Applicable Analysis and Discrete Mathematics available online at http://pefmath.etf.rs

Appl. Anal. Discrete Math. 17 (2023), 076-091.
https://doi.org/10.2298/AADM210507010J

NEW SHARP INEQUALITIES OF MITRINOVIĆ-ADAMOVIĆ TYPE

Wei-Dong Jiang

In this paper, new sharp Mitrinović-Adamović inequalities for circular functions are established.

1. INTRODUCTION

The following inequality

$$
\begin{equation*}
\frac{\sin x}{x}<\frac{2+\cos x}{3}, \quad 0<x<\frac{\pi}{2} \tag{1}
\end{equation*}
$$

is known as the Cusa-Huygens inequality. This inequality has been extended and sharpened in many different ways. In this regard, we may refer to [3, 4]. For example, in [4], the authors find the necessary and sufficient conditions such that the inequalities

$$
\frac{\sin x}{x}>a+b \cos ^{c} x, x \in(0, T)
$$

and

$$
\frac{\sin x}{x}<a+b \cos ^{c} x, x \in(0, T)
$$

where $a, b, c \in \mathbb{R}$ and $T \in(0, \pi / 2]$.
Recently, Bagul et al. [5] drew two conclusions about the improvement of inequality (1).

$$
-\left(\frac{2}{3}-\frac{2}{\pi}\right) \Phi_{1}(x)<\frac{\sin x}{x}-\frac{2+\cos x}{3}<-\left(\frac{2}{3}-\frac{2}{\pi}\right) \Phi_{2}(x)
$$

2020 Mathematics Subject Classification. 26D15, 33E20.
Keywords and Phrases. Trigonometric functions. Mitrinović-Adamović inequality, Monotonicity, Inequality.
where $\Phi_{1}(x)=(\pi / 2-1)^{-1}(x-\sin x)$ and $\Phi_{2}(x)=(\pi / 2-1)^{-2}(x-\sin x)^{2}$.

$$
-\left(\frac{2}{3}-\frac{2}{\pi}\right) \Psi_{1}(x)<\frac{\sin x}{x}-\frac{2+\cos x}{3}<-\left(\frac{2}{3}-\frac{2}{\pi}\right) \Psi_{2}(x)
$$

where $\Psi_{1}(x)=(\sin x-x \cos x)$ and $\Psi_{2}(x)=(\sin x-x \cos x)^{2}$.
In literature, the inequality

$$
\cos x<\left(\frac{\sin x}{x}\right)^{3}, \quad 0<x<\frac{\pi}{2}
$$

is known as Mitrinović-Adamović inequality (see[17, 18]).
In recent years, many researchers have paid attention to the improvements of the above-mentioned inequality.

In $[\mathbf{1 1}, \mathbf{2 1}, \mathbf{2 6}]$, a better lower bound for $\left(\frac{\sin x}{x}\right)^{3}$ was given as follows:

$$
\cos ^{4} \frac{x}{2}<\left(\frac{\sin x}{x}\right)^{3}, \quad 0<x<\frac{\pi}{2}
$$

Mortici[19] gave the following double inequality

$$
\begin{equation*}
\cos x+\frac{1}{15} x^{4}-\frac{23}{1890} x^{6}<\left(\frac{\sin x}{x}\right)^{3}<\cos x+\frac{1}{15} x^{4}, \quad 0<x<\frac{\pi}{2} \tag{2}
\end{equation*}
$$

Chouikha [10] proved the following double inequality

$$
\begin{equation*}
\cos x+x^{3}\left(1-\frac{x^{2}}{63}\right) \frac{\sin x}{15}<\left(\frac{\sin x}{x}\right)^{3}<\cos x+\frac{x^{3} \sin x}{15}, 0<x<\frac{\pi}{2} \tag{3}
\end{equation*}
$$

In [33, Lemma 7], Zhu proved the following results: the double inequality

$$
\begin{equation*}
1-\frac{\pi^{3}-8}{\pi^{3}} \sin ^{2} x<\left(\frac{\sin x}{x}\right)^{3}<1-\frac{1}{2} \sin ^{2} x . \tag{4}
\end{equation*}
$$

holds for all $x \in(0, \pi / 2)$, the constants $\left(\pi^{3}-8\right) / \pi^{3}$ and $1 / 2$ are best possible.
For more information on this topic, please see $[\mathbf{7}, \mathbf{8}, \mathbf{9}, \mathbf{2 1}, \mathbf{2 2}, \mathbf{1 2}, \mathbf{2 4}, \mathbf{2 0}$,
$25,27,28,34,29,30,31,32]$ and closely related references therein.
The aim of this paper is to obtain some new upper and lower bounds of $\left(\frac{\sin x}{x}\right)^{3}$, which improve several known results.

Our main results can be formulated in details as the following theorems.
Theorem 1. The function

$$
F(x)=\frac{1}{x^{2}}\left[\frac{x^{3} \sin x}{\left(\frac{\sin x}{x}\right)^{3}-\cos x}-15\right]
$$

is decreasing on $(0, \pi)$. In paprticular, we have
(i)The double inequality

$$
\begin{equation*}
\cos x+\frac{x^{3} \sin x}{15+\frac{5}{21} x^{2}}<\left(\frac{\sin x}{x}\right)^{3}<\cos x+\frac{x^{3} \sin x}{15+\frac{\pi^{6}-960}{16 \pi^{2}} x^{2}} \tag{5}
\end{equation*}
$$

holds for all $x \in\left(0, \frac{\pi}{2}\right)$, the constants $\frac{5}{21}$ and $\frac{\pi^{6}-960}{16 \pi^{2}}$ are the best possible.
(ii)The double inequality

$$
\begin{equation*}
\cos x+\frac{21}{5} \frac{x^{3} \sin x}{63+x^{2}}<\left(\frac{\sin x}{x}\right)^{3}<\cos x+\frac{\pi^{2}}{15} \frac{x^{3} \sin x}{\pi^{2}-x^{2}} \tag{6}
\end{equation*}
$$

holds for all $x \in(0, \pi)$, and the constants $\frac{21}{5}$ and $\frac{\pi^{2}}{15}$ are the best possible.
Theorem 2. For $x \in(0, \pi / 2)$, we have
(7) $1-\left(\frac{1}{2}+\frac{\pi^{3}-16}{\pi^{4}} x \sin x\right) \sin ^{2} x<\left(\frac{\sin x}{x}\right)^{3}<1-\left(\frac{1}{2}+\frac{7}{120} x \sin x\right) \sin ^{2} x$.

