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ON SPECTRAL THEORY OF A K-UNIFORM

DIRECTED HYPERGRAPH

G. H. Shirdel∗, A. Mortezaee and E. Golpar-Raboky

In this paper, we study a k-uniform directed hypergraph in general form and

introduce its associated tensors. We present different spectral properties and

show that some of them are generalization of the classical results for undi-

rected hypergraphs. The notation of odd-bipartite directed hypergraph are

presented and some spectral properties and characterizations of them com-

paring with ones in undirected hypergraphs are studied. We also introduce

power directed hypergraph and cored directed hypergraph and investigate

their spectral properties.

1. INTRODUCTION

Directed hypergraphs are deeply used as a successful data structure in modeling
the problems arising in computer science [13] and operations research, and recently
they have found applications in data mining, clustering, association rules [31],
image processing [10] and optical network communications [21]. On the other hand,
spectral theory of hypergraphs gives useful and important information about them.
In 2005 eigenvalues and eigenvectors of a real tensor are defined [28, 36]. Qi [36]
introduced the spectral theory of supersymmetric real tensor. In [37] the spectral
theory of undirected hypergraphs was presented via eigenvalues and eigenvectors
of the adjacency tensor, Laplacian tensor, and signless Laplacian tensor. Recently
a number of papers appeared in different aspects such as, spectral hypergraph
theory [7, 8, 15, 23, 24, 26, 32, 34, 40, 41, 46, 53], eigenvalues [17, 25, 33,
42, 43, 44, 45, 48, 50], connectivity [16, 27], Laplacian tensor [1, 18, 20, 35,
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37, 51], structured tensors related [5, 9], special hypergraphs [2, 19, 22, 38,
49],hypergraph properties [3, 11, 14, 29, 30].

In spite of a lot of researches in the spectral theory of undirected hypergraphs,
there is almost blank for spectral directed hypergraph theory. Some of the spectral
properties of a special case of k-uniform directed hypergraph, with a tail node and
k−1 head nodes, were studied in [46]. In this paper, we present a generalization of
the k-uniform directed hypergraph and introduce its output-adjacency tensor and
show that all results in [46] are derived from the general form. We present the spec-
tral properties of the generalized directed hypergraphs and extend some classical
results of undirected hypergraphs. We also introduce power directed hypergraphs
and cored directed hypergraphs and propose some of their spectral properties.

In section 2, we discuss the needed fundamental results of tensors and intro-
duce k-uniform directed hypergraphs in general form with their output-adjacency
tensors, Laplacian tensors and signless Laplacian tensors. Section 3 is studied the
strongly connected k-uniform directed hypergraph and its associated tensors. We
propose some spectral properties of the output-adjacency tensor, Laplacian tensor
and signless Laplacian tensor of a general k-uniform directed hypergraph in section
4. In section 5 the notation of odd-bipartite directed hypergraphs and their spec-
tral properties are presented. We also introduce power directed hypergraphs and
cored directed hypergraphs in section 6. Finally, section 7 is the conclusion.

2. PRELIMINARIES

We first present some basic definitions of tensors. Then we introduce the general
k-uniform directed hypergraph with its adjacency tensor, Laplacian tensor, and
signless Laplacian tensor.

2.1 Tensors and some related subjects

A real tensor T = (ti1···ik) of order k and dimension n, for integers k≥3 and n≥2,
is a multi-dimensional array with entries ti1···ik ∈ R, for ij ∈ [n] := {1, 2, · · · , n}
and j ∈ [k] = {1, 2, · · · , k} (see [36]).

Definition 1. [39]: Let T be a k order n dimensional tensor and P and Q be
n × n matrices. The tensor S = PT Qk−1 is a k order n dimensional tensor with
the entries

si1···ik =

n∑
j1,··· ,jk=1

tj1···jkpi1j1qj2i2 · · · qjkik .

Let x = (x1, · · · , xn)
T ∈ Cn, we write xk as a k order n dimensional tensor

with (i1, · · · , ik)-th entry xi1xi2 · · ·xik . Then T xk−1 is an n dimensional vector
whose ith component is

(T xk−1)i =

n∑
i2,··· ,ik=1

tii2···ikxi2 · · ·xik ∀i ∈ [n].
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The identity tensor of order k and dimension n, I = (ii1···ik), is defined as
ii1···ik = 1 iff i1 = · · · = ik ∈ [n] and zero otherwise.

Definition 2. [6, 36]: Let T be a nonzero k order n dimensional tensor. Then
λ ∈ C is called an eigenvalue of T if the polynomial system (λI − T )x[k−1] = 0
has a nonzero solution x ∈ Cn, where x[k−1] = (xk−1

1 , · · · , xk−1
n )T . In this case x

is called an eigenvector of T corresponding to λ and (λ, x) is called an eigenpair of
T .

If (λ, x) ∈ R × Rn/{0} then λ is called an H-eigenvalue and x is called an
H-eigenvector of T [36].

The set of all eigenvalues of T , denoted by Spec(T ), is called the spectrum
of T . The H-spectrum of T , denoted by Hspec(T ), is defined as follows:

Hspec(T ) = {λ ∈ R|λ is an H-eigenvalue of T }.

The spectral radius of T is defined as the largest modulus of the eigenvalues of T
and denoted by ρ(T ).

Definition 3. [39]: Let T and S be two k order n dimension tensors. T and S
are called diagonal similar if there exists a nonsingular diagonal matrix D of order
n such that S = D−(k−1)T Dk−1.

2.2 K-uniform directed hypergraph

In this subsection, we present some needed concepts and definitions of directed
hypergraphs and then we introduce adjacency tensor of a k-uniform directed hy-
pergraph in general form. The following definition of the k-uniform directed hy-
pergraph was presented in [10].

Definition 4. A k-uniform directed hypergraph H is a pair = (V, E) where V = [n]
is a set of elements called verteces and E = {e⃗1, · · · , e⃗m} is the set of arcs. Each
e⃗i, (i = 1, · · · ,m), is considered as an ordered pair (e+i , e

−
i ) where e+i , e

−
i are two

nonempty subsets of V such that e+i ∩ e−i = ϕ , |e+i ∪ e−i | =k. e+i is called the tail
of e⃗i and e−i is its head.

Note : we assume that in the k-uniform directed hypergraph for any k vertices
there exists at most one arc joining them.
The out-degree of a vertex j ∈ V is defined as d+j = |E+

j |, where E+
j = {e⃗ ∈

E|j ∈ e+} and the in-degree of a vertex j ∈ V is defined as d−j = |E−
j |, where

E−
j = {e⃗ ∈ E|j ∈ e−}. The degree of j is defined as dj = d+j + d−j . The hypergraph

H is r-out-regular (or r-in-regular or r-regular, respectively) if for each j ∈ V,
d+j = r (or d−j = r or dj = r, respectively).

