
< −

(
2

3
− 2

π

)
Φ2(x),
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where Φ1(x) = (π/2− 1)−1(x− sinx) and Φ2(x) = (π/2− 1)−2(x− sinx)2.

−
(
2

3
− 2

π

)
Ψ1(x) <

sinx

x
− 2 + cosx

3
< −

(
2

3
− 2

π

)
Ψ2(x),

where Ψ1(x) = (sinx− x cosx) and Ψ2(x) = (sinx− x cosx)2.

In literature, the inequality

cosx <

(
sinx

x

)3

, 0 < x <
π

2
.

is known as Mitrinović-Adamović inequality (see[17, 18]).

In recent years, many researchers have paid attention to the improvements
of the above-mentioned inequality.

In [11, 21, 26], a better lower bound for
(
sin x
x

)3
was given as follows:

cos4
x

2
<

(
sinx

x

)3

, 0 < x <
π

2
.

Mortici[19] gave the following double inequality

cosx+
1

15
x4 − 23

1890
x6 <

(
sinx

x

)3

< cosx+
1

15
x4, 0 < x <

π

2
.(2)

Chouikha [10] proved the following double inequality

cosx+ x3

(
1− x2

63

)
sinx

15
<

(
sinx

x

)3

< cosx+
x3 sinx

15
, 0 < x <

π

2
.(3)

In [33, Lemma 7], Zhu proved the following results: the double inequality

1− π3 − 8

π3
sin2 x <

(
sinx

x

)3

< 1− 1

2
sin2 x.(4)

holds for all x ∈ (0, π/2), the constants (π3 − 8)/π3 and 1/2 are best possible.

For more information on this topic, please see [7, 8, 9, 21, 22, 12, 24, 20,
25, 27, 28, 34, 29, 30, 31, 32] and closely related references therein.

The aim of this paper is to obtain some new upper and lower bounds of(
sin x
x

)3
, which improve several known results.

Our main results can be formulated in details as the following theorems.

Theorem 1. The function

F (x) =
1

x2

[
x3 sinx(

sin x
x

)3 − cosx
− 15

]
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is decreasing on (0, π). In paprticular, we have

(i)The double inequality

cosx+
x3 sinx

15 + 5
21x

2
<

(
sinx

x

)3

< cosx+
x3 sinx

15 + π6−960
16π2 x2

.(5)

holds for all x ∈ (0, π
2 ), the constants 5

21 and π6−960
16π2 are the best possible.

(ii)The double inequality

cosx+
21

5

x3 sinx

63 + x2
<

(
sinx

x

)3

< cosx+
π2

15

x3 sinx

π2 − x2
.(6)

holds for all x ∈ (0, π), and the constants 21
5 and π2

15 are the best possible.

Theorem 2. For x ∈ (0, π/2), we have

1−
(
1

2
+

π3 − 16

π4
x sinx

)
sin2 x <

(
sinx

x

)3

< 1−
(
1

2
+

7

120
x sinx

)
sin2 x.(7)

The constants 7
120 and π3−16

π4 are the best possible.

2. LEMMAS

In order to establish our main results we need several lemmas, which we
present in this section.

Lemma 3. For |x| < π, B2n be the even-indexed Bernoulli number. Then we have
the following power series formulas

(8)
x

sinx
= 1 +

∞∑
n=1

2
(
22n−1 − 1

)
|B2n|

(2n)!
x2n.

(9) cotx =
1

x
−

∞∑
n=1

22n|B2n|
(2n)!

x2n−1.

(10)
1

sin2 x
=

1

x2
+

∞∑
n=1

22n(2n− 1)|B2n|
(2n)!

x2(n−1).

(11)
cosx

sin2 x
=

1

x2
−

∞∑
n=1

2(2n− 1)
(
22n−1 − 1

)
|B2n|

(2n)!
x2(n−1).
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1

sin3 x
=

1

x3
+

1

2

∞∑
n=2

(22n − 2)(2n− 1)(2n− 2)

(2n)!
|B2n|x2n−3

+
1

2x
+

1

2

∞∑
n=1

22n − 2

(2n)!
|B2n|x2n−1.(12)

(13)
cosx

sin3 x
=

1

x3
−

∞∑
n=2

(2n− 1)(n− 1)22n|B2n|
(2n)!

x2n−3.