The constants $\frac{7}{120}$ and $\frac{\pi^{3}-16}{\pi^{4}}$ are the best possible.

2. LEMMAS

In order to establish our main results we need several lemmas, which we present in this section.

Lemma 3. For $|x|<\pi, B_{2 n}$ be the even-indexed Bernoulli number. Then we have the following power series formulas

$$
\begin{gather*}
\frac{x}{\sin x}=1+\sum_{n=1}^{\infty} \frac{2\left(2^{2 n-1}-1\right)\left|B_{2 n}\right|}{(2 n)!} x^{2 n} \tag{8}\\
\cot x=\frac{1}{x}-\sum_{n=1}^{\infty} \frac{2^{2 n}\left|B_{2 n}\right|}{(2 n)!} x^{2 n-1} \tag{9}\\
\frac{1}{\sin ^{2} x}=\frac{1}{x^{2}}+\sum_{n=1}^{\infty} \frac{2^{2 n}(2 n-1)\left|B_{2 n}\right|}{(2 n)!} x^{2(n-1)} \tag{10}\\
\frac{\cos x}{\sin ^{2} x}=\frac{1}{x^{2}}-\sum_{n=1}^{\infty} \frac{2(2 n-1)\left(2^{2 n-1}-1\right)\left|B_{2 n}\right|}{(2 n)!} x^{2(n-1)} \tag{11}
\end{gather*}
$$

$$
\begin{align*}
\frac{1}{\sin ^{3} x}=\frac{1}{x^{3}} & +\frac{1}{2} \sum_{n=2}^{\infty} \frac{\left(2^{2 n}-2\right)(2 n-1)(2 n-2)}{(2 n)!}\left|B_{2 n}\right| x^{2 n-3} \\
& +\frac{1}{2 x}+\frac{1}{2} \sum_{n=1}^{\infty} \frac{2^{2 n}-2}{(2 n)!}\left|B_{2 n}\right| x^{2 n-1} . \tag{12}\\
\frac{\cos x}{\sin ^{3} x}= & \frac{1}{x^{3}}-\sum_{n=2}^{\infty} \frac{(2 n-1)(n-1) 2^{2 n}\left|B_{2 n}\right|}{(2 n)!} x^{2 n-3} . \tag{13}
\end{align*}
$$

Proof. The power series formulas (8) and (9) can be found in [1, p. 75, 4.3.68] and [1, p. $75,4.3 .70]$, and the power series formulas (10) and (11) can be obtained from (8) and (9) together with the facts that

$$
\frac{1}{\sin ^{2} x}=\csc ^{2} x=-(\cot x)^{\prime}
$$

and

$$
\frac{\cos x}{\sin ^{2} x}=-\left(\frac{1}{\sin x}\right)^{\prime}
$$

(12) can be obtained from (8) and (11) together with

$$
\frac{1}{\sin ^{3} x}=\frac{1}{2 \sin x}-\frac{1}{2}\left(\frac{\cos x}{\sin ^{2} x}\right)^{\prime}
$$

(13) can be obtained from (10) together with the facts that

$$
\frac{\cos x}{\sin ^{3} x}=-\frac{1}{2}\left(\frac{1}{\sin ^{2} x}\right)^{\prime}
$$

Lemma 4. [2, 6] Let a_{n} and $b_{n}(n=0,1,2, \ldots)$ be real numbers, and let the power series $A(t)=\sum_{n=0}^{\infty} a_{n} t^{n}$ and $B(t)=\sum_{n=0}^{\infty} b_{n} t^{n}$ be convergent for $|t|<R$. If $b_{n}>0$ for $n=0,1,2, \ldots$, and if $\frac{a_{n}}{b_{n}}$ is strictly increasing (or decreasing) for $n=0,1,2, \ldots$, then the function $\frac{A(t)}{B(t)}$ is strictly increasing (or decreasing) on $(0, R)$.

The next lemma gives the sharp lower and upper bounds for a ratio involving absolute Bernoulli numbers, which was established in [23].

Lemma 5. For $n \in \mathbb{N}$, the Bernoulli numbers satisfy

$$
\frac{2^{2 n-1}-1}{2^{2 n+1}-1} \frac{(2 n+2)(2 n+1)}{\pi^{2}}<\frac{\left|B_{2 n+2}\right|}{\left|B_{2 n}\right|}<\frac{2^{2 n}-1}{2^{2 n+2}-1} \frac{(2 n+2)(2 n+1)}{\pi^{2}}
$$

3. PROOF OF THEOREM 1

Proof. Consider

$$
\begin{aligned}
F(x) & =\frac{1}{x^{2}}\left[\frac{x^{3} \sin x}{\left(\frac{\sin x}{x}\right)^{3}-\cos x}-15\right] \\
& =\frac{x^{6} \frac{1}{\sin ^{2} x}+15 x^{3} \frac{\cos x}{\sin ^{3} x}-15}{x^{2}\left(1-x^{3} \frac{\cos x}{\sin ^{3} x}\right)} \\
& :=\frac{f_{1}(x)}{f_{2}(x)}, \quad 0<x<\pi .
\end{aligned}
$$

where

$$
\begin{aligned}
& f_{1}(x)=x^{6} \frac{1}{\sin ^{2} x}+15 x^{3} \frac{\cos x}{\sin ^{3} x}-15 \\
& f_{2}(x)=x^{2}\left(1-x^{3} \frac{\cos x}{\sin ^{3} x}\right)
\end{aligned}
$$

