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ON SOME COMPUTATIONAL ASPECTS OF HERMITE
& HAAR WAVELETS ON A CLASS OF NONLINEAR

SINGULAR BVPS

Amit K. Verma and Diksha Tiwari

We propose a new class of SBVPs which deals with exothermic reactions. We

also propose four computationally stable methods to solve singular nonlinear

BVPs by using Hermite wavelet collocation which are coupled with Newton’s

quasilinearization and Newton-Raphson method. We compare the results

which are obtained by using Hermite wavelets with the results obtained by

using Haar wavelets. The efficiency of these methods are verified by applying

these four methods on Lane-Emden equations. Convergence analysis is also

presented.

1. INTRODUCTION

This paper deals with wavelets and nonlinear singular BVPs. Nonlinear BVPs
are difficult to deal and if singularity is also present it becomes even more difficult.
It is not easy to capture the behavior of the solutions near the point of singular-
ity. If we apply suitable boundary conditions which forces the existence of unique
continuous solutions and hence there is possibility of finding these solutions via
numerical methods. Still since the coefficient blow up when near the singularity
discretizing the differential equation is a challenge. Wavelets help us to treat this
complicated situation in an easy way with less number of spatial points. To address
both nonlinear BVPs and wavelets we divide the introduction in two parts.

2020 Mathematics Subject Classification. 34B16, 42C40.
Keywords and Phrases. MRA, Quasilinearization, Newton Raphson, Haar Wavelets,
Hermite Wavelets, Nonlinear Singular Boundary value problems.

357



358 Amit K. Verma and Diksha Tiwari

Nonlinear SBVPs arising in exothermic reactions

Here we propose a new class of nonlinear SBVP. Let us consider the mathematical
equation which governs, balance between heat generated and conducted away

λ∇2T = −QW,

where T is gas temperature, Q the heat of the reaction, λ the thermal conductivity,
W the reaction velocity and ∇2 the Laplacian operator.

Chambre [26] assumed that reaction is mono-molecular and velocity follows
the Arrhenius law, given as

W = A exp

(
−E
RT

)
,

and after some approximations and symmetry assumptions Chambre [26] arrived
at the following equation

Ly = −δ exp(t)

where,

L ≡ d2

dt2
+
kg
t

d

dt
,

kg depends on shape and size of the vessel and δ is a parameter.

Nakamura et al. [21], while looking for an equation which can express the
temperature dependence of the rate constant proposed the following

W = A exp

(
−E0

R (Tn
0 + Tn)

1/n

)
, n = 1, 2, 3, · · ·

where R is a gas constant, T is absolute temperature, A, E0 and T0 are parameters
and n is an integer.

Similar to analysis of Chambre [26], we arrive at the following differential
equation

(1) Ly = −B exp

(
−A

(cn + yn)
1/n

)
.

There are several other real life examples ([9]) which led us to consider the following
class of nonlinear singular boundary value problem (SBVPs)

(2) Ly + f(t, y(t)) = 0, 0 < t ≤ 1,

Case (i) y′(0) = α, y(1) = β,(3a)

Case (ii) y(0) = α0, y(1) = β,(3b)

Case (iii) y′(0) = α, ay(1) + by′(1) = β0,(3c)
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where a, b, c, α, α0, β are real constants and f (t, y(t)) is a real valued function.
Boundary conditions at the singular end t = 0 depend on the value of kg and f
([9]).

There is huge literature on existence of solutions of such class of nonlinear
BVPs. Please refer [8], [28], [29] and [30] and the references there in. Several
numerical methods have also been proposed for solving these type of non-linear
singular boundary value problems (see [7, 12, 23, 24] and its references). A
comprehensive literature review on singular BVPs can be found in a recent article
by Verma et al. [9].

In [17] non linear singular Lane-Emden IVPs are solved with Haar Wavelet
Quasilinearization approach, and nonlinearity is easily handled with quasilineariza-
tion. In [37] Hermite wavelets operational matrix method is used to solve second
order nonlinear singular initial value problems. In [6] Chebyshev wavelets operation
matrices are used for solving nonlinear singular boundary value problems. In [15]
method based on Laguerre wavelets is used to solve nonlinear singular boundary
value problems. In [14] method based on Legendre wavelet is proposed to solve
singular boundary value problems. All these based on wavelets show high accuracy.
In [10, 32, 33] Haar wavelets are used to solve SBVPs efficiently for higher reso-
lution. Reader may also refer the papers based on Haar wavelets to solve various
type of nonlinear problems [2, 3, 4, 39, 40, 41]. Some recent works on wavelets
and their applications can be find in [16, 18, 25, 36] and the references there in.

In this article we solve SBVP of type (2) subject to boundary conditions
(3a),(3b),(3c) with help of Hermite wavelet Newton approach (HeWNA), Hermite
wavelet quasilinearization approach (HeWQA), Haar wavelet Newton approach
(HWNA) and Haar wavelet quasilinearization approach (HWQA) and compare
results to show accuracy of the method. Convergence of HeWNA method is also
established. Novelty of this paper is that Newton Raphson has not been coupled
with Haar wavelets and Hermite has not been used to solve nonlinear singular BVPs
till now. Also we have tried to give a unified approach which is similar to definition
of Haar wavelet. We expect that in near future this definition can be used to define
wavelet of arbitrary orthonormal polynomial.

This paper is organized in the following manner. In section we discuss MRA
and define Hermite wavelet, in section Haar wavelet is defined, in sections , , 3.1
and 3.1, respectively the method of solution based on HeWQA, HeWNA, HWQA
and HWNA are proposed. In section 3.1, convergence analysis of HWNA method
is done and in the last section some numerical examples are presented to show
accuracy of the method.



360 Amit K. Verma and Diksha Tiwari

2. HERMITE AND HAAR WAVELET

This section starts with MRA and definition of Hermite wavelets.

Wavelets and MRA

The theory of wavelets is developed by mathematicians as well engineers over the
years. French geophysicist Jean Morlet (1931–2007) used wavelet to describe certain
functions. Morlet and Croatian-French physicist Alex Grossman developed theory
further which is used now a days [22, p. 222]. The main issue was to overcome
drawbacks of Fourier transforms. Wavelets involve multiple indices and contain
parameters which can be used to shift or dilate/contract the functions giving us
basis functions. Thus computationally they are complex but they have better
control and much better results are obtained at low resolution, i.e., less number
of divisions are in comparison to finite differences and all other methods based on
similar concepts. Here we consider methods based on wavelets.