Let i, j ∈ V and i ̸= j. Two vertices i and j are called weak-connected,
if there is a sequence of arcs e⃗1, · · · , e⃗l such that i ∈ e+1 ∪ e−1 , j ∈ e+l ∪ e−l and
(e+s ∪ e−s ) ∩ (e+s+1 ∪ e−s+1) ̸= ϕ for all s ∈ [l − 1]. Two vertices i and j are called
strong-connected, denoted by i → j, if there is a sequence of arcs e⃗1, · · · , e⃗l such
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that i ∈ e+1 , j ∈ e−l and e−s ∩ e+s+1 ̸= ϕ for all s ∈ [l − 1]. A directed hypergraph H
is called weak-connected, if every pair of different vertices of H is weak-connected
and H is called strong-connected, if i → j and j → i for all i, j ∈ V and i ̸= j.
A directed hypergraph is complete if E contains of all possible arcs with different
number of vertices in their tails.

Now we introduce output-adjacency tensor of a k-uniform directed hyper-
graph. In [46], the authors discussed the case that each arc has only one tail and
introduced the adjacency tensor, Laplacian tensor, and signless Laplacian tensor.
In this paper we consider the general form of a k-uniform directed hypergraph and
present the following definition of its output-adjacency tensor:

Definition 5. The output-adjacency tensor of a k-uniform directed hypergraph H
is the k order n dimensional tensor A = (ai1···ik) whose entries are as follows:

ai1...ik =


1

(le⃗−1)!(k−le⃗)!
, if ∃ e⃗ = (e+, e−) ∈ E s.t e+ = {i1, · · · , ile⃗},

e− = {ile⃗+1, · · · , ik}
0, otherwise.

By Definition 5, it is easy to see that:

d+i =

n∑
i2,··· ,ik=1

aii2···ik ∀i ∈ V.

That’s why we’ve chosen the name of output-adjacency for this tensor.

Similar to [46] the degree tensor D defined as the k order n dimensional
diagonal tensor whose diagonal element di···i is d+i , the out-degree of vertex i, for
all i ∈ [n]. Also the Laplacian tensor of H is L = D − A and Q = D + A is the
signless Laplacian tensor of H.

Now the following definition of an odd bipartite directed hypergraph is pre-
sented (just as undirected hypergraph [17]).

Definition 6. Let H = (V, E) be a 4-uniform directed hypergraph. H is called
odd bipartite if k is even and there exists a partitioned of V so that V = V1 ∪ V2,
V1 ̸= ϕ and

∀ e⃗ = (e+, e−) ∈ E |(e+ ∪ e−) ∩ V1| is an odd number.

Example 1. Let H = (V, E) be a k-uniform directed hypergraph, where V = [7]

and E =
{
({1, 2, 3}, {4}), ({4}, {5, 6, 7})

}
. H is shown in figure (1).

The adjacency tensor of H is A = (ai1i2i3i4), where 1 ≤ i1, i2, i3, i4 ≤ 7 and we

have, a1234 = a1324 = a2134 = a2314 = a3124 = a3124 =
1

2!1!
=

1

2
and a4567 =

a4576 = a4657 = a4675 = a4756 = a4765 =
1

0!3!
=

1

6
, and the other elements of A are

zero. By Definition 6, H is odd bipartite in which V1 = {4}.
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Figure 1: A 4-uniform directed hypergraph

3. A STRONGLY CONNECTED DIRECTED HYPERGRAPH AND
ITS ASSOCIATED TENSORS

The notation of weakly irreducible nonnegative tensors was introduced in
[12].

Definition 7. Let T = (ti1···ik) be a k order n dimension nonnegative tensor
and G(T ) = (V,E(T )) be a directed graph, where V = [n] and a directed edge
(i, j) ∈ E(T ) if there exists {i2, · · · , ik} ∈ [n] such that j ∈ {i2, · · · , ik} and
tii2...ik > 0. Now T is called weakly irreducible if G(T ) is strongly connected.

Let H be a k-uniform undirected hypergraph, then the output-adjacency of
H, A, is weakly irreducible iff H is connected [12]. In the k-uniform directed
hypergraph and the special case in which each arc has only one tail, A is weakly
irreducible iffH is strongly connected, i.e. the strong connectivity ofH is equivalent
to strong connectivity of G(A). But we have the following lemma in the general
form:

Lemma 1. Let H = (V, E) be a k-uniform directed hypergraph with output-adjacency
tensor A. Then, A is weakly irreducible if H is strongly connected.

Proof. Suppose that H is strongly connected. By Definition 7, it is enough to show
that G(T ) is strongly connected. Let i, j ∈ V and i ̸= j. Since H is strongly
connected, there exist a sequence of vertices and arcs in H such that:

i = j1 e⃗1 j2 e⃗2 j3 · · · e⃗q−1 jq e⃗q jq+1 = j

where j2, · · · , jq ∈ V , e⃗1, · · · , e⃗q ∈ E and jt ∈ e+t , jt+1 ∈ e−t for all
t = 1, · · · , q. On other hand ae+t e−t

> 0 for t = 1, · · · , q, since e⃗t = (e+t , e
−
t ) ∈ E .

Hence et = (jt, jt+1) is a directed edge in G(A), for all t = 1, · · · , q. Therefore
there exists a sequence of vertices and directed edges in G(A):

i = j1 e1 j2 e2 j3 · · · eq−1 jq eq jq+1 = j

i.e. i → j in G(A). Similarly, it can be proved j → i in G(A). Thus G(A) is
strongly connected and then A is weakly irreducible.
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Clearly if A is weakly irreducible then Q = D+A is also weakly irreducible.
Note that the Definition 7 is only for nonnegative tensors, however, Qi in [37] re-
moved the nonnegativity restriction and present the definition of weakly irreducible
tensor in general. By this, if A is weakly irreducible then L is weakly irreducible,
too. Therefore if H is strongly connected then A, Q and L are weakly irreducible.

4. H-EIGENVALUES OF OUTPUT-ADJACENCY TENSOR,
LAPLACIAN TENSOR AND SIGNLESS LAPLACIAN

TENSOR OF H

H-eigenvalues of the tensors associated to a k-uniform directed hypergraph are
studied in this section. Let H = (V, E) be a k-uniform directed hypergraph with
n vertices and A, L and Q be the output-adjacency tensor, Laplacian tensor, and
signless Laplacian tensor, respectively. We have the following lemma:

Lemma 2. Let H be a k-uniform directed hypergraph with n vertices and A be its
output-adjacency tensor. Suppose that x ∈ Rn, then we have:

(Ax[k−1])i =
∑
e⃗∈E+

i

∏
s∈(e+∪e−)\{i}

xs ∀i ∈ [n].