By (10) and (13), we have

$$
\begin{aligned}
f_{1}(x) & =x^{6}\left(\frac{1}{x^{2}}+\sum_{n=1}^{\infty} \frac{2^{2 n}(2 n-1)\left|B_{2 n}\right|}{(2 n)!} x^{2(n-1)}\right) \\
& +15 x^{3}\left(\frac{1}{x^{3}}-\sum_{n=2}^{\infty} \frac{(2 n-1)(n-1) 2^{2 n}\left|B_{2 n}\right|}{(2 n)!} x^{2 n-3}\right)-15 \\
& \left.=\sum_{n=1}^{\infty} \frac{2^{2 n}(2 n-1)\left|B_{2 n}\right|}{(2 n)!} x^{2 n+4}-\sum_{n=3}^{\infty} \frac{15(2 n-1)(n-1) 2^{2 n}\left|B_{2 n}\right|}{(2 n)!} x^{2 n}\right) \\
& =\sum_{n=2}^{\infty}\left[\frac{2^{2 n-2}(2 n-3) 2 n(2 n-1)\left|B_{2 n-2}\right|}{(2 n)!}-\frac{15(2 n+1) n 2^{2 n+2}\left|B_{2 n+2}\right|}{(2 n+2)!}\right] x^{2 n+2} \\
& =: \sum_{n=2}^{\infty} a_{n} x^{2 n+2}
\end{aligned}
$$

and

$$
\begin{aligned}
f_{2}(x) & =x^{2}-x^{5}\left(\frac{1}{x^{3}}-\sum_{n=2}^{\infty} \frac{(2 n-1)(n-1) 2^{2 n}\left|B_{2 n}\right|}{(2 n)!} x^{2 n-3}\right) \\
& =\sum_{n=2}^{\infty} \frac{(2 n-1)(n-1) 2^{2 n}\left|B_{2 n}\right|}{(2 n)!} x^{2 n+2} \\
& =: \sum_{n=2}^{\infty} b_{n} x^{2 n+2}
\end{aligned}
$$

where

$$
\begin{aligned}
& a_{n}=\frac{2^{2 n-2}(2 n-3) 2 n(2 n-1)\left|B_{2 n-2}\right|}{(2 n)!}-\frac{15(2 n+1) n 2^{2 n+2}\left|B_{2 n+2}\right|}{(2 n+2)!} \\
& b_{n}=\frac{(2 n-1)(n-1) 2^{2 n}\left|B_{2 n}\right|}{(2 n)!}
\end{aligned}
$$

Let

$$
c_{n}=\frac{a_{n}}{b_{n}}=\frac{n(2 n-3)}{2(n-1)} \frac{\left|B_{2 n-2}\right|}{\left|B_{2 n}\right|}-\frac{30 n}{(2 n-1)\left(n^{2}-1\right)} \frac{\left|B_{2 n+2}\right|}{\left|B_{2 n}\right|}, \quad n \geq 2 .
$$

A direct computation gives $c_{2}=\frac{5}{21}, c_{3}=0$, and therefore, $c_{2}-c_{3}>0$.
For $n \geq 3$, using Lemma 5 yields

$$
\begin{aligned}
c_{n} & >p_{n}^{\prime} \pi^{2}-\frac{q_{n}^{\prime}}{\pi^{2}}, \\
c_{n+1} & <p_{n}^{\prime \prime} \pi^{2}-\frac{q_{n}^{\prime \prime}}{\pi^{2}},
\end{aligned}
$$

where

$$
\begin{aligned}
& p_{n}^{\prime}=\frac{2 n-3}{4(n-1)(2 n-1)} \frac{2^{2 n}-1}{2^{2 n-2}-1}, q_{n}^{\prime}=\frac{30 n(2 n+1)(2 n+2)}{(2 n-1)\left(n^{2}-1\right)} \frac{2^{2 n}-1}{2^{2 n+2}-1}, \\
& p_{n}^{\prime \prime}=\frac{(n+1)(2 n-1)}{2 n(2 n+1)(2 n+2)} \frac{2^{2 n+1}-1}{2^{2 n-1}-1}, q_{n}^{\prime \prime}=\frac{30(n+1)(2 n+3)(2 n+4)}{n(2 n+1)(n+2)} \frac{2^{2 n+1}-1}{2^{2 n+3}-1} .
\end{aligned}
$$

Then

$$
c_{n}-c_{n+1}>\left(p_{n}^{\prime}-p_{n}^{\prime}\right) \pi^{2}-\frac{q_{n}^{\prime}-q_{n}^{\prime \prime}}{\pi^{2}} .
$$

Since

$$
\begin{aligned}
& \frac{2^{2 n}-1}{2^{2 n-2}-1}-\frac{2^{2 n+1}-1}{2^{2 n-1}-1}=\frac{3 \times 2^{2 n-2}}{\left(2^{2 n-1}-1\right)\left(2^{2 n-2}-1\right)}>0, \\
& \frac{2^{2 n}-1}{2^{2 n+2}-1}-\frac{2^{2 n+1}-1}{2^{2 n+3}-1}=-\frac{3 \times 2^{2 n}}{\left(2^{2 n+3}-1\right)\left(2^{2 n+2}-1\right)}<0,
\end{aligned}
$$

