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RANK PARTITION FUNCTIONS AND TRUNCATED

THETA IDENTITIES

Mircea Merca

In 1944, Freeman Dyson defined the concept of rank of an integer partition

and introduced without definition the term of crank of an integer partition.

A definition for the crank satisfying the properties hypothesized for it by

Dyson was discovered in 1988 by G. E. Andrews and F. G. Garvan. In this

paper, we introduce truncated forms for two theta identities involving the

generating functions for partitions with non-negative rank and non-negative

crank. As corollaries we derive new infinite families of linear inequalities for

the partition function p(n). The number of Garden of Eden partitions are

also considered in this context in order to provide other infinite families of

linear inequalities for p(n).

1. INTRODUCTION

A partition of a positive integer n is any non-increasing sequence of positive
integers whose sum is n [1]. Let p(n) denote the number of partitions of n with the
usual convention that p(0) = 1 and p(n) = 0 when n is not a non-negative integer.
Ramanujan proved that for every positive integer n, we have:

p(5n+ 4) ≡ 0 (mod 5)

p(7n+ 5) ≡ 0 (mod 7)

p(11n+ 6) ≡ 0 (mod 11).

In order to explain the last two congruences combinatorially, Dyson [11] introduced
the rank of a partition. The rank of a partition is defined to be its largest part
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minus the number of its parts. We denote by N(m,n) the number of partitions
of n with rank m. According to Atkin and Swinnerton-Dyer [7, eq. (2.12)], the
generating function for N(m,n) is given by

∞∑
n=0

N(m,n)qn =
1

(q; q)∞

∞∑
n=1

(−1)n−1qn(3n−1)/2+mn(1− qn).(1)

Here and throughout this paper, we use the following customary q-series notation:

(a; q)n =

{
1, for n = 0,

(1− a)(1− aq) · · · (1− aqn−1), for n > 0;

(a; q)∞ = lim
n→∞

(a; q)n;[
n
k

]
=


(q; q)n

(q; q)k(q; q)n−k
, if 0 ⩽ k ⩽ n,

0, otherwise.

We sometimes use the following compressed notations:

(a1, a2, . . . , ar; q)n = (a1; q)n(a2, q)n · · · (ar; q)n,
(a1, a2, . . . , ar; q)∞ = (a1; q)n(a2, q)n · · · (ar; q)∞.

Because the infinite product (a; q)∞ diverges when a ̸= 0 and |q| ⩾ 1, whenever
(a; q)∞ appears in a formula, we shall assume |q| < 1.

By (1), we immediately deduce that

(2)

∞∑
n=0

N(n)qn =
1

(q; q)∞

∞∑
n=0

(−1)nqn(3n+1)/2 = 1 +

∞∑
n=1

qn
[
2n− 1
n− 1

]
,

and

(3)

∞∑
n=0

R(n)qn =
1

(q; q)∞

∞∑
n=1

(−1)n+1qn(3n+1)/2 =

∞∑
n=1

qn+1

[
2n

n− 1

]
,

where N(n) is the number of partitions of n with non-negative rank and R(n) is
the number of partitions of n with positive rank. We remark that the sequences
{N(n)}n>0 and {R(n)}n>0 are known and can be seen in the On-Line Encyclopedia
of Integer Sequence [25, A064173,A064174].

Linear inequalities involving Euler’s partition function p(n) have been the
subject of recent studies. In [4], Andrews and Merca considered Euler’s pentagonal
number theorem

∞∑
n=−∞

(−1)nqn(3n−1)/2 = (q; q)∞

and proved a truncated theorem on partitions.
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Theorem 1. For k ⩾ 1,

1

(q; q)∞

k−1∑
j=0

(−1)jqj(3j+1)/2(1− q2j+1) = 1 + (−1)k−1
∞∑

n=1

q(
k
2)+(k+1)n

(q; q)n

[
n− 1
k − 1

]
.

As a consequence of Theorem 1, Andrews and Merca derived the following
linear partition inequality: For n > 0, k ⩾ 1,

(4) (−1)k−1
k−1∑
j=0

(−1)j
(
p
(
n− j(3j + 1)/2

)
− p

(
n− j(3j + 5)/2− 1

))
⩾ 0,

with strict inequality if n ⩾ k(3k + 1)/2.