The following properties of wavelets enable us to choose them over other
methods:

� Orthogonality

� Compact Support

� Density

� Multiresolution Analysis (MRA)

MRA

An orthogonal multiresolution analysis (MRA) is a collection of closed subspaces
of L2(R) which are nested, having trivial intersection, they exhaust the space, the
subspaces are connected to each other by scaling property and finally there is a
special function, the scaling function φ, whose integer translates form an orthonor-
mal basis for one of the subspaces. We give formal statement of MRA as defined
in [22].

Definition 2.1. An MRA with scaling function φ is a collection of closed subspaces
Vj , j = . . . ,−2,−1, 0, 1, 2, . . . of L2(R) such that

1. Vj ⊂ Vj+1

2.
⋃
Vj = L2(R)

3.
⋂
Vj = 0

4. The function f(x) belongs to Vj if and only if the function f(2x) ∈ Vj+1.
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5. The function φ belongs to V0, the set {φ(x− k), k ∈ Z} is orthonormal basis
for V0.

The sequence of wavelet subspaces Wj of L2(R), are such that Vj ⊥Wj , for
all j and Vj+1 = Vj ⊕Wj . Closure of ⊕j∈ZWj is dense in L2(R) with respect to L2

norm.

Now we state Mallat’s theorem [38] which guarantees that in presence of an
orthogonal MRA, an orthonormal basis for L2(R) exists. These basis functions are
fundamental functions in the theory of wavelets which helps us to develop advanced
computational techniques.

Theorem 2.1. (Mallat′s Theorem). Given an orthogonal MRA with scaling func-
tion φ, there is a wavelet ψ ∈ L2(R) such that for each j ∈ Z, the family {ψj,k}k∈Z
is an orthonormal basis for Wj. Hence the family {ψj,k}k∈Z is an orthonormal
basis for L2(R).

Hermite Wavelet ([43])

Hermite polynomials are defined on the interval (−∞,∞) and can be defined with
help of the recurrence formula:

H0(t) = 1

H1(t) = 2t

Hm+1(t) = 2tHm(t)− 2mHm−1(t), m = 1, 2, 3, · · · .

Completeness and orthogonality (with respect to weight function e−t2) of Hermite
polynomials enable us to treat them as wavelet (Theorem 2.1).

Hermite wavelet on the interval [0, 1] are defined as

(4) ψn,m(t) = 2k/2
1√

n!2n
√
π
Hm(2kt− n̂)χ[ n̂−1

2k
, n̂+1

2k
)

where k = 1, 2, . . . is level of resolution, n = 1, 2, . . . , 2k−1, n̂ = 2n−1 is translation
parameter, m = 1, 2, . . . ,M − 1 is order of Hermite polynomial.

Approximation of Function with Hermite Wavelet

A function f(t) defined on L2[0, 1] can be approximated with Hermite wavelet in
the following manner

(5) f(t) =

∞∑
n=1

∞∑
m=0

cnmψnm(t).

For computation purpose we truncate (5) and define,

(6) f(t) ≃
2k−1∑
n=1

M−1∑
m=0

cnmψnm(t) = cTψ(t)
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where ψ(t) is 2k−1M × 1 matrix given as:

ψ(t) =
[
ψ1,0(t), . . . , ψ1,M−1(t), ψ2,0(t), . . . , ψ2,M−1(t), . . . , ψ2k−1,0(t), . . . , ψ2k−1,M−1(t)

]T
c is 2k−1M × 1 matrix. Entries of c can be computed from

cij =

∫ 1

0

f(t)ψij(t)dt

with i = 1, 2, . . . , 2k − 1 and j = 0, 1, . . . ,M − 1. Here M is degree of Hermite
polynomial.

Integration of Hermite Wavelet

As suggested in [5], ν-th order integration of ψ(t) can also be approximated as

∫ t

0

∫ t

0

· · ·
∫ t

0

ψ(τ)dτ ≃[
Jνψ1,0(t), . . . , J

νψ1,M−1(t), J
νψ2,0(t), . . . ,

Jνψ2,M−1(t), . . . , J
νψ2k−1,0(t), . . . , J

νψ2k−1,M−1(t)
]T

where

Jνψn,m(t) = 2k/2
1√

n!2n
√
π
JνHm(2kt− n̂)χ[ n̂−1

2k
, n̂+1

2k
),

where k = 1, 2, . . . is level of resolution, n = 1, 2, . . . , 2k−1, n̂ = 2n−1 is translation
parameter, m = 1, 2, . . . ,M − 1 is the order of the Hermite polynomial.

Remark 2.1. Integral operator Jν(ν > 0) of a function f(t) is defined as

Jνf(t) =
1

ν!

∫ t

0

(t− s)ν−1f(s)ds.

Hermite Wavelet Collocation Method

To apply Hermite wavelet on the ordinary differential equations, we need its dis-
cretized form. We use collocation method for discretization where mesh points are
given by

x̄l = l∆x, l = 0, 1, · · · ,M − 1.

For the collocation points we define

xl = 0.5(x̄l−1 + x̄l), l = 0, 1, · · · ,M − 1.
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For k = 1, equation (6) takes the form

f(t) ≃
M−1∑
m=0

c1mψ1m(t).

We replace t by xl in above equation and arrive at system of equations which can
easily be solved to get the solution of the nonlinear SBVP.

Haar Wavelet

Let us assume that x belongs to any interval [P,Q], where P and Q are constant end
points. Let us define M = 2J , where J is the maximal level of resolution. Devide
[P,Q] into 2M subintervals of equal length ∆x = (Q − P )/(2M). The wavelet
number i is defined as i = m+ k+1, where j = 0, 1, · · · , J and k = 0, 1, · · · ,m− 1
(here m = 2j). The ith Haar wavelet is explained as

(7) hi(x) = χ[η1(i),η2(i)) − χ[η2(i),η3(i))

where

(8)

η1(i) = P + 2kµ∆x,

η2(i) = P + (2k + 1)µ∆x,

η3(i) = P + 2(k + 1)µ∆x,

µ =M/m.

Above equations are valid for i > 2. For i = 1 case we have, hi(x) = χ[P,Q].