Proof. Suppose that i ∈ [n], we have:

(Ax[k−1])i =

n∑
i2,··· ,ik=1

aii2···ikxi2 · · ·xik

=
∑

e⃗=(e+,e−)∈E
i∈e+, |e+|=le⃗

(le⃗ − 1)!(k − le⃗)!

(le⃗ − 1)!(k − le⃗)!

∏
s∈(e+∪e−)\{i}

xs

=
∑
e⃗∈E+

i

∏
s∈(e+∪e−)\{i}

xs.

Similarly for L and Q we have:

(1) (Lx[k−1])i = d+i −
∑
e⃗∈E+

i

∏
s∈(e+∪e−)\{i}

xs ∀i ∈ [n].

and

(2) (Qx[k−1])i = d+i +
∑
e⃗∈E+

i

∏
s∈(e+∪e−)\{i}

xs ∀i ∈ [n].

Now we have the following theorems.

Theorem 1. Let H be a k-uniform directed hypergraph with n vertices and A be
its output-adjacency tensor. Then λ = 0 is an H-eigenvalue of A.
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Proof. Let x is a vector in Rn that |supp(x)| ≤ n−2, where supp(x) = {xi| xi ̸= 0}.
Then by Lemma 2 we have:

(Ax[k−1])i =
∑
e⃗∈E+

i

∏
s∈(e+∪e−)\{i}

xs = 0 = 0xk−1
i for all i = 1, · · · , n.

The conclusion directly follows from Definition 2.

Theorem 1 shows that {0} ⊂ Hspec(A). Now we introduce the sufficient
condition for {0} = Hspec(A).

Theorem 2. Let H be a k-uniform directed hypergraph with n vertices and A be
its output-adjacency tensor. If for each i ∈ V either d+i = 0 or there exist directed
paths Pj for j = 1, · · · , d = d+i such that

Pj : i e⃗j1 ij1 e⃗j2 ij2 · · · e⃗j|Pj |
ij|Pj |

j = 1, · · · , d,

and d+i|Pj |
= 0 for all j = 1, · · · , d and

E+
i = {e⃗11 , e⃗21 , · · · , e⃗d1

}.

Then λ = 0 is the only H-eigenvalue of A.

Proof. By Theorem 1 λ = 0 is an H-eigenvalue of A. Now suppose that λ ̸= 0 is
an H-eigenvalue of A and x is its associated H-eigenvector. We show that x = 0,
that is a contradiction.

Let i ∈ V be a vertex and d+i = d. Suppose that d ≥ 1. By assumption there
exist directed paths P1, P2, · · · , Pd from i to ij with d+ij = 0. Let

qi = max{|Pj |
∣∣ j = 1, · · · , d}.

then qi ≥ 1. In the case of d = 0 let qi = 0. By induction on qi we show that
xi = 0 for all i ∈ V.

If qi = 0 then d+i = 0. By Definition 2 it is trivial that xi = 0. Now suppose
that for all i ∈ V, if qi ≤ m then xi = 0, where m is a nonnegative integer number.
Let i ∈ V be a vertex that qi = m+ 1, we show that xi = 0. By assumption there
exist directed paths P1, P2, · · · , Pd, where d = d+i , such that

Pj : i e⃗j1 ij1 e⃗j2 ij2 · · · e⃗j|Pj |
ij|Pj |

j = 1, · · · , d.

and d+ij|Pj |
= 0.

Since each path from vertex ij1 to a vertex with zero out-degree along with e⃗j1 is
a directed path from vertex i to the same vertex, then

qij1 + 1 ≤ qi = m+ 1 =⇒ qij1 ≤ m.
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Then by induction assumption xij1
= 0 for j = 1, · · · , d. Now by Definition

2 and by E+
i = {e⃗11 , e⃗21 , · · · , e⃗d1

}, we have for each i ∈ [n]:

(Ax[k−1])i =
∑
e⃗∈E+

i

∏
s∈(e+∪e−)\{i}

xs = 0

=⇒ λxk−1
i = 0

λ ̸=0
=⇒ xi = 0.

It seems that the above condition is the necessary condition, too. But at this
point we are unable to prove it, hence we consider it as a conjecture.

Conjecture 1. Let H be a k-uniform directed hypergraph with n vertices and A
be its output-adjacency tensor. λ = 0 is the only H-eigenvalue of A if and only if
for each i ∈ V either d+i = 0 or there exist directed paths Pj for j = 1, · · · , d = d+i
such that

Pj : i e⃗j1 ij1 e⃗j2 ij2 · · · e⃗j|Pj |
ij|Pj |

j = 1, · · · , d.

and d+i|Pj |
= 0 for all j = 1, · · · , d and

E+
i = {e⃗11 , e⃗21 , · · · , e⃗d1

}.

By Theorem 1 HSpec(A) ̸= ϕ. Next theorem gives bounds on H-eigenvalues
of A.

Theorem 3. Let H be a k-uniform directed hypergraph with n vertices and A be
its output-adjacency tensor. Suppose that λ is a H-eigenvalue of A, then we have:

−∆+ ≤ λ ≤ ∆+,

where ∆+ is the maximum out-degree in H.

Proof. The conclusion follows from Lemma 2 and the proof of Theorem 3.1 in
[46].

The largest H-eigenvalue of tensor A is denoted by λ(A). By Theorem 3
λ(A) ≤ ∆+. The next theorem determines λ(A) in a n-vertex k-uniform complete
directed hypergraph.

Lemma 3. Let H = (V, E) be a n-vertex k-uniform complete directed hypergraph
and i ∈ V be an arbitrary vertex, Then di =

(
n−1
k−1

)
.

Proof. Since H is complete then E contains all possible arcs. Therefore vertex i has
common arcs with any k−1 vertices that is

(
n−1
k−1

)
. Then di = d+i +d−i =

(
n−1
k−1

)
.
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Theorem 4. Let H = (V, E) be a n-vertex k-uniform complete directed hypergraph
and A be its output-adjacency tensor. Then the largest H-eigenvalue of tensor A,
λ(A), is not greater than

(
n−1
k−1

)
.

Proof. The result follows from Lemma 3 and Theorem 3.

However similar result holds for directed out-regular hypergraph (Corollary
3.3 in [46] together with Lemma 2).