Theorem 1 has opened up a new study on truncated theta series and linear
partition inequalities. Other recent investigations involving truncated theta series
and linear partition inequalities can be found in several papers by Andrews and
Merca [5], Chan, Ho and Mao [10], Guo and Zeng [14], He, Ji and Zang [15], Mao
[17, 18], Merca [19, 20, 21], and Merca, Wang and Yee [22].

In this paper, motivated by these results, we shall provide a bisected version
of Theorem 1. The first result contains a truncated form of the identity (2).

Theorem 2. For |q| < 1 and k ⩾ 1, we have

1

(q; q)∞

k−1∑
j=0

(−1)jqj(3j+1)/2

= 1 +

∞∑
j=1

qj
[
2j − 1
j − 1

]
+ (−1)k−1 qk(3k+1)/2

(q, q3; q3)∞

∞∑
j=0

qj(3j+3k+2)

(q3; q3)j(q2; q3)k+j

and

1

(q; q)∞

k−1∑
j=0

(−1)jqj(3j+5)/2+1

=

∞∑
j=1

qj
[
2j − 1
j − 1

]
+ (−1)k−1 q

k(3k+5)/2+1

(q2, q3; q3)∞

∞∑
j=0

qj(3j+3k+4)

(q3; q3)j(q; q3)k+j+1
.

An immediate consequence owing to the positivity of the sums on the right
hand side of the second identity is given by the following infinite family of linear
partition inequalities.

Corollary 3. For n > 0, k ⩾ 1,

(−1)k−1

k−1∑
j=0

(−1)jp(n− j(3j + 5)/2− 1)−N(n)

 ⩾ 0.
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with strict inequality if n ⩾ k(3k + 5)/2 + 1. For example,

p(n− 1) ⩾ N(n),

p(n− 1)− p(n− 5) ⩽ N(n),

p(n− 1)− p(n− 5) + p(n− 12) ⩾ N(n), and

p(n− 1)− p(n− 5) + p(n− 12)− p(n− 22) ⩽ N(n).

Regarding the inequality (4), we recall the following partition theoretic inter-
pretation given by Andrews and Merca [4, Theorem 1]:

(−1)k−1
k−1∑
j=0

(−1)j
(
p
(
n− j(3j + 1)/2

)
− p

(
n− j(3j + 5)/2− 1

))
= Mk(n),

where Mk(n) is the number of partitions of n in which k is the least integer that
is not a part and there are more parts > k than there are < k. In [23, 27] the
authors have given combinatorial proofs of this result. We can easily deduce that
Corollary 3 is equivalent to the following result.

Corollary 4. For n > 0, k ⩾ 1,

(−1)k−1

k−1∑
j=0

(−1)jp(n− j(3j + 1)/2)−N(n)

 ⩾ Mk(n),

with strict inequality if n ⩾ k(3k + 5)/2 + 1.

The following theorem contains a truncated version of the identity (3).

Theorem 5. For |q| < 1 and k > 1, we have

1

(q; q)∞

k−1∑
j=1

(−1)j+1qj(3j+1)/2

=

∞∑
j=1

qj+1

[
2j

j − 1

]
+ (−1)k

qk(3k+1)/2

(q, q3; q3)∞

∞∑
j=0

qj(3j+3k+2)

(q3; q3)j(q2; q3)k+j

and

1

(q; q)∞

1−
k−1∑
j=0

(−1)jqj(3j+5)/2+1


= 1 +

∞∑
j=1

qj+1

[
2j

j − 1

]
+ (−1)k

qk(3k+5)/2+1

(q2, q3; q3)∞

∞∑
j=0

qj(3j+3k+4)

(q3; q3)j(q; q3)k+j+1
.

Theorem 5 is not essentially a new result, it is an equivalent version of The-
orem 2. As a consequence of Theorem 5 we remark the following equivalent form
of Corollary 4.
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Corollary 6. For n ⩾ 0, k > 1,

(−1)k

k−1∑
j=1

(−1)j+1p
(
n− j(3j + 1)/2

)
−R(n)

 ⩾ Mk(n),

with strict inequality if n ⩾ k(3k + 5)/2 + 1.

Theorems 2 and 5 are good reasons to look for new infinite families of linear
inequalities for the partition function p(n). The rest of this paper is organized as
follows. We will first prove Theorem 2 in Section 2. In Section 3, we consider the
partitions with non-negative crank and provide a truncated form of an identity of
Auluck [8]. Section 4 is devoted the partitions with rank −2 or less. Connections
between partitions with rank −2 or less and partitions with positive crank are given
in this context.