Proof. The power series formulas (8) and (9) can be found in [1, p. 75, 4.3.68] and
[1, p. 75, 4.3.70], and the power series formulas (10) and (11) can be obtained from
(8) and (9) together with the facts that

1

sin2 x
= csc2 x = −(cotx)′,

and

cosx

sin2 x
= −

(
1

sinx

)′

.

(12) can be obtained from (8) and (11) together with

1

sin3 x
=

1

2 sinx
− 1

2

(
cosx

sin2 x

)′

.

(13) can be obtained from (10) together with the facts that

cosx

sin3 x
= −1

2

(
1

sin2 x

)′

.

Lemma 4. [2, 6] Let an and bn (n = 0, 1, 2, . . .) be real numbers, and let the
power series A(t) =

∑∞
n=0 ant

n and B(t) =
∑∞

n=0 bnt
n be convergent for |t| < R.

If bn > 0 for n = 0, 1, 2, . . . , and if an

bn
is strictly increasing (or decreasing) for

n = 0, 1, 2, . . ., then the function A(t)
B(t) is strictly increasing (or decreasing) on (0, R).

The next lemma gives the sharp lower and upper bounds for a ratio involving
absolute Bernoulli numbers, which was established in [23].

Lemma 5. For n ∈ N, the Bernoulli numbers satisfy

22n−1 − 1

22n+1 − 1

(2n+ 2)(2n+ 1)

π2
<

|B2n+2|
|B2n|

<
22n − 1

22n+2 − 1

(2n+ 2)(2n+ 1)

π2
.
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3. PROOF OF THEOREM 1

Proof. Consider

F (x) =
1

x2

[
x3 sinx(

sin x
x

)3 − cosx
− 15

]

=
x6 1

sin2 x
+ 15x3 cos x

sin3 x
− 15

x2(1− x3 cos x
sin3 x

)

:=
f1(x)

f2(x)
, 0 < x < π.

where

f1(x) = x6 1

sin2 x
+ 15x3 cosx

sin3 x
− 15

f2(x) = x2(1− x3 cosx

sin3 x
)

By (10) and (13), we have

f1(x) = x6

(
1

x2
+

∞∑
n=1

22n(2n− 1)|B2n|
(2n)!

x2(n−1)

)

+ 15x3

(
1

x3
−

∞∑
n=2

(2n− 1)(n− 1)22n|B2n|
(2n)!

x2n−3

)
− 15

=

∞∑
n=1

22n(2n− 1)|B2n|
(2n)!

x2n+4 −
∞∑

n=3

15(2n− 1)(n− 1)22n|B2n|
(2n)!

x2n

)

=

∞∑
n=2

[
22n−2(2n− 3)2n(2n− 1)|B2n−2|

(2n)!
− 15(2n+ 1)n22n+2|B2n+2|

(2n+ 2)!

]
x2n+2

=:

∞∑
n=2

anx
2n+2,

and

f2(x) = x2 − x5

(
1

x3
−

∞∑
n=2

(2n− 1)(n− 1)22n|B2n|
(2n)!

x2n−3

)

=

∞∑
n=2

(2n− 1)(n− 1)22n|B2n|
(2n)!

x2n+2

=:

∞∑
n=2

bnx
2n+2,
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where

an =
22n−2(2n− 3)2n(2n− 1)|B2n−2|

(2n)!
− 15(2n+ 1)n22n+2|B2n+2|

(2n+ 2)!

bn =
(2n− 1)(n− 1)22n|B2n|

(2n)!

Let

cn =
an
bn

=
n(2n− 3)

2(n− 1)

|B2n−2|
|B2n|

− 30n

(2n− 1)(n2 − 1)

|B2n+2|
|B2n|

, n ≥ 2.