In the sequel, we study the H-eigenvalues of the Laplacian and signless Lapla-
cian tensor of H. In [46] some theorems about Laplacian and signless Laplacian
spectral properties of a special k-uniform directed hypergraph were presented. On
the other hand, by Lemma 2 and by (1) and (2) for a k-uniform directed hypergraph
in general form, we have:

(Ax[k−1])i =
∑
e⃗∈E+

i

∏
s∈(e+∪e−)\{i}

xs ∀i ∈ [n],

(Lx[k−1])i = d+i −
∑
e⃗∈E+

i

∏
s∈(e+∪e−)\{i}

xs ∀i ∈ [n],

(Qx[k−1])i = d+i +
∑
e⃗∈E+

i

∏
s∈(e+∪e−)\{i}

xs ∀i ∈ [n].

Now by replacing above expressions in the proof of Theorems in [46], we have similar
results for a k-uniform directed hypergraph in general form, too. In continuation,
we present some other theorems in spectral properties of the k-uniform directed
hypergraph.

Theorem 5. Let H = (V, E) be a k-uniform directed complete hypergraph with 2m
vertices and in which d+i =

(
n−1
k−1

)
for each i ∈ V and let L be its Laplacian tensor.

If k is an odd number then

λ(L) ≥
(
n− 1

k − 1

)
+

k−1∑
l=1

(−1)l+1

(
m− 1

l

)(
m

k − 1− l

)
.

Proof. Let x ∈ R2m and x1 = x2 = · · · = xm = 1 and xm+1 = xm+2 = · · · =
x2m = −1. We show that x is an H-eigenvector of H corresponding to λ =

(
n−1
k−1

)
+∑k−1

l=1 (−1)l+1
(
m−1

l

)(
m

k−1−l

)
. By Definition 2 we have:

(Lxk−1)1 =

(
n− 1

k − 1

)
xk−1
1 −

∑
e⃗=(e+,e−)∈E+

1

{i1,··· ,ik−1}=e+∪e−\{1}

xi1xi2 · · ·xik−1
,

now since H is a complete hypergraph then we have:∑
e⃗=(e+,e−)∈E+

1

{i1,··· ,ik−1}=e+∪e−\{1}

xi1xi2 · · ·xik−1
=

∑
1<i1<i2<···<ik−1≤2m

xi1xi2 · · ·xik−1
.



On Spectral Theory of a k-Uniform Directed Hypergraph 305

Now according to the how xij s are selected and since k is an odd number we
have:

∑
1<i1<i2<···<ik−1≤2m

xi1xi2 · · ·xik−1
=

k−1∑
l=1

(−1)l
(
m− 1

l

)(
m

k − 1− l

)
.

Therefore

(Lxk−1)1 =

(
n− 1

k − 1

)
+

k−1∑
l=1

(−1)l+1

(
m− 1

l

)(
m

k − 1− l

)
= λxk−1

1 .

It is easy to see that for any i = 1, 2, · · · ,m, we have:

(Lxk−1)i = (Lxk−1)1 = λxk−1
i .

We also have for vertex n = 2m:

(Lxk−1)n =

(
n− 1

k − 1

)
xk−1
n −

∑
e⃗=(e+,e−)∈E+

n

{i1,··· ,ik−1}=e+∪e−\{n}

xi1xi2 · · ·xik−1

=

(
n− 1

k − 1

)
−

∑
1≤i1<i2<···<ik−1<2m

xi1xi2 · · ·xik−1

=

(
n− 1

k − 1

)
+

k−1∑
l=1

(−1)l+1

(
m− 1

l

)(
m

k − 1− l

)
= λxk−1

n .

similarly, for any i = m,m+ 1, · · · , 2m we have that:

(Lxk−1)i = (Lxk−1)n = λxk−1
i .

The next theorem characterizes the extreme weakly connected directed hyper-
graphs concerning the upper bound of the largest signless Laplacian H-eigenvalue.

Theorem 6. Let H = (V, E) be a weakly connected k-uniform directed hypergraph
and Q be its signless Laplacian tensor. Then λ(Q) = 2∆+ if and only if H is
out-regular.

Proof. Suppose that H is out-regular. By Corollary (5.3) in [46], λ(Q) = 2∆+.
On the other hand, assume that λ(Q) = 2∆+ and x ∈ Rn is its corresponding
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H-eigenvector. Let |xi| = max {|xj |
∣∣j ∈ [n]}. By Definition 2 we have:

2∆+xk−1
i = d+i x

k−1
i +

∑
e⃗∈E+

i

∏
s∈(e+∪e−)\{i}

xs

⇒ 2∆+|xk−1
i | ≤ d+i |x

k−1
i |+

∑
e⃗∈E+

i

∏
s∈(e+∪e−)\{i}

|xs|

⇒ 2∆+ ≤ d+i +
∑
e⃗∈E+

i

∏
s∈(e+∪e−)\{i}

|xs|
|xi|

≤ d+i +
∑
e⃗∈E+

i

1 = 2d+i

⇒ ∆+ ≤ d+i

⇒ ∆+ = d+i .

and we must have |xi| = |xj | for all j ∈ e+ ∪ e−, where e⃗ = (e+, e−) ∈ E+
i .

Applying the same argument for all such j, we have that ∆+ = d+j and |xi| = |xj | =
|xl| for all l ∈ e+ ∪ e− where e⃗ = (e+, e−) ∈ E+

j . Since H is weakly connected, we

see that d+j = ∆+ for all j ∈ V, then H is out-regular.

With a similar discussion as in Theorem 6, we have the following theorem:

Theorem 7. Let H = (V, E) be a weakly connected k-uniform directed hypergraph
and L be its signless Laplacian tensor. If λ(L) = 2∆+ then H is out-regular.

Suppose that x is an H-eigenvector of the signless Laplacian of a k-uniform
directed hypergraph corresponding to H-eigenvalue λ. The following theorem gives
a sufficient condition for equality of some components of x.

Theorem 8. Let H = (V, E) be a k-uniform directed hypergraph and i, j ∈ V such
that E+

i = E+
j . Then d+i = d+j = d. Now Suppose that (λ,x) is a signless Laplacian

H-eigenpair of H, such that λ ̸= d. Then |xi| = |xj | and if k is odd, then xi = xj.

Proof. Clearly d+i = d+j = d By the definition of E+
i . Now Suppose that (λ,x) is a

signless Laplacian H-eigenpair of H, such that λ ̸= d. By Definition 2 we have:

λxk−1
i = dxk−1

i + xj

∑
e⃗∈E+

i

∏
s∈(e+∪e−)\{i,j}

xs

and

λxk−1
j = dxk−1

j + xi

∑
e⃗∈E+

j

∏
s∈(e+∪e−)\{i,j}

xs.