2. PROOF OF THEOREM 2

To prove the theorem, we consider Heine’s transformation of 2ϕ1 series [13,
(III.2)], namely

(5) 2ϕ1

(
a, b
c

; q, z

)
=

(c/b, bz; q)∞
(c, z; q)∞

2ϕ1

(
abz/c, b

bz
; q, c/b

)
.

Rewriting (2) as

1

(q; q)∞

k−1∑
n=0

(−1)nqn(3n+1)/2 = 1 +

∞∑
n=1

qn
[
2n− 1
n− 1

]
− 1

(q; q)∞

∞∑
n=k

(−1)nqn(3n+1)/2,

we get

1

(q; q)∞

∞∑
n=k

(−1)nqn(3n+1)/2

= (−1)k
qk(3k+1)/2

(q; q)∞

∞∑
n=0

(−1)nqn(6k+1)/2+3n2/2

= (−1)k
qk(3k+1)/2

(q; q)∞
lim
z→0

∞∑
n=0

(q3k+2/z; q3)n
(z; q3)n

zn

= (−1)k
qk(3k+1)/2

(q; q)∞
lim
z→0

2ϕ1

(
q3, q3k+2/z

z
; q3, z

)
= (−1)k

qk(3k+1)/2

(q; q)∞

× lim
z→0

(z2/q3k+2, q3k+2; q3)∞
(z; q3)2∞

2ϕ1

(
q3k+5/z, q3k+2/z

q3k+2 ; q3, z2/q3k+2

)
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= (−1)kqk(3k+1)/2 (q
3k+2; q3)∞
(q; q)∞

lim
z→0

∞∑
n=0

(q3k+5/z, q3k+2/z; q3)n
(q3, q3k+2; q3)n

(
z2

q3k+2

)n

= (−1)kqk(3k+1)/2 (q
3k+2; q3)∞
(q; q)∞

lim
z→0

∞∑
n=0

(−1)nq3n(n+1)/2(q3k+2/z; q3)nz
n

(q3, q3k+2; q3)n

= (−1)kqk(3k+1)/2 (q
3k+2; q3)∞
(q; q)∞

∞∑
n=0

qn(3n+3k+2)

(q3, q3k+2; q3)n

= (−1)kqk(3k+1)/2 (q
2; q3)∞
(q; q)∞

∞∑
n=0

qn(3n+3k+2)

(q3; q3)n(q2; q3)n+k
.

The first identity is proved.

Considering Euler’s pentagonal number theorem, the identity (2) becomes

1

(q; q)∞

k−1∑
n=0

(−1)nqn(3n+5)/2+1 =

∞∑
n=1

qn
[
2n− 1
n− 1

]
− 1

(q; q)∞

∞∑
n=k

(−1)nqn(3n+5)/2+1.

The proof of the second identity is quite similar to the proof of the first one, so we
omit the details.

3. TRUNCATED IDENTITY OF AULUCK

In 1988, Andrews and Garvan [3] defined the crank of an integer partition
as follows. The crank of a partition is the largest part of the partition if there are
no ones as parts and otherwise is the number of parts larger than the number of
ones minus the number of ones. More precisely, for a partition λ = [λ1, λ2, . . . , λk]
let ℓ(λ) denote the largest part of λ, ω(λ) denote the number of 1’s in λ, and µ(λ)
denote the number of parts of λ larger than ω(λ). The crank c(λ) is given by

c(λ) =

{
ℓ(λ), if ω(λ) = 0,

µ(λ)− ω(λ), if ω(λ) > 0.

If M(m,n) denotes the number of partitions of n with crank m, then [3]:

∞∑
n=0

∞∑
m=−∞

M(m,n)zmqn =
(q; q)∞

(zq; q)∞(q/z; q)∞
.(6)

In this section we denote by C(n) the number of partition of n with non-negative
crank. Recently, Uncu [26] proved that the number of partitions into even number
of distinct parts whose odd-indexed parts’ sum is n is equal to the number of
partitions of n with non-negative crank. In this context he provided the following
result.
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Theorem 7. The generating function for partitions with non-negative crank is

∞∑
n=0

C(n)qn =
1

(q; q)∞

∞∑
n=0

(−1)nqn(n+1)/2.