A direct computation gives c2 = 5
21 , c3 = 0, and therefore, c2 − c3 > 0.

For n ≥ 3, using Lemma 5 yields

cn > p′nπ
2 − q′n

π2
,

cn+1 < p′′nπ
2 − q′′n

π2
,

where

p′n =
2n− 3

4(n− 1)(2n− 1)

22n − 1

22n−2 − 1
, q′n =

30n(2n+ 1)(2n+ 2)

(2n− 1)(n2 − 1)

22n − 1

22n+2 − 1
,

p′′n =
(n+ 1)(2n− 1)

2n(2n+ 1)(2n+ 2)

22n+1 − 1

22n−1 − 1
, q′′n =

30(n+ 1)(2n+ 3)(2n+ 4)

n(2n+ 1)(n+ 2)

22n+1 − 1

22n+3 − 1
.

Then

cn − cn+1 > (p′n − p′n)π
2 − q′n − q′′n

π2
.

Since

22n − 1

22n−2 − 1
− 22n+1 − 1

22n−1 − 1
=

3× 22n−2

(22n−1 − 1)(22n−2 − 1)
> 0,

22n − 1

22n+2 − 1
− 22n+1 − 1

22n+3 − 1
= − 3× 22n

(22n+3 − 1)(22n+2 − 1)
< 0,

we have

p′n − p′′n =
2n− 3

4(n− 1)(2n− 1)

22n − 1

22n−2 − 1
− (n+ 1)(2n− 1)

2n(2n+ 1)(2n+ 2)

22n+1 − 1

22n−1 − 1

>

[
2n− 3

4(n− 1)(2n− 1)
− (n+ 1)(2n− 1)

2n(2n+ 1)(2n+ 2)

]
22n+1 − 1

22n−1 − 1

=
4n2 − 8n+ 1

4n(2n− 1)(2n+ 1)(n− 1)

22n+1 − 1

22n−1 − 1
,
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q′n − q′′n =
30n(2n+ 1)(2n+ 2)

(2n− 1)(n2 − 1)

22n − 1

22n+2 − 1
− 30(n+ 1)(2n+ 3)(2n+ 4)

n(2n+ 1)(n+ 2)

22n+1 − 1

22n+3 − 1

>

[
30n(2n+ 1)(2n+ 2)

(2n− 1)(n2 − 1)
− 30(n+ 1)(2n+ 3)(2n+ 4)

n(2n+ 1)(n+ 2)

]
22n+1 − 1

22n+3 − 1

=
60(8n2 + 4n− 3)

n(2n− 1)(2n+ 1)(n− 1)

22n+1 − 1

22n+3 − 1
.

In view of π4/60 = 1.623 · · · > 8/5, it follows that

cn − cn+1 > (p′n − p′n)π
2 − q′n − q′′n

π2

>
4n2 − 8n+ 1

4n(2n− 1)(2n+ 1)(n− 1)

22n+1 − 1

22n−1 − 1
π2 − 60

π2

(8n2 + 4n− 3)

n(2n− 1)(2n+ 1)(n− 1)

22n+1 − 1

22n+3 − 1

>
60

π2

22n+1 − 1

n(n− 1)(2n− 1)(2n+ 1)

(
4n2 − 8n+ 1

4

1

22n−1 − 1

8

5
− 8n2 + 4n− 3

22n+3 − 1

)
=

12

π2

22n+1 − 1

n(n− 1)(2n− 1)(2n+ 1)

(88n2 − 276n+ 47)22n + (64n2 + 72n− 34)

(22n+3 − 1)(22n − 2)
> 0

for n ≥ 3, where the inequality holds due to the coefficient of 22n

88n2 − 276n+ 47 = 88(n− 3)2 + 252(n− 3) + 11 > 0

for n ≥ 3. which means that the sequence cn is decreasing. By Lemma 4, we deduce
the function F (x) is decreasing on (0, π). Moreover, it is easy to obtain

lim
x→0+

F (x) = c2 =
5

21
, lim
x→π/2−

F (x) =
π6 − 960

16π2
, lim
x→π−

F (x) = −15

π2
.