we have

$$
\begin{aligned}
p_{n}^{\prime}-p_{n}^{\prime \prime} & =\frac{2 n-3}{4(n-1)(2 n-1)} \frac{2^{2 n}-1}{2^{2 n-2}-1}-\frac{(n+1)(2 n-1)}{2 n(2 n+1)(2 n+2)} \frac{2^{2 n+1}-1}{2^{2 n-1}-1} \\
& >\left[\frac{2 n-3}{4(n-1)(2 n-1)}-\frac{(n+1)(2 n-1)}{2 n(2 n+1)(2 n+2)}\right] \frac{2^{2 n+1}-1}{2^{2 n-1}-1} \\
& =\frac{4 n^{2}-8 n+1}{4 n(2 n-1)(2 n+1)(n-1)} \frac{2^{2 n+1}-1}{2^{2 n-1}-1},
\end{aligned}
$$

$$
\begin{aligned}
q_{n}^{\prime}-q_{n}^{\prime \prime} & =\frac{30 n(2 n+1)(2 n+2)}{(2 n-1)\left(n^{2}-1\right)} \frac{2^{2 n}-1}{2^{2 n+2}-1}-\frac{30(n+1)(2 n+3)(2 n+4)}{n(2 n+1)(n+2)} \frac{2^{2 n+1}-1}{2^{2 n+3}-1} \\
& >\left[\frac{30 n(2 n+1)(2 n+2)}{(2 n-1)\left(n^{2}-1\right)}-\frac{30(n+1)(2 n+3)(2 n+4)}{n(2 n+1)(n+2)}\right] \frac{2^{2 n+1}-1}{2^{2 n+3}-1} \\
& =\frac{60\left(8 n^{2}+4 n-3\right)}{n(2 n-1)(2 n+1)(n-1)} \frac{2^{2 n+1}-1}{2^{2 n+3}-1} .
\end{aligned}
$$

In view of $\pi^{4} / 60=1.623 \cdots>8 / 5$, it follows that

$$
\begin{aligned}
& c_{n}-c_{n+1}>\left(p_{n}^{\prime}-p_{n}^{\prime}\right) \pi^{2}-\frac{q_{n}^{\prime}-q_{n}^{\prime \prime}}{\pi^{2}} \\
& >\frac{4 n^{2}-8 n+1}{4 n(2 n-1)(2 n+1)(n-1)} \frac{2^{2 n+1}-1}{2^{2 n-1}-1} \pi^{2}-\frac{60}{\pi^{2}} \frac{\left(8 n^{2}+4 n-3\right)}{n(2 n-1)(2 n+1)(n-1)} \frac{2^{2 n+1}-1}{2^{2 n+3}-1} \\
& >\frac{60}{\pi^{2}} \frac{2^{2 n+1}-1}{n(n-1)(2 n-1)(2 n+1)}\left(\frac{4 n^{2}-8 n+1}{4} \frac{1}{2^{2 n-1}-1} \frac{8}{5}-\frac{8 n^{2}+4 n-3}{2^{2 n+3}-1}\right) \\
& =\frac{12}{\pi^{2}} \frac{2^{2 n+1}-1}{n(n-1)(2 n-1)(2 n+1)} \frac{\left(88 n^{2}-276 n+47\right) 2^{2 n}+\left(64 n^{2}+72 n-34\right)}{\left(2^{2 n+3}-1\right)\left(2^{2 n}-2\right)}>0
\end{aligned}
$$

for $n \geq 3$, where the inequality holds due to the coefficient of $2^{2 n}$

$$
88 n^{2}-276 n+47=88(n-3)^{2}+252(n-3)+11>0
$$

for $n \geq 3$. which means that the sequence c_{n} is decreasing. By Lemma 4, we deduce the function $F(x)$ is decreasing on $(0, \pi)$. Moreover, it is easy to obtain

$$
\lim _{x \rightarrow 0^{+}} F(x)=c_{2}=\frac{5}{21}, \lim _{x \rightarrow \pi / 2^{-}} F(x)=\frac{\pi^{6}-960}{16 \pi^{2}}, \lim _{x \rightarrow \pi^{-}} F(x)=-\frac{15}{\pi^{2}}
$$

The proof of Theorem 1 is thus completed.

4. PROOF OF THEOREM 2

Proof. Consider the function

$$
\begin{aligned}
f(x) & =\frac{\left(\frac{\sin x}{x}\right)^{3}+\frac{1}{2} \sin ^{2} x-1}{x \sin ^{3} x} \\
& =\frac{1}{x^{4}}-\frac{1}{x \sin ^{3} x}+\frac{1}{2 x \sin x} .
\end{aligned}
$$

By (8) and (12)

$$
\begin{aligned}
f(x) & =\frac{1}{x^{4}}-\left(\frac{1}{x^{4}}+\frac{1}{2} \sum_{n=2}^{\infty} \frac{2^{2 n}-2}{(2 n)!}\left|B_{2 n}\right|(2 n-1)(2 n-2) x^{2 n-4}\right. \\
& \left.+\frac{1}{2 x^{2}}+\frac{1}{2} \sum_{n=1}^{\infty} \frac{2^{2 n}-2}{(2 n)!}\left|B_{2 n}\right| x^{2 n-2}\right) \\
& +\frac{1}{2 x^{2}}+\sum_{n=1}^{\infty} \frac{\left(2^{2 n-1}-1\right)\left|B_{2 n}\right|}{(2 n)!} x^{2 n-2} \\
& =-\frac{1}{2} \sum_{n=2}^{\infty} \frac{2^{2 n}-2}{(2 n)!}\left|B_{2 n}\right|(2 n-1)(2 n-2) x^{2 n-4}-\frac{1}{2} \sum_{n=1}^{\infty} \frac{2^{2 n}-2}{(2 n)!}\left|B_{2 n}\right| x^{2 n-2} \\
& +\sum_{n=1}^{\infty} \frac{\left(2^{2 n-1}-1\right)\left|B_{2 n}\right|}{(2 n)!} x^{2 n-2} \\
& =-\frac{1}{2} \sum_{n=2}^{\infty} \frac{2^{2 n}-2}{(2 n)!}\left|B_{2 n}\right|(2 n-1)(2 n-2) x^{2 n-4} \\
& =\sum_{n=2}^{\infty} a_{n} x^{2 n-4},
\end{aligned}
$$

where

$$
\begin{equation*}
a_{n}=-\frac{\left(2^{2 n-1}-1\right)(2 n-1)(2 n-2)\left|B_{2 n}\right|}{(2 n)!}, \quad n \geq 2 . \tag{14}
\end{equation*}
$$

It follows from (14) that the function $f(x)$ is strictly decreasing on $(0, \pi / 2)$. Moreover, it is not difficult to obtain $\lim _{x \rightarrow 0^{+}} f(x)=a_{2}=-\frac{7}{120}$ and $\lim _{x \rightarrow \frac{\pi}{2}-} f(x)=$ $\frac{16-\pi^{3}}{\pi^{4}}$. the proof of Theorem 2 is thus completes.