Hence,

(λ− d)xk
i = (λ− d)xk

j
λ̸=d
=⇒ xk

i = xk
j .

The conclusions follow from the last equality.
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Similar results hold for Laplacian tensor and for output-adjacency tensor.

5. ODD-BIPARTITE K-UNIFORM DIRECTED HYPERGRAPHS
AND SOME OF THEIR SPECTRAL PROPERTIES

In this section, we present some theorems about the spectral theory of odd-bipartite
k-uniform directed hypergraphs. These theorems generalize the classical results for
k-uniform undirected hypergraphs in [41].

Theorem 2.1 in [41] can be represented for k-uniform directed hypergraphs.
The concept of diagonal similarity is used in the proof of this theorem. Shao in
[39] has proved that similar tensors have the same spectra. Note that the proof
is valid for all tensors and not necessarily for symmetric tensors. So we have the
following theorem:

Theorem 9. Let H be a k-uniform directed hypergraph with n vertices and k be
an even number. Suppose that A, L and Q be the output-adjacency tensor, the
Laplacian tensor and the signless Laplacian tensor of H, respectively. Then the
following three statements are equivalent:

� There exists some diagonal matrix P of order n with all the diagonal entries
±1 and P ̸= −In such that L = P−(k−1)QP .

� There exists some diagonal matrix P of order n with all the diagonal entries
±1 and P ̸= −In such that A = −P−(k−1)AP .

� H is odd-bipartite.

Proof. The proof is in the same spirit of and similar to that for Theorem 2.1 in
[41].

In [12, 4] the well known Perron-Frobenius Theorem is generalized for non-
negative weakly irreducible tensors:

Lemma 4. ([12]): Let T be a nonnegative tensor. Then

1. ρ(T ) is an H-eigenvalue of T with a nonnegative eigenvector. Furthermore,
if T is weakly irreducible, then ρ(T ) has a positive eigenvector.

2. If λ is an eigenvalue of T with a positive eigenvector, then λ = ρ(T ).

Lemma 5. ([47]): Let T and S be two k order n dimensional tensors with |S| ≤ T .
Then

1. ρ(S) ≤ ρ(T ).

2. Furthermore, if T is weakly irreducible and ρ(S) = ρ(T ), where λ = ρ(T )eiϕ

is an eigenvalue of S with an eigenvector y, then

i. All the components of y are nonzero.
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ii. Let U = diag(y1 \ |y1|, , yn \ |yn|) be a nonsingular diagonal matrix, then we
have S = eiϕU−()k−1T U .

As said before, if the k-uniform directed hypergraph H is strongly connected
then A,L and Q are weakly irreducible. Then Lemma 4 and Lemma 5 hold for L
and Q. Therefore according to this, we have the following theorems that generalize
Theorem 2.2 and Theorem 2.4 in [41], respectively.

Theorem 10. Let H be a strongly connected k-uniform directed hypergraph with n
vertices and k be an even number. Suppose that A, L and Q be the output-adjacency
tensor, the Laplacian tensor and the signless Laplacian tensor of H, respectively.
Then the following three statements are equivalent:

� H is odd-bipartite.

� Spec(L) = Spec(Q) and Hspec(L) = Hspec(Q).

� Hspec(L) = Hspec(Q).

Theorem 11. Let H be a strongly connected k-uniform directed hypergraph with n
vertices and k be an even number. Suppose that A, L and Q be the output-adjacency
tensor, the Laplacian tensor and the signless Laplacian tensor of H, respectively.
Then ρ(L) = ρ(Q) if and only if Spec(L ) = Spec(Q).

6. CORED DIRECTED HYPERGRAPHS AND POWER
DIRECTED HYPERGRAPHS

In this section we introduce two classes of k-uniform directed hypergraphs: 1.
Cored directed hypergraphs and 2. Power directed hypergraphs. Hu, Qi and Shao
in [19] introduced these two classes in undirected hypergraphs and investigated
the properties of their Laplacian H-eigenvalues and then Yue et. al in [52] stud-
ied the properties of their output-adjacency and signless Laplacian H-eigenvalues.
We extend their definitions and analyze the spectral properties of power directed
hypergraphs and cored directed hypergraphs.

6.1 Cored directed hypergraphs

We begin with the definition of Cored directed hypergraphs.

Definition 8. Let H = (V, E) be a directed hypergraph. H is a cored directed
hypergraph if there exists in each arc e⃗ = (e+, e−) a vertex i ∈ e+ such that d+i = 1
and d−i = 0. Such vertex is called core vertex and a vertex with out-degree greater
than one is called intersection vertex.

Lemma 6. Let H = (V, E) be a cored k-uniform directed hypergraph and (λ,x) be
an H-eigenpair of its output-adjacency tensor A and λ ̸= 0. If i and j be two core
vertices in arc e⃗ then xi = xj when k is odd and |xi| = |xj | when k is even.
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Proof. Clearly d+i = d+j = 1 by Definition 8. Now Suppose that (λ,x) is a H-
eigenpair of A, such that λ ̸= 0. By Definition 2 we have:

λxk−1
i = xj

∏
s∈(e+∪e−)\{i,j}

xs

and
λxk−1

j = xi

∏
s∈(e+∪e−)\{i,j}

xs.

Hence,

λxk
i = λxk

j
λ̸=0
=⇒ xk

i = xk
j .

The conclusions follow from the last equality.

Lemma 7. Let H = (V, E) be a cored k-uniform directed hypergraph and (λ,x) be
an H-eigenpair of its signless Laplacian tensor Q and λ ̸= 1. If i and j be two core
vertices in arc e⃗ then xi = xj when k is odd and |xi| = |xj | when k is even.

Proof. Clearly d+i = d+j = 1, by Definition 8. Now the conclusions follow from the
Theorem 8 and since λ ̸= 1.

With proof similar to the proof of Theorem 8, for Laplacian tensor, we have
the following lemmas:

Lemma 8. Let H = (V, E) be a core k-uniform directed hypergraph and (λ,x) be
an H-eigenpair of its Laplacian tensor L and λ ̸= 1. If i and j be two cored vertices
in arc e⃗ then xi = xj when k is odd and |xi| = |xj | when k is even.

Theorem 12. Let H = (V, E) be a cored k-uniform directed hypergraph and x
be an H-eigenvector of its output-adjacency tensor A corresponding λ(A). If ie⃗ is
a core vertex in arbitrary arc e⃗, then

∏
s∈(e+∪e−)\{ie⃗} xs ≥ 0 when k is odd and∏

s∈(e+∪e−) xs ≥ 0 when k is even.