For i = 2 we have

η1(2) = P, η2(2) = 0.5(2P +Q), η3(2) = Q.(9)

The thickness of the ith wavelet is

η3(i)− η1(i) = 2µ∆x = (Q− P )m−1 = (Q− P )2−j .

If J is fixed then by (7)∫ Q

P

hi(x)hl(x)dx =

{
(Q− P )2−j , l = i,

0, l ̸= i.

The integrals pυ,i(x) are defined as

pυ,i(x) =

∫ x

P

∫ x

P

· · ·
∫ x

P

hi(t)dt
v =

1

(v − 1)!

∫ x

P

(x− t)(υ−1)hi(t)dt,

where υ = 1, 2, · · · , n, i = 1, 2, · · · , 2M.
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Putting all values in the integral we get

pυ,i(x) =
1

υ!
[x− η1(i)]

υχ[η1(i),η2(i))

+
1

υ!
{[x− η1(i)]

υ − 2[x− η2(i)]
υ}χ[η2(i),η3(i)]

+
1

υ!
{[x− η1(i)]

υ − 2[x− η2(i)]
υ + [x− η3(i)]

υ}χ(η3(i),∞)

for i > 1 and for i = 1 we have η1 = P, η2 = η3 = Q and

pυ,1(x) =
1

υ!
(x− P )υ.

Haar Wavelet Collocation Method

Similar to case of previous section here again we define collocation points as follows

x̄t = P + t∆x, t = 0, 1, · · · , 2M,

xt = 0.5(x̄t−1 + x̄t), t = 0, 1, · · · , 2M,

and replace x → xt in (7),(8),(9). We define the Haar matrices H,P1, P2, · · · , Pυ

which are 2M × 2M matrices. Entries of matrices are given by H(i, t) = hi(xt),
Pv(i, t) = Pυ,i(xt), υ = 1, 2, · · · . Consider P = 0, Q = 1, J = 1. Then 2M = 4, so
H,P1, P2 are defined as

H =


1 1 1 1
1 1 −1 −1
1 −1 0 0
0 0 1 −1

 ,

P1 =
1

8


1 3 5 7
1 3 3 1
1 1 0 0
0 0 1 1

 ,

P2 =
1

128


1 9 25 49
1 9 23 31
1 7 8 8
0 0 1 7

 .
Approximation of Function with Haar Wavelet

A function f(t) defined on L2[0, 1] can be approximated by Haar wavelet basis in
the following manner

(10) f(t) =

∞∑
i=0

aihi(t).
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For computation purpose we truncate (10) and define

f(t) ≃
2M∑
i=0

aihi(t),

where M is the level of resolution.

3. NUMERICAL METHODS BASED ON HERMITE AND HAAR
WAVELETS

In this section, solution methods based on Hermite wavelet and Haar wavelet
are presented.

Hermite Wavelet Quasilinearization Approach (HeWQA)

In HeWQA we use quasilinearization to linearize SBVP then method of collocation
for discretization and use Hermite wavelets for computation of solutions to nonlinear
SBVP. We consider differential equation (2) with boundary conditions (3a), (3b)
and (3c). Quasilinearizing this equation, we get the form

Lyr+1 = −f(t, yr(t)) +
1∑

s=0

(ysr+1 − ysr)(−fys(t, yr(t)),(11a)

subject to linearized boundary conditions,

y′r+1(0) = α, yr+1(1) = β,(11b)

yr+1(0) = α0, yr+1(1) = β,(11c)

y′r+1(0) = α, ayr+1(1) + by′r+1(1) = β0.(11d)

Here s = 0, 1, fys = ∂f/∂ys and y0r(t) = yr(t).

Thus we arrive at linearized form of given differential equation. Now we use
Hermite wavelet method similar to described in [13]. Let us assume

y′′r+1(t) =

M−1∑
m=0

c1mψ1m(t).

Then integrating twice we get the following two equations:

y′r+1(t) =

M−1∑
m=0

c1mJψ1m(t) + y′r+1(0),(11e)

yr+1(t) =

M−1∑
m=0

c1mJ
2ψ1m(t) + ty′r+1(0) + yr+1(0).(11f)

Here Jν(ν > 0) is the integral operator defined previously.
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Treatement of the Boundary Value Problem

Based on boundary conditions we will consider different cases and follow procedure
similar to described in [42].
Case (i): In equation (3a) we have y′(0) = α, y(1) = β. So by linearization we
have y′r+1(0) = α, yr+1(1) = β. Now put t = 1 in (11f) we get

yr+1(1) =

M−1∑
m=0

c1mJ
2ψ1m(1) + y′r+1(0) + yr+1(0),

so

(12) yr+1(0) = yr+1(1)−
M−1∑
m=0

c1mJ
2ψ1m(1)− y′r+1(0).

By using equation (12) in (11f) and simplifying we get

(13) yr+1(t) = (t− 1)y′r+1(0) + yr+1(1) +

M−1∑
m=0

c1m(J2ψ1m(t)− J2ψ1m(1)).

Now putting values of y′r+1(0) and yr+1(1) in (11e) and (13) we get

y′r+1(t) = α+

M−1∑
m=0

c1mJψ1m(t),

yr+1(t) = (t− 1)α+ β +

M−1∑
m=0

c1m(J2ψ1m(t)− J2ψ1m(1)).

Case (ii): In equation (3b) we have y(0) = α0, y(1) = β. So by linearization we
have yr+1(0) = α0, yr+1(1) = β. Now put t = 1 in equation (11f), we get

yr+1(1) =

M−1∑
m=0

c1mJ
2ψ1m(1) + y′r+1(0) + yr+1(0),

so

y′r+1(0) = yr+1(1)−
M−1∑
m=0

c1mJ
2ψ1m(1)− yr+1(0).

By putting these values in equation (11e) and (11f) we get

y′r+1(t) = yr+1(1)− yr+1(0) +

M−1∑
m=0

c1m(Jψ1m(t)− J2ψ1m(1)),

and

yr+1(t) = (1− t)yr+1(0) + tyr+1(1) +

M−1∑
m=0

c1m(J2ψ1m(t)− J2ψ1m(1)).
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Now putting the values of yr+1(0) and yr+1(1), we get

y′r+1(t) = (β − α0) +

M−1∑
m=0

c1m(Jψ1m(t)− J2ψ1m(1)),

yr+1(t) = (1− t)α0 + tβ +

M−1∑
m=0

c1mJ
2ψ1m(1)− yr+1(0)).