5. REMARKS

Remark 6. The left-hand side of (5) is stronger than the one of (2). since

$$
\begin{aligned}
& \frac{x^{3} \sin x}{15+\frac{5 x^{2}}{21}}-\left(\frac{x^{4}}{15}-\frac{23 x^{6}}{1890}\right) \\
& =\frac{x^{3}\left(7983 \sin x-7938 x+1323 x^{3}+23 x^{5}\right)}{1890\left(63+x^{2}\right)} \\
& >\frac{x^{3}\left(7983\left(x-\frac{x^{3}}{6}\right)-7938 x+1323 x^{3}+23 x^{5}\right)}{1890\left(63+x^{2}\right)} \\
& =\frac{23 x^{8}}{1890\left(63+x^{2}\right)}>0
\end{aligned}
$$

Remark 7. The left-hand side of (5) is stronger than the one of (3). since

$$
\begin{aligned}
& \frac{x^{3} \sin x}{15+\frac{5}{21} x^{2}}-x^{3}\left(1-\frac{x^{2}}{63}\right) \frac{\sin x}{15} \\
& =\frac{x^{7} \sin x}{945\left(63+x^{2}\right)}>0
\end{aligned}
$$

Remark 8. The left-hand side of (7) is better than the right-hand side inequality of (4). since

$$
\begin{aligned}
& 1-\left(\frac{1}{2}+\frac{16-\pi^{3}}{\pi^{4}} x \sin x\right) \sin ^{2} x-\left(1-\frac{\pi^{3}-8}{\pi^{3}} \sin ^{2} x\right) \\
& =\frac{\sin ^{2} x\left(\pi^{4}-16 \pi-32+2 \pi^{3}\right)}{2 \pi^{4}}>0
\end{aligned}
$$

Remark 9. Now let us compare graphically the lower and upper bounds of $\left(\frac{\sin x}{x}\right)^{3}$ given in 5 and 7 on the same interval $(0, \pi / 2)$, respectively. Consider the functions E_{1}, E_{2} defined by

$$
\begin{aligned}
& E_{1}(x)=\cos x+\frac{x^{3} \sin x}{15+\frac{5}{21} x^{2}}-\left[1-\left(\frac{1}{2}+\frac{\pi^{3}-16}{\pi^{4}} x \sin x\right) \sin ^{2} x\right] \\
& E_{2}(x)=\cos x+\frac{x^{3} \sin x}{15+\frac{\pi^{6}-960}{16 \pi^{2}} x^{2}}-\left[1-\left(\frac{1}{2}+\frac{7}{120} x \sin x\right) \sin ^{2} x\right]
\end{aligned}
$$

The plots of E_{1} and E_{2} are shown in figure1(a) and figure1(b), respectively.

Figure 1: The graph of the functions $E_{1}(x)$ and $E_{2}(x)$

Based on Figure 1 (a) and a numerical analysis, we see that, for all $x \in\left(0, \delta_{*}\right)$, where $\delta_{*} \approx 1.5451$, the lower bound in (5) is stronger than the lower bound in (7). It is weaker for $x \in\left(\delta_{*}, \pi / 2\right)$.

Also, based on Figure1(b), it shows that for all $x \in(0, \pi / 2)$, the upper bound in (5) is stronger than the upper bound in (7).

6. FUTHER IMPROVEMENTS

Using a method developed and applied in $[\mathbf{1 3}, \mathbf{1 4}, \mathbf{1 5}, 16]$, the results of Theorem 1 and Theorem 2 can be futher improved. For this, in the following, we will present an overview of the results related to double-sided Taylor's approximations.

Let us consider a real function $f:(a, b) \longrightarrow \mathbb{R}$, such that there exist finite limits $f^{(k)}(a+)=\lim _{x \rightarrow a+} f^{(k)}(x)$, for $k=0,1, \ldots, n$.
TAYLOR's polynomial

$$
T_{n}^{f, a+}(x)=\sum_{k=0}^{n} \frac{f^{(k)}(a+)}{k!}(x-a)^{k}, n \in \mathbb{N}_{0}
$$

and the polynomial

$$
\mathbb{T}_{n}^{f ; a+, b-}(x)=\left\{\begin{array}{cc}
T_{n-1}^{f, a+}(x)+\frac{1}{(b-a)^{n}} R_{n}^{f, a+}(b-)(x-a)^{n} & , \quad n \geq 1 \\
f(b-) & , \quad n=0
\end{array}\right.
$$

are called the first TAYLOR's approximation for the function f in the right neighborhood of a, and the second TAYLOR's approximation for the function f in the right neighborhood of a, respectively.

Also, the following functions:

$$
R_{n}^{f, a+}(x)=f(x)-T_{n-1}^{f, a+}(x), \quad n \in \mathbb{N}
$$

and

$$
\mathbb{R}_{n}^{f ; a+, b-}(x)=f(x)-\mathbb{T}_{n-1}^{f ; a+, b-}(x), \quad n \in \mathbb{N}
$$

are called the remainder of the first TAYLOR's approximation in the right neighborhood of a, and the remainder of the second TAYLOR's approximation in the right neighborhood of a, respectively.