Proof. By Theorem 1 λ(A) ≥ 0. By Definition 2 we have:

(Ax[k−1])ie⃗ =
∏

s∈(e+∪e−)\{ie⃗}

xs = λ(A)xk−1
ie⃗

=⇒


∏

s∈(e+∪e−)\{ie⃗} xs ≥ 0 if k is odd∏
s∈(e+∪e−) xs ≥ 0 if k is even

similarly, for (λ(Q),x) we have:

if ie⃗ is a core vertex in e⃗ then

{ ∏
s∈(e+∪e−)\{ie⃗} xs ≥ 0 if k is odd∏
s∈(e+∪e−) xs ≥ 0 if k is even
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and for (λ(L),x) we have:

if ie⃗ is a core vertex in e⃗ then

{ ∏
s∈(e+∪e−)\{ie⃗} xs ≤ 0 if k is odd∏
s∈(e+∪e−) xs ≤ 0 if k is even

The last expression is the extension of Proposition 3.1 in [19].

Theorem 10 gives a necessary and sufficient condition forHspec(L) = Hspec(Q)
in strongly connected even uniform directed hypergraphs. It’s trivial that cored di-
rected hypergraphs are not strongly connected but we can propose the next theorem
in which we use the proof of Theorems 2.1 and 2.2 in [41]. first the following lemma
is presented.

Lemma 9. Let H = (V, E) be a cored directed even uniform hypergraph. Then H
is odd-bipartite.

Proof. Let ie⃗ be a core vertex in arc e⃗ for all arc e⃗ ∈ E . Set V1 := {ie⃗ | e⃗ ∈ E} and
V2 := V \V1. Now it is easy to see that V = V1 ∪V2 is an odd-bipartition of H.

Theorem 13. Let H = (V, E) be a cored directed even uniform hypergraph with n
vertices and L and Q be its Laplacian and signless Laplacian tensor, respectively.
Then Hspec(L) = Hspec(Q).

Proof. By Theorem 9 there exists some diagonal matrix P of order n with all the
diagonal entries ±1 and P ̸= −In such that L = P−(k−1)QP . Now let x ∈ Rn and
y = Px. Then by L = P−(k−1)QP we have:

Lx = λx[k−1] ⇐⇒ P−(k−1)QPx = λx[k−1]

⇐⇒ Qy = λP (k−1)x[k−1] = λ(Px)[k−1] ⇐⇒ Qy = λy[k−1]

Since P is a real nonsingular matrix, the above relation show that λ is an H-
eigenvalue of L if and only if it is an H-eigenvalue of Q. Then we have Hspec(L) =
Hspec(Q).

Theorem 14. Let H = (V, E) be a cored directed even uniform hypergraph with n
vertices and L and Q be its Laplacian and signless Laplacian tensor, respectively.
For every e⃗ ∈ E, let ie⃗ ∈ e⃗ be a core vertex, then we have:

(1) If x ∈ Rn is a H-eigenvector of L corresponding to λ(L) then y ∈ Rn is a
H-eigenvector of Q corresponding to λ(Q) in which yie⃗ = −xie⃗ for all e⃗ ∈ E
and yi = xi for the others.

(2) If x ∈ Rn is a H-eigenvector of Q corresponding to λ(Q) then y ∈ Rn is a
H-eigenvector of L corresponding to λ(L) in which yie⃗ = −xie⃗ for all e⃗ and
yi = xi for the others.
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Proof. By Theorem 13, λ(L) = λ(Q). Let P be a diagonal matrix of order n with
pii = −1 if i = ie⃗ for some e⃗ ∈ E and pii = 1 for the others. So P is nonsingular
matrix. Now by using the similar proof of the above theorem, we have if x is a
H-eigenvector of L corresponding to λ(L) then y = Px is a H-eigenvector of Q
corresponding to λ(Q). It is easy to see that yie⃗ = −xie⃗ for all e⃗ ∈ E and yi = xi

for the others. Then the results follow from it and the fact that P−1 = P .

In the following we study a special cored directed hypergraph.

Definition 9. Let S = (V, E) be a cored k-uniform directed hypergraph. We call it
directed squid if V = {1, 11, 21, · · · , k1, · · · , 1(k−1), 2(k−1), · · · , k(k−1)} and the arc
set E = {e⃗i | i = 0, · · · , k − 1} in which

e⃗0 = ({1}, {11, 12 · · · , 1(k−1)})
e⃗i = ({1i}, {2i, 3i, · · · , ki}) i = 1, · · · , k − 1.

By the Definition 9, it’s straightforward that d+1 = d+11 = d+12 = · · · , d+1(k−1)
=

1 and d+i = 0 otherwise. Then by Theorem 2 we have the following theorem.

Theorem 15. Let S = (V, E) be a k-uniform directed squid and A be its output-
adjacency tensor, then Hspec(A) = {0}.

The following theorems determine Hspec(L) and Hspec(Q), where L and
Q are the Laplacian tensor and signless Laplacian tensor of the directed squid S,
respectively.

Theorem 16. Let S = (V, E) be a k-uniform directed squid and L be its Laplacian
tensor, then Hspec(L) = {0, 1}.

Proof. By Proposition 4.1 in [46], 0 ∈ Hspec(L). Now let x is an H-eigenvector of
L corresponding to H-eigenvalue λ ̸= 0. by (1) we have:

(1− λ)xk−1
1 =

k−1∏
i=1

x1i(3)

(1− λ)xk−1
1i

=

k∏
j=1

xji i = 1, 2, · · · , k − 1(4)

λxk−1
ji

= 0 i = 1, 2, · · · , k − 1, j = 1, 2, · · · , k.(5)

By (5), xji = 0 for all i, j. By taking it in (4), we have (1−λ)xk−1
1i

= 0. Now
three cases are considered:
(i) : x1i ̸= 0 for i = 1, 2, · · · , k − 1, then λ = 1 and by (3),

∏k−1
i=1 x1i = 0 that is a

contradiction.
(ii) : x1i = 0 for i = 1, 2, · · · , k − 1, then by (3), (1− λ)xk−1

1 = 0. Thus λ = 1 and
x1 ̸= 0.
(iii) : x1i = 0 and x1j ̸= 0 for some i, j = 1, 2, · · · , k − 1. Then λ = 1 and x1 ∈ R.
Therefore λ = 1 is only nonzero H-eigenvalue of L.
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By similar proof we have the following theorem:

Theorem 17. Let S = (V, E) be a k-uniform directed squid and Q be its Laplacian
tensor, then Hspec(Q) = {0, 1}.