Case (iii): In equation (3c) we have y′(0) = α, ay(1) + by′(1) = β0. So by
linearization we have y′r+1(0) = α, ayr+1(1) + by′r+1(1) = β0. Now put t = 1 in
equation (11e) and (11f) we get

y′r+1(1) =

M−1∑
m=0

c1mJψ1m(1) + y′r+1(0),

yr+1(1) =

M−1∑
m=0

c1mJ
2ψ1m(1) + y′r+1(0) + yr+1(0).

Putting these values in ayr+1(1) + by′r+1(1) = β0 and solving for yr+1(0) we have

yr+1(0) =
1

a

(
β0 − ay′r+1(0)− a

M−1∑
m=0

c1mJ
2ψ1m(1)− b

(
M−1∑
m=0

c1mJψ1m(1) + y′r+1(0)

))
.

Hence from equation (11f) we have

(14) yr+1(t) =

M−1∑
m=0

c1mJ
2ψ1m(t) + ty′r+1(0)

+
1

a

(
β0 − ay′r+1(0)− a

M−1∑
m=0

c1mJ
2ψ1m(1)− b

(
M−1∑
m=0

c1mJψ1m(1) + y′r+1(0)

))
.

Now we put values of yr+1(0) and yr+1(1) in equation (11e) and (14) we get

y′r+1(t) = α+

M−1∑
m=0

c1mJψ1m(t),

yr+1(t) =
β0
a

+

(
t− 1− b

a

)
α

+

M−1∑
m=0

c1m

(
J2ψ1m(t)− J2ψ1m(1)− b

a
Jψ1m(1)

)
.

Finally we put values of y′′r+1, y
′
r+1 and yr+1 for all these cases in the linearized

differential equation (11a). Now we discritize the final equation with collocation
method and then solve the resulting system assuming initial guess y0(t). We get
required value of solution y(t) of the nonlinear SBVPs at different collocation points.



368 Amit K. Verma and Diksha Tiwari

Hermite Wavelet Newton Approach (HeWNA)

In this approach we use the method of collocation for discretization and then Her-
mite wavelet for approximation of the solutions. Finally Newton Raphson method
is used to solve the resulting nonlinear system of equations.

We consider differential equation (2) with boundary conditions (3a), (3b) and
(3c). Now we assume

y′′(t) =

M−1∑
m=0

c1mψ1m(t).

Integrating twice we get the following two equations:

y′(t) =

M−1∑
m=0

c1mJψ1m(t) + y′(0),(15)

y(t) =

M−1∑
m=0

c1mJ
2ψ1m(t) + ty′(0) + y(0).(16)

Treatment of the Boundary Value Problem

Based on boundary conditions we divide it in different cases.
Case (i): In equation (3a) we have y′(0) = α, y(1) = β. Now put t = 1 in (16) we
get

y(1) =

M−1∑
m=0

c1mJ
2ψ1m(1) + y′(0) + y(0),

so

y(0) = y(1)−
M−1∑
m=0

c1mJ
2ψ1m(1)− y′(0).(17)

By using equation (17) in (16) we get

y(t) =

M−1∑
m=0

c1mJ
2ψ1m(t) + ty′(0) + y(1)−

M−1∑
m=0

c1mJ
2ψ1m(1)− y′(0),

y(t) =

M−1∑
m=0

c1mJ
2ψ1m(t) + (t− 1)y′(0) + y(1)−

M−1∑
m=0

c1mJ
2ψ1m(1).

Hence

y(t) = (t− 1)y′(0) + y(1) +

M−1∑
m=0

c1m(J2ψ1m(t)− J2ψ1m(1)).(18)
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Now putting values of y′(0) and y(1) in (15) and (18) we get

y′(t) = tα+ β +

M−1∑
m=0

c1mJ
2ψ1m(t),

y(t) = (t− 1)α+ β +

M−1∑
m=0

c1m(J2ψ1m(t)− J2ψ1m(1)).

Case (ii): In equation (3b) we have y(0) = α0, y(1) = β. Now put t = 1 in
equation (16) we get

y(1) =

M−1∑
m=0

c1mJ
2ψ1m(1) + y′(0) + y(0),

so

y′(0) = y(1)−
M−1∑
m=0

c1mJ
2ψ1m(1)− y(0).

Now using these values of y′(0) and y(1) in (15) and (16) and solving we get

y′(t) = (β − α0) +

M−1∑
m=0

c1m(Jψ1m(t)− J2ψ1m(1)),

y(t) = (1− t)α0 + tβ +

M−1∑
m=0

c1m(J2ψ1m(t)− J2ψ1m(1)).

Case (iii): In equation (3c) we have y′(0) = α, ay(1)+ by′(1) = β0. Now put t = 1
in equation (15) and (16) we get

y′(1) =

M−1∑
m=0

c1mJψ1m(1) + y′(0),

y(1) =

M−1∑
m=0

c1mJ
2ψ1m(1) + y′(0) + y(0).

Putting these values in ay(1) + by′(1) = β0 and solving we will get value of y(0),
now put y(0) and y′(0) in (16) we have

y(t) =

M−1∑
m=0

c1mJ
2ψ1m(t) + ty′(0)(19)

+
1

a

(
β0 − ay′(0)− a

M−1∑
m=0

c1mJ
2ψ1m(1)− b

(
M−1∑
m=0

c1mJψ1m(1) + y′(0)

))
.



370 Amit K. Verma and Diksha Tiwari

Now by putting y′(0) = α in (15) and (19), we have

y′(t) = α+

M−1∑
m=0

c1mJψ1m(t),

y(t) =
β0
a

+

(
t− 1− b

a

)
α+

M−1∑
m=0

c1m

(
J2ψ1m(t)− J2ψ1m(1)− b

a
Jψ1m(1)

)
.

Now we put values of y(t), y′(t) and y′′(t) in (2). We discretize final equation with
collocation method and solve the resulting nonlinear system with Newton Raphson
method for c1m,m = 0, 1, . . . ,M − 1. By substituting the values of c1m,m =
0, 1, . . . ,M − 1, we get value of the solution of y(t) of nonlinear SBVPs at different
collocation points.

3.1 Haar Wavelet Quasilinearization Approach (HWQA)

As explained for HeWQA, we will follow same procedure in HWQA method. Here
we are using Haar Wavelet in place of Hermite Wavelet. We consider differential
equation (2) with boundary conditions (3a), (3b) or (3c). Applying method of
quasilinearization, as we did in HeWQA, we have equation (11a) with linearized
boundary conditions (11b),(11c) and (11d).