We remark that this result was proved independently by Ballantine and Merca
[9] in a paper that investigates connections between least r-gaps in partitions and
partitions with non-negative rank and non-negative crank. In this paper they
proved that the number of partitions of n with nonnegative crank is even except
when n is twice a generalized pentagonal number. Very recently, Andrews and
Newman [6] considered (6) and provided a different proof for Theorem 7. In 2011,
Andrews [2] remarked that the following theta identity

1

(q; q)∞

∞∑
n=0

(−1)nqn(n+1)/2 =

∞∑
n=0

qn(n+1)

(q; q)2n
(7)

is effectively equivalent to an identity of Auluck [8, eq. (10)] published in 1951.
We have the following truncated form of the identity (7).

Theorem 8. For k ⩾ 1,

1

(q; q)∞

k−1∑
n=0

(−1)nqn(n+1)/2 =

∞∑
n=0

qn(n+1)

(q; q)2n
+ (−1)k−1qk(k+1)/2

∞∑
n=0

qn(n+k+1)

(q; q)n(q; q)n+k
.

Proof. The proof of this theorem is quite similar to the proof of Theorem 2. The
identity (7) can be written as:

1

(q; q)∞

k−1∑
n=0

(−1)nqn(n+1)/2 =

∞∑
n=0

qn(n+1)

(q; q)2n
− 1

(q; q)∞

∞∑
n=k

(−1)nqn(n+1)/2.

We have

1

(q; q)∞

∞∑
n=k

(−1)nqn(n+1)/2

= (−1)k
qk(k+1)/2

(q; q)∞

∞∑
n=0

(−1)nqn(2k+1)/2+n2/2

= (−1)k
qk(k+1)/2

(q; q)∞
lim
z→0

∞∑
n=0

(qk+1/z; q)n
(z; q)n

= (−1)k
qk(k+1)/2

(q; q)∞
lim
z→0

(z2/qk+1, qk+1; q)∞
(z; q)2∞

∞∑
n=0

(qk+2/z, qk+1/z; q)n
(q; q)n(qk+1; q)n

(
z2

qk+1

)n
(By Heine’s transformation (5))

= (−1)kqk(k+1)/2 (q
k+1; q)∞
(q; q)∞

∞∑
n=0

qn(n+k+1)

(q, qk+1; q)n



Rank Partition Functions and Truncated Theta Identities 289

= (−1)kqk(k+1)/2
∞∑

n=0

qn(n+k+1)

(q; q)n(q; q)n+k
.

This concludes the proof.

In analogy with Corollary 4, we derive a new infinite family of linear inequal-
ities for p(n).

Corollary 9. For n ⩾ 0, k ⩾ 1,

(−1)k−1

k−1∑
j=0

(−1)jp
(
n− j(j + 1)/2

)
− C(n)

 ⩾ 0,

with strict inequality if n ⩾ k(k + 1)/2. For example,

p(n) ⩾ C(n),

p(n)− p(n− 1) ⩽ C(n),

p(n)− p(n− 1) + p(n− 3) ⩾ C(n), and

p(n)− p(n− 1) + p(n− 3)− p(n− 6) ⩽ C(n).

4. GARDEN OF EDEN PARTITIONS

In 2007, B. Hopkins and J. A. Sellers [16] provided a formula that counts
the number of partitions of n that have rank −2 or less. Following the terminology
of cellular automata and combinatorial game theory, they call these Garden of
Eden partitions. These partitions arise naturally in analyzing the game Bulgarian
solitaire which was popularized by Gardner [12] in 1983. By (1), Hopkins and
Sellers obtained

(8)

∞∑
n=0

ge(n)qn =
1

(q; q)∞

∞∑
n=1

(−1)n−1q3n(n+1)/2,

where ge(n) counts the Garden of Eden partitions of n. We remark the following
theta identity.

Theorem 10. For |q| < 1,

1

(q; q)∞

∞∑
n=1

(−1)n−1q3n(n+1)/2 =
1

(q, q2; q3)∞

∞∑
n=0

q3(n+1)2

(q3; q3)n(q3; q3)n+1
.

Proof. We can write

1

(q; q)∞

∞∑
n=1

(−1)n−1q3n(n+1)/2
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=
q3

(q; q)∞

∞∑
n=0

(−1)nq3n
2/2+9n/2

=
q3

(q; q)∞
lim
z→0

∞∑
n=0

(q6/z; q3)n
(z; q3)n

zn

=
q3

(q; q)∞
lim
z→0

(z2/q6, q6; q3)∞
(z; q3)2∞

∞∑
n=0

(qn/z, q6/z; q3)n
(q3, q6; q3)n

(
z2

q6

)n
(By Heine’s transformation (5))

=
q3(q6; q3)∞
(q; q)∞

lim
z→0

∞∑
n=0

(−1)nq3n(n+1)/2(q6/z; q3)n
(q3, q6; q3)n

zn

=
q3(q6; q3)∞
(q; q)∞

∞∑
n=0

q3n(n+2)

(q3, q6; q3)n

=
(q3; q3)∞
(q; q)∞

∞∑
n=0

q3(n+1)2

(q3; q3)n(q3; q3)n+1
.