The proof of Theorem 1 is thus completed.

4. PROOF OF THEOREM 2

Proof. Consider the function

f(x) =
( sin x

x )3 + 1
2 sin

2 x− 1

x sin3 x

=
1

x4
− 1

x sin3 x
+

1

2x sinx
.
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By (8) and (12)

f(x) =
1

x4
−
(

1

x4
+

1

2

∞∑
n=2

22n − 2

(2n)!
|B2n|(2n− 1)(2n− 2)x2n−4

+
1

2x2
+

1

2

∞∑
n=1

22n − 2

(2n)!
|B2n|x2n−2

)

+
1

2x2
+

∞∑
n=1

(
22n−1 − 1

)
|B2n|

(2n)!
x2n−2

= −1

2

∞∑
n=2

22n − 2

(2n)!
|B2n|(2n− 1)(2n− 2)x2n−4 − 1

2

∞∑
n=1

22n − 2

(2n)!
|B2n|x2n−2

+

∞∑
n=1

(
22n−1 − 1

)
|B2n|

(2n)!
x2n−2

= −1

2

∞∑
n=2

22n − 2

(2n)!
|B2n|(2n− 1)(2n− 2)x2n−4

=

∞∑
n=2

anx
2n−4,

where

an = − (22n−1 − 1)(2n− 1)(2n− 2)|B2n|
(2n)!

, n ≥ 2.(14)

It follows from (14) that the function f(x) is strictly decreasing on (0, π/2). More-
over, it is not difficult to obtain limx→0+ f(x) = a2 = − 7

120 and limx→π
2

− f(x) =
16−π3

π4 . the proof of Theorem 2 is thus completes.

5. REMARKS

Remark 6. The left-hand side of (5) is stronger than the one of (2). since

x3 sinx

15 + 5x2

21

−
(
x4

15
− 23x6

1890

)
=

x3(7983 sinx− 7938x+ 1323x3 + 23x5)

1890(63 + x2)

>
x3(7983(x− x3

6 )− 7938x+ 1323x3 + 23x5)

1890(63 + x2)

=
23x8

1890(63 + x2)
> 0.
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Remark 7. The left-hand side of (5) is stronger than the one of (3). since

x3 sinx

15 + 5
21x

2
− x3

(
1− x2

63

)
sinx

15

=
x7 sinx

945(63 + x2)
> 0.

Remark 8. The left-hand side of (7) is better than the right-hand side inequality
of (4). since

1−
(
1

2
+

16− π3

π4
x sinx

)
sin2 x−

(
1− π3 − 8

π3
sin2 x

)
=

sin2 x(π4 − 16π − 32 + 2π3)

2π4
> 0.

Remark 9. Now let us compare graphically the lower and upper bounds of
(
sin x
x

)3
given in 5 and 7 on the same interval (0, π/2) , respectively. Consider the functions
E1, E2 defined by

E1(x) = cosx+
x3 sinx

15 + 5
21x

2
−
[
1−

(
1

2
+

π3 − 16

π4
x sinx

)
sin2 x

]
,

E2(x) = cosx+
x3 sinx

15 + π6−960
16π2 x2

−
[
1−

(
1

2
+

7

120
x sinx

)
sin2 x

]
.

The plots of E1 and E2 are shown in figure1(a) and figure1(b), respectively.

(a) The graph of the functions E1(x) (b) The graph of the function E2(x)

Figure 1: The graph of the functions E1(x) and E2(x)
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Based on Figure 1(a) and a numerical analysis, we see that, for all x ∈ (0, δ∗),
where δ∗ ≈ 1.5451, the lower bound in (5) is stronger than the lower bound in (7).
It is weaker for x ∈ (δ∗, π/2).

Also, based on Figure1(b), it shows that for all x ∈ (0, π/2), the upper bound
in (5) is stronger than the upper bound in (7).