Let us assume

y′′r+1(t) =

2M∑
i=0

aihi(t),

where ai are the wavelet coefficients. Then integrating twice we get following two
equations:

y′r+1(t) =

2M∑
i=0

aip1,i(t) + y′r+1(0),

yr+1(t) =

2M∑
i=0

aip2,i(t) + ty′r+1(0) + yr+1(0).

Treatement of the Boundary Value Problem

Expressions for different boundary conditions in HWQA method are given below.
Case (i): In equation (3a) we have y′(0) = α, y(1) = β. Following same procedure
as HeWQA we have

y′r+1(t) = α+

2M∑
i=0

aip1,i(t),

yr+1(t) = (t− 1)α+ β +

2M∑
i=0

ai(p2,i(t)− p2,i(1)).
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Case (ii): In equation (3b) we have y(0) = α0, y(1) = β. So we have

y′r+1(t) = (β − α0) +

M−1∑
m=0

c1m(p1,i(t)− p2,i(1)),

yr+1(t) = (1− t)α0 + tβ +

2M∑
i=0

ai(p2,i(t)− tp2,i(1)).

Case (iii): In equation (3c) we have y′(0) = α, ay(1) + by′(1) = β0. We finally
have

y′r+1(t) = α+

2M∑
i=0

aip1,i(t),

yr+1(t) =
β0
a

+

(
t− 1− b

a

)
α+

2M∑
i=0

ai

(
p2,i(t)− p2,i(1)−

b

a
p1,i(1)

)
.

Haar Wavelet Newton Approach (HWNA)

Here we use same procedure as that of HeWNA.

Treatment of the Boundary Value Problem

Expressions for different boundary conditions in HWNA method are given below.
Case (i): In equation (3a) we have y′(0) = α, y(1) = β. Following same procedure,
final expression will take the form

y′(t) = α+

2M∑
i=0

aip1,i(t),

y(t) = (t− 1)α+ β +

2M∑
m=0

ai(p2,i(t)− p2,i(1)).

Case (ii): In equation (3b) we have y(0) = α0, y(1) = β. So by linearization we
have y(0) = α0, y(1) = β. Final expression is of the form

y′(t) = (β − α0) +

M−1∑
m=0

c1m(p1,i(t)− p2,i(1)),

y(t) = (1− t)α0 + tβ +

2M∑
m=0

c1m(p2,i(t)− p2,i(1)).
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Case (iii): In equation (3c) we have y′(0) = α, ay(1) + by′(1) = β0, so we have
the following expression:

y′(t) = α+

2M∑
i=0

aip1,i(t),

y(t) =
β0
a

+

(
t− 1− b

a

)
α+

2M∑
m=0

c1m

(
p2,i(t)− p2,i(1)−

b

a
p1,i(1)

)
.

4. CONVERGENCE

Let us consider 2nd order ordinary differential equation in general form

G(t, u, u′, u′′) = 0.

We consider the HeWNA method. Let

f(t) = u′′(t) =

∞∑
n=1

∞∑
m=0

cnmψnm(t).

Integrating above equation two times we have

(20) u(t) =

∞∑
n=1

∞∑
m=0

cnmJ
2ψnm(t) +BT (t),

where BT (t) stands for boundary term.

Theorem 4.2. Let us assume that, f(t) = d2u
dt2 ∈ L2(R) is continuous on [0, 1].

Let us consider f(t) is bounded, i.e.,

(21) ∀t ∈ [0, 1] ∃ η :

∣∣∣∣d2udt2
∣∣∣∣ ≤ η.

Then method based on Hermite Wavelet Newton Approach (HeWNA) converges.

Proof. In (20) by truncating expansion we have,

uk,M (t) =

2k−1∑
n=1

M−1∑
m=0

cnmJ
2ψnm(t) +BT (t)

So error Ek,M can be expressed as

∥Ek,M∥2 = ∥u(t)− uk,M (t)∥2 =

∥∥∥∥∥
∞∑

n=2k

∞∑
m=M

cnmJ
2ψnm(t)

∥∥∥∥∥
2

.
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Expanding L2 norm, we have

∥Ek,M∥22 =

∫ 1

0

∣∣∣∣∣
∞∑

n=2k

∞∑
m=M

cnmJ
2ψnm(t)

∣∣∣∣∣
2

dt,

∥Ek,M∥22 ≤
∞∑

n=2k

∞∑
m=M

∞∑
s=2k

∞∑
r=M

∫ 1

0

∣∣cnmcsrJ2ψnm(t)J2ψsr(t)
∣∣ dt,

∥Ek,M∥22 ≤
∞∑

n=2k

∞∑
m=M

∞∑
s=2k

∞∑
r=M

∫ 1

0

|cnm| |csr| |J2ψnm(t)| |J2ψsr(t)|dt.(22)

Now

|J2ψnm(t)| ≤
∫ t

0

∫ t

0

|ψnm(t)|dtdt,

≤
∫ t

0

∫ 1

0

|ψnm(t)|dtdt,

since t ∈ [0, 1]. Now by (4), we have

|J2ψnm(t)| ≤ 2k/2
1√

n!2n
√
π

∫ t

0

∫ n̂+1

2k

n̂−1

2k

|Hm(2kt− n̂)|dtdt.

By changing variable 2kt− n̂ = y, we get

|J2ψnm(t)| ≤ 2−k/2 1√
n!2n

√
π

∫ t

0

∫ 1

−1

|Hm(y)|dydt,

≤ 2−k/2 1√
n!2n

√
π

∫ t

0

∫ 1

−1

∣∣∣∣H ′
m+1(y)

m+ 1

∣∣∣∣ dydt,
≤ 2−k/2 1

(
√
n!2n

√
π)(m+ 1)

∫ t

0

∫ 1

−1

|H ′
m+1(y)|dydt.

By putting
∫ 1

−1
|H ′

m+1(y)|dy = h, we get

|J2ψnm(t)| ≤ 2−k/2 1

(
√
n!2n

√
π)(m+ 1)

∫ t

0

hdt.