In our applications, of special interest is the following theorem:
Theorem 10. ([13], Theorem 4) Consider the real analytic functions $f:(a, b) \longrightarrow$ \mathbb{R} :

$$
f(x)=\sum_{k=0}^{\infty} c_{k}(x-a)^{k}
$$

where $c_{k} \in \mathbb{R}$ and $c_{k} \geq 0$ for all $k \in \mathbb{N}_{0}$. Then,

$$
\begin{gathered}
T_{0}^{f, a+}(x) \leq \ldots \leq T_{n}^{f, a+}(x) \leq T_{n+1}^{f, a+}(x) \leq \ldots \\
\ldots \leq f(x) \leq \ldots \\
\ldots \leq \mathbb{T}_{n+1}^{f ; a+, b-}(x) \leq \mathbb{T}_{n}^{f ; a+, b-}(x) \leq \ldots \leq \mathbb{T}_{0}^{f ; a+, b-}(x),
\end{gathered}
$$

for all $x \in(a, b)$. If $c_{k} \in \mathbb{R}$ and $c_{k} \leq 0$ for all $k \in \mathbb{N}_{0}$, then the reversed inequalities hold.

Based on theorem 10, we have
Theorem 11. For every $x \in(0, b), 0<b \leq \frac{\pi}{2}$ and $m \in \mathbb{N}, m \geq 4$, the following inequalities hold:

$$
\begin{align*}
T_{6}^{f, 0+, b-}(x) \leq \ldots & \leq T_{2 m-4}^{f, 0+, b-}(x) \leq T_{2 m-2}^{f, 0+, b-}(x) \leq \ldots \\
& \ldots \leq f(x) \leq \ldots \tag{15}\\
\ldots \leq \mathbb{T}_{2 m-2}^{f ; 0+}(x) & \leq \mathbb{T}_{2 m-4}^{f ; 0+}(x) \leq \ldots \leq \mathbb{T}_{6}^{f ; 0+}(x)
\end{align*}
$$

where

$$
\begin{gathered}
f(x)=\frac{x^{3} \sin x}{\left(\frac{\sin x}{x}\right)^{3}-\cos x}-15-\frac{5}{21} x^{2}, \\
T_{2 m-2}^{f, 0+}(x)=\sum_{k=4}^{m} A(k) x^{2 k-4} \\
\mathbb{T}_{2 m-2}^{f ; 0+, b-}(x)=\sum_{k=4}^{m-1} A(k) x^{2 k-2}+\frac{1}{b^{2 m}}\left(f(b)-\sum_{k=4}^{m-1} A(k) b^{2 k-2}\right) x^{2 m-4}
\end{gathered}
$$

where $A_{2}=15, A_{3}=\frac{5}{21}$ and $A_{n}(n \geq 4)$ satisfies the recurrence relation

$$
\sum_{k=2}^{n} A_{k} C_{n-k+2}=0
$$

and

$$
C_{k}=\frac{2^{2 k}\left|B_{2 k}\right|}{(2 k)!}+\frac{(-1)^{k} 2^{2 k+1}}{(2 k+2)!}
$$

Proof. Let $g(x)=\frac{\left(\frac{\sin x)^{3}}{x}-\cos x\right.}{x^{3} \sin x}$, using power series expansions, for $0<x<\frac{\pi}{2}$, we
have

$$
\begin{aligned}
g(x) & =\frac{\left(\frac{\sin x}{x}\right)^{3}-\cos x}{x^{3} \sin x}=\frac{1-\cos 2 x}{2 x^{6}}-\frac{1}{x^{3}} \cot x \\
& =\frac{1}{2 x^{6}}\left[1-\sum_{k=0}^{\infty} \frac{(-1)^{k} 2^{k}}{(2 k)!} x^{2 k}\right]-\frac{1}{x^{3}}\left[\frac{1}{x}-\sum_{k=1}^{\infty} \frac{2^{2 k}\left|B_{2 k}\right|}{(2 k)!} x^{2 k-1}\right] \\
& =-\sum_{k=2}^{\infty} \frac{(-1)^{k} 2^{2 k-1}}{(2 k)!} x^{2 k-6}+\sum_{k=1}^{\infty} \frac{2^{2 k}\left|B_{2 k}\right|}{(2 k)!} x^{2 k-4} \\
& =\sum_{k=1}^{\infty} \frac{(-1)^{k} 2^{2 k+1}}{(2 k+2)!} x^{2 k-4}+\sum_{k=1}^{\infty} \frac{2^{2 k}\left|B_{2 k}\right|}{(2 k)!} x^{2 k-4} \\
& =\sum_{k=2}^{\infty}\left[\frac{2^{2 k}\left|B_{2 k}\right|}{(2 k)!}+\frac{(-1)^{k} 2^{2 k+1}}{(2 k+2)!}\right] x^{2 k-4} \\
& =\frac{1}{15}-\frac{1}{945} x^{2}+\sum_{k=4}^{\infty} C_{k} x^{2 k-4}
\end{aligned}
$$

where $C_{2}=\frac{1}{15}, C_{3}=-\frac{1}{945}$ and

$$
C_{k}=\frac{2^{2 k}\left|B_{2 k}\right|}{(2 k)!}+\frac{(-1)^{k} 2^{2 k+1}}{(2 k+2)!}, \quad k \geq 4
$$

It is well known [1, p.805] that Bernoulli numbers with even indexes satisfy the following double inequality

$$
\begin{equation*}
\frac{2(2 k)!}{(2 \pi)^{2 k}}<\left|B_{2 k}\right|<\frac{2(2 k)!}{(2 \pi)^{2 k}\left(1-2^{1-2 k}\right)} \tag{16}
\end{equation*}
$$