6. FUTHER IMPROVEMENTS

Using a method developed and applied in [13, 14, 15, 16], the results of
Theorem 1 and Theorem 2 can be futher improved. For this, in the following, we will
present an overview of the results related to double-sided Taylor’s approximations.

Let us consider a real function f : (a, b) −→ R, such that there exist finite
limits f (k)(a+) = lim

x→a+
f (k)(x), for k = 0, 1, . . . , n.

Taylor’s polynomial

T f, a+
n (x) =

n∑
k=0

f (k)(a+)

k!
(x− a)k, n∈N0,

and the polynomial

T
f ; a+, b−
n (x) =

 T f, a+
n−1 (x) +

1

(b− a)n
Rf, a+

n (b−)(x− a)n , n ≥ 1

f(b−) , n = 0,

are called the first Taylor’s approximation for the function f in the right neigh-
borhood of a, and the second Taylor’s approximation for the function f in the
right neighborhood of a, respectively.

Also, the following functions:

Rf, a+
n (x) = f(x)− T f, a+

n−1 (x), n∈N

and

R
f ; a+, b−
n (x) = f(x)−Tf ; a+, b−

n−1 (x), n∈N

are called the remainder of the first Taylor’s approximation in the right neighbor-
hood of a, and the remainder of the second Taylor’s approximation in the right
neighborhood of a, respectively.

In our applications, of special interest is the following theorem:

Theorem 10. ([13], Theorem 4) Consider the real analytic functions f : (a, b) −→
R:

f(x) =

∞∑
k=0

ck(x− a)k,
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where ck∈R and ck ≥ 0 for all k∈N0. Then,

T f, a+
0 (x) ≤ . . . ≤ T f, a+

n (x) ≤ T f, a+
n+1 (x) ≤ . . .

. . . ≤ f(x) ≤ . . .

. . . ≤ Tf ; a+, b−
n+1 (x) ≤ Tf ; a+, b−

n (x) ≤ . . . ≤ Tf ; a+, b−
0 (x),

for all x∈ (a, b). If ck ∈R and ck ≤ 0 for all k∈N0, then the reversed inequalities
hold.

Based on theorem 10, we have

Theorem 11. For every x ∈ (0, b), 0 < b ≤ π
2 and m ∈ N,m ≥ 4, the following

inequalities hold:

T f, 0+, b−
6 (x) ≤ . . . ≤ T f, 0+, b−

2m−4 (x) ≤ T f, 0+, b−
2m−2 (x) ≤ . . .

. . . ≤ f(x) ≤ . . .

. . . ≤ Tf ; 0+
2m−2(x) ≤ T

f ; 0+
2m−4(x) ≤ . . . ≤ Tf ; 0+

6 (x),

(15)

where

f(x) =
x3 sinx(

sin x
x

)3 − cosx
− 15− 5

21
x2,

T f, 0+
2m−2(x) =

m∑
k=4

A(k)x2k−4

T
f ; 0+, b−
2m−2 (x) =

m−1∑
k=4

A(k)x2k−2 +
1

b2m

(
f(b)−

m−1∑
k=4

A(k)b2k−2

)
x2m−4

where A2 = 15, A3 = 5
21 and An(n ≥ 4) satisfies the recurrence relation

n∑
k=2

AkCn−k+2 = 0,

and

Ck =
22k|B2k|
(2k)!

+
(−1)k22k+1

(2k + 2)!

Proof. Let g(x) =
( sin x

x )
3−cos x

x3 sin x , using power series expansions , for 0 < x < π
2 , we
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have

g(x) =

(
sin x
x

)3 − cosx

x3 sinx
=

1− cos 2x

2x6
− 1

x3
cotx

=
1

2x6

[
1−

∞∑
k=0

(−1)k2k

(2k)!
x2k

]
− 1

x3

[
1

x
−

∞∑
k=1

22k|B2k|
(2k)!

x2k−1

]

= −
∞∑
k=2

(−1)k22k−1

(2k)!
x2k−6 +

∞∑
k=1

22k|B2k|
(2k)!

x2k−4

=

∞∑
k=1

(−1)k22k+1

(2k + 2)!
x2k−4 +

∞∑
k=1

22k|B2k|
(2k)!

x2k−4

=

∞∑
k=2

[
22k|B2k|
(2k)!