Since t ∈ [0, 1], hence

|J2ψnm(t)| ≤ 2−k/2 1

(
√
n!2n

√
π)(m+ 1)

h.(23)
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Now for |cnm|, we have

cnm =

∫ 1

0

f(t)ψnm(t)dt,

|cnm| ≤
∫ 1

0

|f(t)||ψnm(t)|dt.

Now using (21), we have

|cnm| ≤ η

∫ 1

0

|ψnm(t)|dt.

By (4), we have

|cnm| ≤ 2k/2
η√

n!2n
√
π

∫ n̂+1

2k

n̂−1

2k

|Hm(2kt− n̂)|dt.

Now by change of variable 2kt− n̂ = y, we get

|cnm| ≤ 2−k/2 η√
n!2n

√
π

∫ 1

−1

|Hmy|dy,

|cnm| ≤ 2−k/2 η√
n!2n

√
π

∫ 1

−1

∣∣∣∣H ′
m+1(y)

m+ 1

∣∣∣∣ dy.
By putting

∫ 1

−1
|H ′

m+1(y)|dy = h, we have

|cnm| ≤ 2−k/2 1

(
√
n!2n

√
π)(m+ 1)

ηh.(24)

Now using equation (23) and (24) in (22)

∥Ek,M∥22 ≤ 2−2kη2h4

×
∞∑

n=2k

∞∑
m=M

∞∑
s=2k

∞∑
r=M

∫ 1

0

1

(
√
n!2n

√
π)2(m+ 1)2

1

(
√
s!2s

√
π)2(r + 1)2

dt,

∥Ek,M∥22 ≤ 2−2kη2h4

×
∞∑

n=2k

1

n!2n
√
π

∞∑
s=2k

1

s!2s
√
π

∞∑
m=M

1

(m+ 1)2

∞∑
r=M

1

(r + 1)2
.

Here all four series converges and ∥Ek,M∥ −→ 0 as k,M → ∞.

Remark 4.2. The above theorem can easily be extended for HeWQA.

Theorem 4.3. Let us assume that f(t) = d2u
dt2 ∈ L2(R) is a continuous function

on [0, 1] and its first derivative is bounded for all t ∈ [0, 1] there exists η such that∣∣∣dfdt ∣∣∣ ≤ η, then the method based on HWQA and HWNA converges.

Proof. The proof for this theorem can be studied in [10].
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5. NUMERICAL ILLUSTRATIONS

In this section we apply HeWQA, HeWNA, HWQA and HWNA on proposed
model which occurs in exothermic reaction (1). We also solve four other examples
from real life and compare solutions of these four methods with exact solutions
whenever available.

To examine the accuracy of methods we define maximum absolute error L∞
as

(25) L∞ error = max
x∈[0,1]

|y(x)− yw(x)|

here y(t) is exact solution and yw(t) is wavelet solution and the L2-norm error as

(26) L2 error =

2M∑
j=o

|y(xj)− yw(xj)|2
1/2

here y(xj) is exact solution and yw(xj) is wavelet solution at the point xj .

Example 1 (Exothermic Reaction)

Consider the non-linear SBVP (1) with given boundary condition

Ly +B exp

(
−A

(cn + yn)1/n

)
= 0, y′(0) = 0, y(1) = 0,(27)

we take some particular cases when A = 1, B = 1, c = 1.

Comparison graphs taking initial vector [0, 0, . . . , 0] and J = 1, J = 2 with
n = 1, kg = 1; n = 1, kg = 2; n = 2, kg = 1; n = 2, kg = 2;n = 3, kg = 1 and
n = 3, kg = 2 are plotted in figure 1, figure 2, figure 3, figure 4, figure 5 and figure
6 respectively. Tables for solution is tabulated in table 1, 2, table 3, table 4, table
5 and table 6, respectively.

The example defined by equation (27) is new and does not exist in literature.
So we are not in a situation to compare the results. We have considered n = 1, 2, 3
and kg = 1, 2. Tables 1, 2, 3, 4, 5 , 6 and figures 1, 2, 3, 4, 5, 6 demonstrate the
behaviour of the solution for J = 1, 2. HWNA, HeWNA, HWQA and HeWQA
all give numerics which are very well comparable and shows that our proposed
techniques are working well.

We also observed for small changes in initial vector, for example taking
[0.1, 0.1, . . . , 0.1] or [0.2, 0.2, . . . , 0.2] doesn’t significantly change the solution in
any case.

Example 2 (Stellar Structure)

Consider the non-linear SBVP:

Ly(t) + y5(t) = 0, y′(0) = 0, y(1) =

√
3

4
, kg = 2,(28)
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Table 1: Comparison of HWQA, HeWNA, HWQA, HeWQA method solution for exam-
ple 3.1 with n = 1, kg = 1 taking J = 2.

Grid Points HWNA [10] HeWNA HWQA [10] HeWQA
0 0.098471606 0.098471868 0.099733232 0.098721649

1/16 0.098078784 0.09807895 0.099334324 0.098328004
3/16 0.094937743 0.094937908 0.096144758 0.095180981
5/16 0.08866797 0.08866813 0.089779277 0.088898418
7/16 0.079294153 0.079294305 0.080265493 0.079503596
9/16 0.066853514 0.066853646 0.067645598 0.06703223
11/16 0.051396022 0.051396117 0.051977236 0.051533416
13/16 0.032984684 0.032984721 0.033334595 0.033070901
15/16 0.011695904 0.011695851 0.011809628 0.01172465

Figure 1: Comparison plots of solution methods for J = 1, 2 for example 3.1 with
n = 1, kg = 1.

Table 2: Comparison of HWQA, HeWNA, HWQA, HeWQA method solution for exam-
ple 3.1 with n = 1, kg = 2 taking J = 2.

Grid Points HWNA [10] HeWNA HWQA [10] HeWQA
0 0.063984889 0.063981865 0.064360996 0.064044224

1/16 0.063730596 0.063727533 0.064104699 0.063789741
3/16 0.061697078 0.061694111 0.062055233 0.06175505
5/16 0.057636632 0.057633858 0.057963614 0.057691954
7/16 0.05156246 0.051559975 0.051844545 0.051613138
9/16 0.043494423 0.04349232 0.043720272 0.043537903
11/16 0.0334591 0.033457472 0.033620792 0.033492504
13/16 0.02148988 0.021488815 0.021584087 0.021510584
15/16 0.007627057 0.007626644 0.007656348 0.007633719
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Figure 2: Comparison plots of solution methods for J = 1, 2 for example 3.1 with
n = 1, kg = 2.