Relating to Theorem 10, we remark that

∞∑
n=0

D(n)qn =
1

(q; q)∞

∞∑
n=1

(−1)n−1qn(n+1)/2 =

∞∑
n=0

q(n+1)2

(q; q)n(q; q)n+1
(9)

is the generating function for the partitions with positive crank. It is an easy
exercise to deduce Theorem 10 from (9) and vice versa. Connections between
Garden of Eden partitions and partitions with positive crank can be easily derived
considering Theorem 10.

Corollary 11. For n ⩾ 0,

ge(n) =

⌊n/3⌋∑
k=0

D(j)p3(n− 3j),

where p3(n) counts partitions of n in which no parts are multiples of 3.

We have the following truncated form of Theorem 10.

Theorem 12. For |q| < 1, k ⩾ 1,

1

(q; q)∞

k∑
n=1

(−1)n−1q3n(n+1)/2 =
1

(q, q2; q3)∞

∞∑
n=0

q3(n+1)2

(q3; q3)n(q3; q3)n+1

+ (−1)k−1 q
3(k+1)(k+2)/2

(q, q2; q3)∞

∞∑
n=0

q3n(n+k+2)

(q3; q3)n(q3; q3)n+k+1
.



Rank Partition Functions and Truncated Theta Identities 291

Proof. The identity (8) can be written as:

1

(q; q)∞

k∑
n=1

(−1)n−1q3n(n+1)/2 =

∞∑
n=0

ge(n)qn − q3

(q; q)∞

∞∑
n=k

(−1)nq3n(n+3)/2.

We have

q3

(q; q)∞

∞∑
n=k

(−1)nq3n(n+3)/2

= (−1)k
q3(k+1)(k+2)/2

(q; q)∞

∞∑
n=0

(−1)nq3n(2k+3)/2+3n2/2

= (−1)k
q3(k+1)(k+2)/2

(q; q)∞
lim
z→0

∞∑
n=0

(q3(k+2)/2/z; q3)n
(z; q3)n

zn

= (−1)k
q3(k+1)(k+2)/2

(q; q)∞

× lim
z→0

(z2/q3(k+2), q3(k+2); q3)∞
(z; q3)2∞

∞∑
n=0

(q3(k+3)/z, q3(k+2)/z; q3)n
(q3, q3(k+2); q3)n

(
z2

q3(k+2)

)n
(By Heine’s transformation (5))

= (−1)kq3(k+1)(k+2)/2 (q
3(k+2); q3)∞
(q; q)∞

lim
z→0

∞∑
n=0

(−1)n
q3n(n+1)/2(q3(k+2)/z; q3)n

(q3, q3(k+2); q3)n
zn

= (−1)kq3(k+1)(k+2)/2 (q
3(k+2); q3)∞
(q; q)∞

∞∑
n=0

q3n(n+k+2)

(q3, q3(k+2); q)n

= (−1)kq3(k+1)(k+2)/2 (q
3; q3)∞
(q; q)∞

∞∑
n=0

q3n(n+k+2)

(q3; q3)n(q3; q3)n+k+1
.

The proof follows easily considering Theorem 10.

On the one hand, as a consequence of Theorem 12, we remark a new infinite
family of linear inequalities for the partition function p(n).

Corollary 13. For n ⩾ 0, k ⩾ 1,

(−1)k−1

 k∑
j=1

(−1)j−1p
(
n− 3j(j + 1)/2

)
− ge(n)

 ⩾ 0,

with strict inequality if n ⩾ 3(k + 1)(k + 2)/2. For example,

p(n− 3) ⩾ ge(n),

p(n− 3)− p(n− 9) ⩽ ge(n),

p(n− 3)− p(n− 9) + p(n− 18) ⩾ ge(n), and

p(n− 3)− p(n− 9) + p(n− 18)− p(n− 30) ⩽ ge(n).
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On the other hand, by Theorem 12, we deduce the following truncated version
of (9).