Note that in a k-uniform directed squid Hspec(L) = Hspec(Q) for all k and
by comparing directed squids and undirected squids in [19] and [52], we find out
an obvious difference between their spectral properties.

6.2 Power directed hipergraphs

Definition 10. Let G = (V,E) be a directed graph and k ≥ 3. The kth power of
G, Gk = (V, E) is defined as the k-uniform directed hypergraph with the set of arcs

E = {e⃗ = (e+, e−) | e ∈ E}

where if e = (ie1, i
e
2) ∈ E then e+ = {ie1, ie,1, ie,2, · · · , ie,k−2} and e− = {ie2}

and the set of vertices V =
(⋃

e∈E {ie,1, ie,2, · · · , ie,k−2}
)
∪ V

It easy to see that each power directed hypergraph is a cored directed hypergraph
but on the contrary, it is not generally correct, for example directed squid which
studied in previous subsection.

The next theorem gives some basic results about an ordinary arc in a power
directed hypergraph.

Theorem 18. Let H = (V, E) be a power k-uniform directed hypergraph and x
be an H-eigenvector of its output-adjacency tensor, A, corresponding to λ ̸= 0.
If e⃗ = (e+, e−) ∈ E is an arbitrary arc with e+ = {ie1, ie,1, ie,2, · · · , ie,k−2} and
e− = {ie2}, then we have:

(1) If d+ie1 > 1 , d+ie2 ≥ 1 and xie,1 = α ̸= 0 then xie1
xie2

= λα2 when k is odd and

xie1
xie2

= λα2 or −λα2 when k is even.

(2) If d+ie1 = 1 , d+ie2 ≥ 1 and xie,1 = α ̸= 0 then xie2
= λα when k is odd and

xie2
= λα or −λα when k is even.

(3) If d+ie2 = 0 then xj = 0 for j ∈ {ie,1, ie,2, · · · , ie,k−2, i
e
2}.

Proof. By Lemma 6 xie,j = α for j = 2, · · · , k− 2 when k is odd and |xie,j | = α for
j = 2, · · · , k − 2 when k is even.
For (1), by Definition 2 we have:

αk−3xie1
xie2

= λαk−1 if k is odd


αk−3xie1

xie2
= λαk−1

or if k is even
− αk−3xie1

xie2
= λαk−1
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the result follows from α ̸= 0.
For (2), by Lemma 6 xie1

= α or xie1
= −α. By Definition 2 we have:

αk−2xie2
= λαk−1 if k is odd


αk−2xie2

= λαk−1

or if k is even
− αk−2xie2

= λαk−1

the result follows from α ̸= 0.
For (3), since d+ie2 = 0 then xie2

= 0. Thus by Definition 2 and Lemma 6, xj = 0 for

j ∈ {ie,1, ie,2, · · · , ie,k−2}.

In the following we study a special power directed hypergraph, is called di-
rected hyperwheel.

Definition 11. Let Wd = (V, E) be a power k-uniform directed hypergraph. We
call it directed hyperwheel if V = V0 ∪ V1 ∪ · · ·Vd ∪ V̄1 ∪ V̄2 ∪ · · · ∪ V̄d is a disjoint
partition of V in which V0 = {1}, Vi = {1i, 2i, · · · , (k−1)i} and V̄i = {1i, 2i, · · · , (k−
2)i} for i = 1, 2, · · · , d and the arc set E = {e⃗i, a⃗i| i = 1, · · · , d} in which

e⃗i = ({1, 1i, · · · , (k − 2)i}, {(k − 1)i}) i = 1, · · · , d
a⃗i = ({(k − 1)i, 1

i, · · · , (k − 2)i}, {(k − 1)i+1}) i = 1, · · · , d− 1

a⃗d = ({(k − 1)d, 1
d, · · · , (k − 2)d}, {(k − 1)1})

By Definition 10 it can be shown easily.

Lemma 10. Let Wd = (V, E) be a directed k-uniform hyperwheel, then d+1 = d,
d+j = 1 for j ̸= 1 and d−(k−1)i

= 2 for i = 1, · · · , d, d−j = 0 for i = 1, · · · , d and

j ̸= (k − 1)i.

In the following theorems the H-spectrum of output-adjacency tensor, Lapla-
cian tensor and signless Laplacian tensor of Wd are determined.

Theorem 19. Let Wd = (V, E) be a directed k-uniform hyperwheel with n vertices
and A be its adjacency tensor. Then Hspec(A) = {0, 1} when d and k are odd and
Hspec(A) = {0, 1,−1} otherwise.

Proof. By Theorem 1, 0 ∈ Hspec(A). Now suppose that x is an H-eigenvector of
A corresponding to H-eigenvalue λ ̸= 0. The proof is divided into two cases, which
contain several sub-cases respectively:
1: k is odd.
By Lemma 6 we have:

x1i = x2i = · · · = x(k−2)i = αi i = 1, · · · , d
x1i = x2i = · · · = x(k−2)i = x(k−1)i = βi i = 1, · · · , d
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Now by Definition 2 we have:

λxk−1
1 =

d∑
i=1

βiα
k−2
i(6)

λαk−1
i = x1α

k−3
i βi i = 1, · · · , d(7)

λβk−1
i = βk−2

i βi+1 i = 1, · · · , d− 1(8)

λβk−1
d = βk−2

d β1(9)

By (8) and (9) if βi = 0 for some i = 1, · · · , d then all βi = 0 and thus by (7)
and (6) x = 0 that is a contradiction. Therefore βi ̸= 0 for i = 1, · · · , d. Then by
(8) and (9)

(10) λ =
βi+1

βi
=

β1

βd
for i = 1, · · · , d− 1,

then we have:

β1 = λdβ1 =⇒ λd = 1 =⇒
{

λ = ±1 if d is even
λ = 1 if d is odd

2: k is even.
By Lemma 6 we have:

|x1i | = |x2i | = · · · = |x(k−2)i | i = 1, · · · , d
|x1i | = |x2i | = · · · = |x(k−2)i | = |x(k−1)i | i = 1, · · · , d

Now Let x1i = αi and x(k−1)i = βi for i = 1, · · · , d. With a little modifica-
tion in (6), (7), (8) and (9) and by similar argument in the previous case, βi ̸= 0
for i = 1, · · · , d. Now we consider two subcases:
(i) d is even. there are two cases:

� βd = λd−1β1, then we have:

if λ > 0 ⇒ β1 and βd have the same sign

⇒ β1 = λβd ⇒ λd = 1 ⇒ λ = 1

if λ < 0 ⇒ β1 and βd have different signs

⇒ β1 = λβd ⇒ λd = 1 ⇒ λ = −1

� βd = −λd−1β1, then we have:

if λ < 0 ⇒ β1 and βd have the same sign

⇒ β1 = −λβd ⇒ λd = 1 ⇒ λ = −1

if λ > 0 ⇒ β1 and βd have different signs

⇒ β1 = −λβd ⇒ λd = 1 ⇒ λ = 1
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(ii) d is odd. there are two cases:

� βd = λd−1β1, then β1 and βd have the same sign and we have:

if λ > 0 ⇒ β1 = λβd ⇒ λd = 1 ⇒ λ = 1

if λ < 0 ⇒ β1 = −λβd ⇒ λd = −1 ⇒ λ = −1

� βd = −λd−1β1, then β1 and βd have different signs and we have:

if λ < 0 ⇒ β1 = λβd ⇒ λd = −1 ⇒ λ = −1

if λ > 0 ⇒ β1 = −λβd ⇒ λd = 1 ⇒ λ = 1

Theorem 20. Let Wd = (V, E) , n and A be as above and k be an odd number.
Suppose that x is an H-eigenvector of A corresponding to H-eigenvalue 1 such that
xi ̸= 0 for i = 1, 2, · · · , n. Then x1 = α, xji = ±

√
α for j = 1, · · · , k − 2 and

i = 1, · · · , d and xi = 1, otherwise, where α =
k
√
d2.

Proof. Suppose that αi and βi for i = 1, · · · , d are as in the proof of Theorem 19
and all αi ̸= 0. By (7), αk−1

i = x1α
k−3
i βi for i = 1, · · · , d, then we have:

αi ̸=0⇒ α2
i = x1βi ⇒ x1 =

α2
i

βi
i = 1, · · · , d(11)

⇒ α2
1

βi
=

α2
2

βi
= · · · = α2

d

βi

By (10) we can let βi = 1 for i = 1, · · · , d and then let α2
1 = α2

2 = · · · = α2
d = α,

then αi = ±
√
α for i = 1, · · · , d. On other hand by (6), xk−1

1 =
∑d

i=1 βiα
k−2
i and

by (11), x1 = α. By taking it, we have:

αk−1 = dα( k−2
2 ) ⇒ αk = d2 ⇒ α =

k
√
d2.

Theorem 21. Let Wd = (V, E) be a directed k-uniform hyperwheel and L be its
Laplacian tensor. Then Hspec(L) = {0, 1, d} when d and k are odd and Hspec(A) =
{0, 1, 2, d} otherwise.

Proof. By Theorem 1, 1, d ∈ Hspec(L). Now suppose that x is an H-eigenvector
of L corresponding to H-eigenvalue λ ̸= 1, d. The proof is divided into two cases,
which contain several sub-cases respectively:
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1: k is odd.
By Lemma 8 we have:

x1i = x2i = · · · = x(k−2)i = αi i = 1, · · · , d
x1i = x2i = · · · = x(k−2)i = x(k−1)i = βi i = 1, · · · , d

Now by Definition 2 we have:

(1− λ)xk−1
1 =

d∑
i=1

βiα
k−2
i(12)

(1− λ)αk−1
i = x1α

k−3
i βi i = 1, · · · , d(13)

(1− λ)βk−1
i = βk−2

i βi+1 i = 1, · · · , d− 1(14)

(1− λ)βk−1
d = βk−2

d β1(15)

By (14) and (15) if βi = 0 for some i = 1, · · · , d then all βi = 0 and thus
by (13) and (12) x = 0 that is a contradiction. Therefore βi ̸= 0 for i = 1, · · · , d.
Then by (14) and (15), (1− λ) = βi+1

βi
= β1

βd
for i = 1, · · · , d− 1, then we have:

β1 = (1− λ)dβ1 =⇒ (1− λ)d = 1 =⇒
{

λ = 0, 2 if d is even
λ = 0 if d is odd

2: k is even.
By Lemma 8 we have:

|x1i | = |x2i | = · · · = |x(k−2)i | i = 1, · · · , d
|x1i | = |x2i | = · · · = |x(k−2)i | = |x(k−1)i | i = 1, · · · , d

Now, let x1i = αi and x(k−1)i = βi for i = 1, · · · , d. With a little modification
in (12), (13), (14) and (15) and by similar argument in the previous case, βi ̸= 0
for i = 1, · · · , d. Now we consider two subcases:
(i) d is even. there are two cases:

� βd = (1− λ)d−1β1, then we have:

if λ < 1 ⇒ β1 and βd have the same sign

⇒ β1 = (1− λ)βd ⇒ (1− λ)d = 1 ⇒ λ = 0

if λ > 1 ⇒ β1 and βd have different signs

⇒ β1 = (1− λ)βd ⇒ (1− λ)d = 1 ⇒ λ = 2

� βd = −(1− λ)d−1β1, then we have:

if λ > 1 ⇒ β1 and βd have the same sign

⇒ β1 = −(1− λ)βd ⇒ (1− λ)d = 1 ⇒ λ = 2

if λ < 1 ⇒ β1 and βd have different signs

⇒ β1 = −(1− λ)βd ⇒ (1− λ)d = 1 ⇒ λ = 0
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(ii) d is odd. there are two cases:

� βd = (1− λ)d−1β1, then β1 and βd have the same sign and we have:

if λ < 1 ⇒ β1 = (1− λ)βd ⇒ (1− λ)d = 1 ⇒ λ = 0

if λ > 1 ⇒ β1 = −(1− λ)βd ⇒ (1− λ)d = −1 ⇒ λ = 2

� βd = −(1− λd−1)β1, then β1 and βd have different signs and we have:

if λ > 1 ⇒ β1 = (1− λ)βd ⇒ (1− λ)d = −1 ⇒ λ = 2

if λ < 1 ⇒ β1 = −(1− λ)βd ⇒ (1− λ)d = 1 ⇒ λ = 0

By similar proof we have the following theorem:

Theorem 22. Let Wd = (V, E) be a directed k-uniform hyperwheel and Q be its
signless Laplacian tensor. Then Hspec(Q) = {1, 2, d} when d and k are odd and
Hspec(A) = {0, 1, 2, d} otherwise.

7. CONCLUSION

In this paper we consider a k-uniform directed hypergraph in general form and intro-
duce its output-adjacency tensor, Laplacian tensor and signless Laplacian tensor.
Then we propose theorems in spectral theory of k-uniform directed hypergraphs
that some of them are generalizations of the classical results for undirected hyper-
graphs. Cored directed hypergraphs and power directed hypergraphs are introduced
and presented some their spectral properties.
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