By (16), we find that for $k \geq 4$

$$
\frac{2^{2 k}\left|B_{2 k}\right|}{(2 k)!}-\frac{2^{2 k+1}}{(2 k+2)!}>\frac{2^{2 k}}{(2 k)!} \frac{2(2 k)!}{(2 \pi)^{2 k}}-\frac{2^{2 k+1}}{(2 k+2)!}=\frac{2^{2 k+1}\left[(2 k+2)!-(2 \pi)^{2 k}\right]}{(2 \pi)^{2 k}(2 k+2)!}
$$

By induction on k, it is easy to see that

$$
(2 k+2)!>(2 \pi)^{2 k}, \quad k \geq 4
$$

Hence $C_{k}>0$ for $k \geq 4$.
Let

$$
f(x)=\frac{x^{3} \sin x}{\left(\frac{\sin x}{x}\right)^{3}-\cos x}
$$

then

$$
\begin{aligned}
f(x) & =\frac{1}{g(x)} \\
& =\frac{1}{\frac{1}{15}-\frac{1}{945} x^{2}+\sum_{k=4}^{\infty} C_{k} x^{2 k-4}}=\sum_{k=2}^{\infty} A_{k} x^{2 k-4}
\end{aligned}
$$

thus we have

$$
\left(\frac{1}{15}-\frac{1}{945} x^{2}+\sum_{k=4}^{\infty} C_{k} x^{2 k-4}\right)\left(15+\frac{5}{21} x^{2}+\sum_{k=4}^{\infty} A_{k} x^{2 k-4}\right)=1
$$

which lead to the conclusion that $A_{2}=15, A_{3}=\frac{5}{21}$ and $A_{n}(n \geq 4)$ satisfies the recurrence relation

$$
\begin{equation*}
\sum_{k=2}^{n} A_{k} C_{n-k+2}=0 \tag{17}
\end{equation*}
$$

Since $C_{k}>0$ for $k \geq 4$, by the monotonicity of $g(x)$, we can conclude that $A_{k}<0$ for all $k \geq 4$.

Based on theorem 10 and theorem 2, we have
Theorem 12. For every $x \in(0, b), 0<b \leq \frac{\pi}{2}$ and $m \in \mathbb{N}, m \geq 4$, the following inequalities hold:

$$
\begin{align*}
T_{2}^{f, 0+, b-}(x) \leq \ldots & \leq T_{2 m-4}^{f, 0+, b-}(x) \leq T_{2 m-2}^{f, 0+, b-}(x) \leq \ldots \\
& \ldots \leq f(x) \leq \ldots \tag{18}\\
\ldots \leq \mathbb{T}_{2 m-2}^{f ; 0+}(x) & \leq \mathbb{T}_{2 m-4}^{f ; 0+}(x) \leq \ldots \leq \mathbb{T}_{2}^{f ; 0+}(x)
\end{align*}
$$

where

$$
\begin{gathered}
f(x)=\frac{\left(\frac{\sin x}{x}\right)^{3}+\frac{1}{2} \sin ^{2} x-1}{x \sin ^{3} x} \\
T_{2 m-2}^{f, 0+}(x)=\sum_{k=2}^{m} D(k) x^{2 k-4} \\
\mathbb{T}_{2 m-2}^{f ; 0+, b-}(x)=\sum_{k=2}^{m-1} D(k) x^{2 k-2}+\frac{1}{b^{2 m}}\left(f(b)-\sum_{k=2}^{m-1} D(k) b^{2 k-2}\right) x^{2 m-4}
\end{gathered}
$$

where

$$
D_{n}=-\frac{\left(2^{2 n-1}-1\right)(2 n-1)(2 n-2)\left|B_{2 n}\right|}{(2 n)!}, \quad n \geq 2
$$

Let $m=4$ and $b=\frac{\pi}{2}$ in Theorem 11, we have

$$
\begin{equation*}
\cos x+\frac{x^{3} \sin x}{15+\frac{5}{21} x^{2}-\frac{100}{1323} x^{4}}<\left(\frac{\sin x}{x}\right)^{3}<\cos x+\frac{x^{3} \sin x}{15+\frac{5}{21} x^{2}-\lambda x^{4}} \tag{19}
\end{equation*}
$$

where

$$
\lambda=\frac{20160+80 \pi^{2}-21 \pi^{6}}{84 \pi^{4}}
$$

Let $m=4, b=\frac{\pi}{2}$ in Theorem 12, we have

$$
\begin{equation*}
\left(\mu x^{2}-\frac{7}{120}\right) x \sin ^{3} x<\left(\frac{\sin x}{x}\right)^{3}-1+\frac{1}{2} \sin ^{2} x<-\left(\frac{7}{120}+\frac{31}{1512} x^{2}\right) x \sin ^{3} x \tag{20}
\end{equation*}
$$

where

$$
\mu=\frac{1920-120 \pi^{3}+7 \pi^{4}}{30 \pi^{6}}
$$

Acknowledgments. The author are thankful to anonymous referees for their careful corrections to and valuable comments on the original version of this paper. Speifically, I would like to thank the referee for their simplifying the proof.