Table 3: Comparison of HWQA, HeWNA, HWQA, HeWQA method solution for example
3.1 with n = 2, kg = 1 taking J = 2.

Grid Points HWNA [10] HeWNA HWQA [10] HeWQA
0 0.092208342 0.092207929 0.092312756 0.092313207

1/16 0.091847576 0.091847154 0.091951987 0.091952438
3/16 0.088961585 0.088961165 0.089065836 0.089066284
5/16 0.083190705 0.08319029 0.083293585 0.083294024
7/16 0.07453702 0.074536618 0.074635444 0.074635864
9/16 0.063003362 0.06300299 0.063092011 0.063092397
11/16 0.048592958 0.048592641 0.048664618 0.048664943
13/16 0.031308953 0.031308728 0.031355798 0.031356022
15/16 0.011153812 0.011153735 0.01116988 0.011169952

Figure 3: Comparison plots of solution methods for example 3.1 with n = 2, kg = 1.
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Table 4: Comparison of HWQA, HeWNA, HWQA, HeWQA method solution for example
3.1 with n = 2, kg = 2 taking J = 2.

Grid Points HWNA [10] HeWNA HWQA [10] HeWQA
0 0.061376073 0.061376325 0.061411277 0.061411345

1/16 0.061136122 0.061135877 0.061171325 0.061171393
3/16 0.059216558 0.05921632 0.05925171 0.059251777
5/16 0.055377823 0.055377598 0.055412494 0.055412559
7/16 0.049620654 0.049620448 0.04965375 0.049653812
9/16 0.041946044 0.041945866 0.0419757 0.041975756
11/16 0.032355109 0.032354967 0.032378845 0.032378891
13/16 0.020848901 0.020848809 0.020864147 0.020864177
15/16 0.007428191 0.007428161 0.007433258 0.007433263

Figure 4: Comparison plots of solution methods for J = 1, 2 for example 3.1 with
n = 2, kg = 2.

Table 5: Comparison of HWQA, HeWNA, HWQA, HeWQA method solution for example
3.1 with n = 3, kg = 1 taking J = 2.

Grid Points HWNA [10] HeWNA HWQA [10] HeWQA
0 0.091982324 0.091982282 0.091998157 0.091998241

1/16 0.091622975 0.091622932 0.091622975 0.091638892
3/16 0.088748193 0.08874815 0.088748193 0.088764086
5/16 0.082998726 0.082998685 0.082998726 0.083014381
7/16 0.074374752 0.074374713 0.074374752 0.07438963
9/16 0.062876486 0.062876451 0.062876486 0.062889712
11/16 0.048504139 0.048504111 0.048504139 0.048514619
13/16 0.031257869 0.031257851 0.031257869 0.031264554
15/16 0.011137751 0.011137745 0.011137751 0.011139994
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Figure 5: Comparison plots of solution methods for J = 1, 2 for example 3.1 with
n = 3, kg = 1.

Figure 6: Comparison plots of solution methods for J = 1, 2 for example 3.1 with
n = 3, kg = 2.

Table 6: Comparison of HWQA, HeWNA, HWQA, HeWQA method solution for example
3.1 with n = 3, kg = 2 taking J = 2.

Grid Points HWNA [10] HeWNA HWQA [10] HeWQA
0 0.061315351 0.061315829 0.061318845 0.061321705

1/16 0.061075828 0.061075814 0.061079322 0.061083071
3/16 0.059159646 0.059159634 0.059163135 0.059166226
5/16 0.055327307 0.055327295 0.055330739 0.055333256
7/16 0.049578851 0.04957884 0.049582101 0.049584212
9/16 0.041914328 0.041914319 0.041917195 0.041918897
11/16 0.032333785 0.032333778 0.032336026 0.032337266
13/16 0.020837254 0.02083725 0.020838652 0.020839592
15/16 0.007424747 0.007424746 0.007425199 0.007424945
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Table 7: Comparison of HWNA, HeWNA, HWQA, HeWQA methods solution with an-
alytical solution for example 3.1 taking J = 2.

Grid Points HWNA [10] HeWNA HWQA [10] HeWQA Exact
0 1.00023666 0.999999992 1.00023666 0.999999992 1

1/16 0.999586961 0.99934958 0.999586961 0.99934958 0.999349593
3/16 0.994419294 0.994191616 0.994419294 0.994191616 0.994191626
5/16 0.984319576 0.984110835 0.984319576 0.984110835 0.984110842
7/16 0.969730094 0.96954859 0.969730094 0.96954859 0.969548596
9/16 0.9512486 0.951101273 0.9512486 0.951101273 0.951101277
11/16 0.92956584 0.92945791 0.92956584 0.92945791 0.929457914
13/16 0.905403371 0.905338132 0.905403371 0.905338132 0.905338136
15/16 0.879460746 0.879439538 0.879460746 0.879439538 0.879439536

Table 8: Comparison of error of HWNA, HeWNA, HWQA, HeWQA methods for example
3.1 taking J = 2.

Error HWNA [10] HeWNA HWQA [10] HeWQA
L∞ 0.000237368 2.49669×10−9 0.000237368 2.49669×10−9

L2 0.000471959 1.97638×10−8 0.000471959 1.97638×10−8

Chandrasekhar ([35], p88 ) derived above two point nonlinear SBVP. This equation

arises in study of stellar structure. It’s exact solution is y(t) =
√

3
3+x2 .

Comparison graphs taking initial vector
[√

3
4 ,
√

3
4 , . . . ,

√
3
4

]
and J = 1, J = 2

are plotted in figure 7. Tables for solutions and errors are tabulated in tables 7 and
8.

In this test case since exact solution of the SBVP governed by (28) exists, We
have compared our solutions with exact solution in table 7 and figure 7. Numerics
again prove that method gives results with best accuracy for J = 1 and J = 2.

We also observed for small changes in initial vector, for example taking
[0.8, 0.8, . . . , 0.8] or [0.7, 0.7, . . . , 0.7] doesn’t significantly change the solution.

Example 3 (Thermal Explosion)

Consider the non linear SBVP:

Ly(t) + ey(t) = 0, y′(0) = 0, y(1) = 0, kg = 1.(29)

Above nonlinear SBVP is derived by Chamber [26]. This equation arises in the
thermal explosion in cylindrical vessel. The exact solution of this equation is y(x) =

2 ln 4−2
√
2

(3−2
√
2)x2+1

.
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Figure 7: Comparison plots of solution methods for J = 1, 2 for example 3.1.