+
(−1)k22k+1

(2k + 2)!

]
x2k−4

=
1

15
− 1

945
x2 +

∞∑
k=4

Ckx
2k−4,

where C2 = 1
15 , C3 = − 1

945 and

Ck =
22k|B2k|
(2k)!

+
(−1)k22k+1

(2k + 2)!
, k ≥ 4.

It is well known [1, p.805] that Bernoulli numbers with even indexes satisfy the
following double inequality

2(2k)!

(2π)2k
< |B2k| <

2(2k)!

(2π)2k(1− 21−2k)
.(16)

By (16), we find that for k ≥ 4

22k|B2k|
(2k)!

− 22k+1

(2k + 2)!
>

22k

(2k)!

2(2k)!

(2π)2k
− 22k+1

(2k + 2)!
=

22k+1
[
(2k + 2)!− (2π)2k

]
(2π)2k(2k + 2)!

By induction on k, it is easy to see that

(2k + 2)! > (2π)2k, k ≥ 4.

Hence Ck > 0 for k ≥ 4.

Let

f(x) =
x3 sinx(

sin x
x

)3 − cosx
,

then

f(x) =
1

g(x)

=
1

1
15 − 1

945x
2 +

∑∞
k=4 Ckx2k−4

=

∞∑
k=2

Akx
2k−4,
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thus we have(
1

15
− 1

945
x2 +

∞∑
k=4

Ckx
2k−4

)(
15 +

5

21
x2 +

∞∑
k=4

Akx
2k−4

)
= 1

which lead to the conclusion that A2 = 15, A3 = 5
21 and An(n ≥ 4) satisfies the

recurrence relation

n∑
k=2

AkCn−k+2 = 0,(17)

Since Ck > 0 for k ≥ 4, by the monotonicity of g(x), we can conclude that Ak < 0
for all k ≥ 4.

Based on theorem 10 and theorem 2, we have

Theorem 12. For every x ∈ (0, b), 0 < b ≤ π
2 and m ∈ N,m ≥ 4, the following

inequalities hold:

T f, 0+, b−
2 (x) ≤ . . . ≤ T f, 0+, b−

2m−4 (x) ≤ T f, 0+, b−
2m−2 (x) ≤ . . .

. . . ≤ f(x) ≤ . . .

. . . ≤ Tf ; 0+
2m−2(x) ≤ T

f ; 0+
2m−4(x) ≤ . . . ≤ Tf ; 0+

2 (x),

(18)

where

f(x) =
( sin x

x )3 + 1
2 sin

2 x− 1

x sin3 x
,

T f, 0+
2m−2(x) =

m∑
k=2

D(k)x2k−4

T
f ; 0+, b−
2m−2 (x) =

m−1∑
k=2

D(k)x2k−2 +
1

b2m

(
f(b)−

m−1∑
k=2

D(k)b2k−2

)
x2m−4

where

Dn = − (22n−1 − 1)(2n− 1)(2n− 2)|B2n|
(2n)!

, n ≥ 2.

Let m = 4 and b = π
2 in Theorem 11, we have

cosx+
x3 sinx

15 + 5
21x

2 − 100
1323x

4
<

(
sinx

x

)3

< cosx+
x3 sinx

15 + 5
21x

2 − λx4
.(19)
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where

λ =
20160 + 80π2 − 21π6

84π4
.

Let m = 4, b = π
2 in Theorem 12, we have

(
µx2 − 7

120

)
x sin3 x <

(
sinx

x

)3

− 1 +
1

2
sin2 x < −

(
7

120
+

31

1512
x2

)
x sin3 x

(20)

where

µ =
1920− 120π3 + 7π4

30π6
.
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