Corollary 14. For |q| < 1, k ⩾ 1,

1

(q; q)∞

k∑
n=1

(−1)n−1qn(n+1)/2

=

∞∑
n=0

q(n+1)2

(q; q)n(q; q)n+1
+ (−1)k−1q(k+1)(k+2)/2

∞∑
n=0

qn(n+k+2)

(q; q)n(q; q)n+k+1
.

This result allows us to deduce the following infinite family of linear inequal-
ities for the partition function p(n).

Corollary 15. For n ⩾ 0, k ⩾ 1,

(−1)k−1

 k∑
j=1

(−1)j−1p
(
n− j(j + 1)/2

)
−D(n)

 ⩾ 0,

with strict inequality if n ⩾ (k + 1)(k + 2)/2. For example,

p(n− 1) ⩾ D(n),

p(n− 1)− p(n− 3) ⩽ D(n),

p(n− 1)− p(n− 3) + p(n− 6) ⩾ D(n), and

p(n− 1)− p(n− 3) + p(n− 6)− p(n− 10) ⩽ D(n).

5. CONCLUDING REMARKS

New infinite families of linear inequalities for the partition function p(n) have
been introduced in this paper considering two theta identities involving the gen-
erating functions for partitions with non-negative rank and non-negative crank.
Inspired by these results, in Section 4 we considered the partitions with rank ⩽ −2
(Garden of Eden partitions) and obtained another infinite families of linear inequal-
ities for p(n).

Theorems 1 and 2 allow us to derive the following theta identity.

Corollary 16. For |q| < 1 and k ⩾ 1, we have

∞∑
n=1

q(
k
2)+(k+1)n

(q; q)n

[
n− 1
k − 1

]

=
qk(3k+1)/2

(q, q3; q3)∞

∞∑
n=0

qn(3n+3k+2)

(q3; q3)n(q2; q3)n+k
− qk(3k+5)/2+1

(q2, q3; q3)∞

∞∑
n=0

qn(3n+3k+4)

(q3; q3)n(q; q3)n+k+1
.
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A similar theta identity can be derived if we consider another truncated form
of Euler’s pentagonal number theorem given by D. Shanks [24] in 1951:

1 +

k∑
n=1

(−1)n
(
qn(3n+1)/2 + qn(3n−1)/2

)
=

k∑
n=0

(−1)n
q(

n+1
2 )+kn(q; q)k
(q; q)n

.(10)

Corollary 17. For |q| < 1 and k ⩾ 0, we have

(−1)k

(q; q)∞

k∑
n=0

(−1)n
q(

n+1
2 )+kn(q; q)k
(q; q)n

− (−1)k

=
qk(3k+7)/2+2

(q, q3; q3)∞

∞∑
n=0

qn(3n+3k+5)

(q3; q3)n(q2; q3)n+k+1
+

qk(3k+5)/2+1

(q2, q3; q3)∞

∞∑
n=0

qn(3n+3k+4)

(q3; q3)n(q; q3)n+k+1
.

The Shanks identity (10) and Corollary 17 allow us to obtain the following
infinite family of linear inequalities: For n > 0, k ⩾ 1,

(−1)k

p(n) +

k∑
j=1

(−1)j
(
p
(
n− j(3j + 1)/2

)
− p

(
n− j(3j − 1)/2

)) ⩾ 0,

with strict inequality if n > k(3k + 5)/2. We remark that this inequality is weaker
than the inequality (4). However, a partition theoretic interpretation for it would
be very interesting.

Relevant to Theorem 2 and Corollaries 16 and 17, it would be very appealing
to have combinatorial interpretations for

qk(3k+1)/2

(q, q3; q3)∞

∞∑
n=0

qn(3n+3k+2)

(q3; q3)n(q2; q3)n+k
,

qk(3k+5)/2+1

(q2, q3; q3)∞

∞∑
n=0

qn(3n+3k+4)

(q3; q3)n(q; q3)n+k+1
,

and
qk(3k+7)/2+2

(q, q3; q3)∞

∞∑
n=0

qn(3n+3k+5)

(q3; q3)n(q2; q3)n+k+1
.

Finally, with regard to Theorems 8 and 13, partition theoretic interpretation for

qk(k+1)/2
∞∑

n=0

qn(n+k+1)

(q; q)n(q; q)n+k

and
q3(k+1)(k+2)/2

(q, q2; q3)∞

∞∑
n=0

q3n(n+k+2)

(q3; q3)n(q3; q3)n+k+1

would be very interesting.
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