REFERENCES

1. M. Abramowitz, I. A. Stegun (Eds): Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards, Applied Mathematics Series 55, 4th printing, with corrections, Washington, 1965.
2. H. Alzer, S.-L. Qiu: Monotonicity theorems and inequalities for complete elliptic integrals, J. Comput. Appl. Math. 172 (2004), 289-312.
3. Y.J. Bagul, C. Chesneau: Refined forms of Oppenheim and Cusa-Huygens type inequalities, Acta Comment. Univ. Tartu. Math. 24:2 (2020),183-194.
4. Y. J. Bagul, C. Chesneau, M. Kostić: On the Cusa-Huygens inequality, RACSAM (2021) 115:29.
5. Y.J. Bagul, B. Banjac, C. Chesneau, M. Kostić, B. Malesević: New refinements of Cusa-Huygens inequality. Results Math. 2021, 76, 107
6. M. Biernacki, J. Krzyz: On the monotonicity of certain functionals in the theory of analytic functions, Ann. Univ. Mariae. Curie-Sklodowska. 2 (1955), 135-145.
7. C.-P. Chen, J. SÁndor: Inequality chains for Wilker, Huygens and Lazarević type inequalities, J. Math. Inequal. 8:1 (2014), 55-67.
8. C.-P. Chen, R. B. Paris: On the Wilker and Huygens-type inequalities, J. Math. Inequal. 14:3(2020), 685-705.
9. C.-P. Chen, R. B. Paris: Series representations of the remainders in the expansions for certain trigonometric functions and some related inequalities, I, Math. Inequal. Appl. 20:4(2017), 1003-1016.
10. A.R. Chouikha: New sharp inequalities related to classical trigonometric inequalities, J. Inequal. Spec. Funct. 11:4(2020), 27-35.
11. Y.-P. Lv, G.-D. Wang, Y.-M. Chu: A note on Jordan type inequalities for hyperbolic functions, Appl. Math. Letters. 25:3(2012), 505-508.
12. B. Malešević, B. Mihailovic: A minimax approximant in the theory of analytic inequalities, Appl. Anal. Discrete Math. 15:2 (2021), 486-509.
13. B. Malešević, M. Rasajški, T. Lutovac: Double-sided Taylor's approximations and their applications in Theory of analytic inequalities, in Ed. Th. Rassias and D. Andrica: Differential and Integral Inequalities, Springer Optimization and Its Applications, vol 151. pp. 569-582, Springer 2019.
14. B. Malešević, T. Lutovac M. Rasajški, B. Banjac: Double-Sided Taylor's Approximations and Their Applications in Theory of Trigonometric Inequalities, in Ed. M.Th. Rassias, A. Raigorodskii: Trigonometric Sums and their Applications, pp. 159167, Springer 2020..
15. B. Malešević, T. Lutovac, M. Rasajški, B. Banjac: Error-Functions in DoubleSided Taylor's Approximations, Appl. Anal. Discrete Math. 14:3 (2020), 599-613.
16. B. Malešević, T. Lutovac, M.Rasajški: Generalizations and Improvements of Approximations of Some Analytic Functions: A Survey, in Ed. N. J. Daras, Th. M. Rassias: Approximation and Computation in Science and Engineering, Springer Optimization and Its Applications, vol 180. pp. 589-608, Springer 2022.
17. D.S. Mitrinović, D.D. Adamović: Sur une inegalite elementaire ou interviennent des fonctions trigonometriques, Univerzitet u Beogrdu. Publikacije Elektrotehnickog Fakulteta. Serija Matematika i Fizika. 149(1965), 23-34.
18. D.S. Mitrinović, D.D. Adamović: Complement A L'article "Sur une inegalite elementaire ou interviennent des fonctions trigonometriques", Univerzitet u Beogradu. Publikacije Elektrotehnickog Fakulteta. Serija Matematika i Fizika. 166(1966), 31-32.
19. C. Mortici: The natural approach of Wilker-Cusa-Huygens inequalities, Math. Inequal. Appl. 14:3 (2011), 535-541.
20. M. Nenezić, B. Malešević, C. Mortici: New approximations of some expressions involving trigonometric functions, Appl. Math. Comput. 283(2016), 299-315.
21. E. Neuman and J. Sándor: On some inequalities involving trigonometric and hyperbolic functions with emphasis on the Cusa-Huygens, Wilker, and Huygens inequalities, Math. Inequal. Appl. 13:4 (2010), 715-723.
22. E. Neuman: Refinements and generalizations of certain inequalities involving trigonometric and hyperbolic functions, Adv. Inequal. Appl. 1:1 (2012), 1-11.
23. F. Qi: A double inequality for the ratio of two non-zero neighbouring Bernoulli numbers, J. Comput. Appl. Math. 351(2019), 1-5.
24. M. Rašajski, T. Lutovac, B. Malešević: Sharpening and generalizations of Shafer-Fink and Wilker type inequalities: a new approach, J. Nonlinear Sci. Appl. 11 :7(2018), 885-893.
25. Z.-H. Yang: Three families of two-parameter means constructed by trigonometric functions, J. Inequal. Appl. 2013 (2013). Article 541.
26. Z.-H. Yang, Y.-L. Jiang. Y-Q. Song, Y.-M. Chu: Sharp inequalities for trigonometric functions, Abstr. Appl. Anal. 2014 (2014), Article ID 601839, 18 pages.
27. Z.-H. Yang, Y.-M. Chu: A note on Jordan, Mitrinović-Adamović, and Cusa inequalities, Abstr. Appl. Anal. 2014 (2014), Article ID 364076, 12 pages.
28. L.-N. Zhang, X.-S. Ma: Some new results of Mitrinović-Cusa's and related inequalities based on the interpolation and approximation method, J. Math. 2021 (2021), Article ID 5595650, 13 pages, 2021.
29. L. Zhu: Sharp inequalities of Mitrinovic-Adamovic type. RACSAM. 113 (2019), 957-968.
30. L. Zhu: An unity of Mitrinovic-Adamovic and Cusa-Huygens inequalities and the analogue for hyperbolic functions. RACSAM. 113 (2019), 3399-3412.
31. L. Zhu: New Mitrinović-Adamović type inequalities, RACSAM. 114 (2020), 119.
32. L. Zhu: New Cusa-Huygens type inequalities. AIMS Math. 5:5(2020b), 5320-5331 .
33. L. Zhu: On Frame's inequalities, J. Inequal. Appl. 2018(2018), 94.
34. L. Zhu, R.-J. Zhang: New inequalities of Mitrinović-Adamović type, RACSAM. 116 (2022), 34.

Wei-Dong Jiang
(Received 07. 05. 2021.)
Department of Information Engineering, (Revised 19. 04. 2023.)
Weihai Vocational College,
Weihai City 264210,
ShanDong province, P. R. CHINA.
E-mail: jackjwd@163.com