Table 9: Comparison of HWNA, HeWNA, HWQA, HeWQA methods solution with an-
alytical solution for example 3.1 taking J = 2.

Grid Points HWNA [10] HeWNA HWQA [10] HeWQA Exact
0 0.316727578 0.316694368 0.316727578 0.316694368 0.316694368

1/16 0.315388914 0.315354403 0.315388914 0.315354403 0.315354404
3/16 0.304700946 0.304666887 0.304700946 0.304666887 0.304666888
5/16 0.283494667 0.283461679 0.283494667 0.283461679 0.283461679
7/16 0.252100547 0.252069555 0.252100547 0.252069555 0.252069555
9/16 0.210993138 0.210965461 0.210993138 0.210965461 0.210965462
11/16 0.160768168 0.16074555 0.160768168 0.16074555 0.16074555
13/16 0.102115684 0.102100258 0.102115684 0.102100258 0.102100258
15/16 0.035791587 0.035785793 0.035791587 0.035785793 0.035785793

Comparison graphs taking initial vector [0, 0, . . . , 0] and J = 1, J = 2 are
plotted in figure 8. Tables for solutions and errors are tabulated in table 9 and
table 10.

This is test case derived by Chambre [26] long back again exact solution is
available. Table 9 and figure 8 show that numerics are in good agreement with
exact solutions or J = 1 and J = 2.

We also observed for small changes in initial vector, for example taking
[0.1, 0.1, . . . , 0.1] or [0.2, 0.2, . . . , 0.2] doesn’t significantly change the solution.

Example 4 (Rotationally Symmetric ShallowMembrane Caps)

Consider the non linear SBVP:

Ly(t) +

(
1

8y2(t)
− 1

2

)
= 0, y′(0) = 0, y(1) = 1, kg = 1.(30)

Above nonlinear SBVP is studied in papers [34, 20]. Exact solution of this problem
is not known.
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Table 10: Comparison of error of HWNA, HeWNA, HWQA, HeWQA methods for ex-
ample 3.1 taking J = 2.

Error HWNA [10] HeWNA HWQA [10] HeWQA
L∞ 0.0000345103 1.07541×10−10 0.0000345103 1.07541×10−10

L2 0.0000771278 4.99369×10−10 0.0000771278 4.99369×10−10

Figure 8: Comparison plots solution methods for J = 1, 2 for example 3.1.

Comparison graphs taking initial vector [1, 1, . . . , 1] and J = 1, J = 2 are
plotted in figure 9. Tables for solution is tabulated in table 11. In this real life
example again exact solution is not known so comparison is not done with exact
solution. Table 11 and figure 9 show that computed results are comparable for
J = 1, 2.

We also observed for small changes in initial vector, for example taking
[0.9, 0.9, . . . , 0.9] or [0.8, 0.8, . . . , 0.8] doesn’t significantly change the solution.

Example 5 (Thermal Distribution in Human Head)

Consider the non linear SBVP:

Ly(t) + e−y(t) = 0, y′(0) = 0, 2y(1) + y′(1) = 0, kg = 2.(31)

This SBVP is derived by Duggan and Goodman [27]. Exact solution of this problem
is not known to the best of our knowledge.

Comparison graphs taking initial vector [0, 0, . . . , 0] and J = 1, J = 2 are
plotted in figure 10. Tables for solution is tabulated in table 12. In absence of exact
solution the comparison has not been made with exact solution. But comparison
of all four methods for in the given problem due to Duggan and Goodman [27], in
table 12 and figure 10 shows accuracy of the present method.

We also observed for small changes in initial vector, for example taking
[0.1, 0.1, . . . , 0.1] or [0.2, 0.2, . . . , 0.2] doesn’t significantly change the solution in
any case.
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Table 11: Comparison of HWQA, HeWNA, HWQA, HeWQA method solution for
example 3.1 taking J = 2.

Grid Points HWNA [10] HeWNA HWQA [10] HeWQA
0 0.954137376 0.954135008 0.954137376 0.954135008

1/16 0.954314498 0.954311604 0.954314498 0.954311604
3/16 0.95573187 0.95572956 0.95573187 0.95572956
5/16 0.958569785 0.958567713 0.958569785 0.958567713
7/16 0.962834546 0.962832683 0.962834546 0.962832683
9/16 0.968535496 0.968533886 0.968535496 0.968533886
11/16 0.975684891 0.975683641 0.975684891 0.975683641
13/16 0.984297738 0.984296771 0.984297738 0.984296771
15/16 0.994391588 0.994391728 0.994391588 0.994391728

Figure 9: Comparison plots of solution methods for J = 1, 2 for example 3.1.
.

Table 12: Comparison of HWQA, HeWNA, HWQA, HeWQA method solution for exam-
ple 3.1 taking J = 2.

Grid Points HWNA [10] HeWNA HWQA [10] HeWQA
0 0.269855704 0.269948774 0.272263769 0.272366612

1/16 0.269358573 0.269451863 0.27176762 0.271870738
3/16 0.265377954 0.265471233 0.267793921 0.267896983
5/16 0.257388082 0.257481347 0.259810468 0.259913411
7/16 0.245331028 0.245424295 0.247745058 0.247847809
9/16 0.229118226 0.229211536 0.231489202 0.231591678
11/16 0.208628362 0.2087218 0.210897975 0.211000089
13/16 0.183704413 0.183798121 0.18579005 0.18589165
15/16 0.154149664 0.154243862 0.155947881 0.156048741
1 0.13756259 0.137656718 0.139174003 0.139274111
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Figure 10: Comparison plots of solution methods for J = 1, 2 for example 3.1.
.

6. CONCLUSIONS

In this research article, we have proposed a new model governing exothermic
reactions and four different numerical methods based on wavelets, namely HWQA,
HWNA, HeWQA, HeWNA for solving these nonlinear SBVPs arising in different
branches of science and engineering (cf. [20, 26, 27, 34, 35]). We have applied
these methods in five real life examples [see equations (27), (28), (29), (30) and
(31)]. Singularity of differential equations can also be very well handled with help
of these four proposed methods based. Difficulty arise due to non-linearity of differ-
ential equations is dealt with the help of quasilinearization in HWQA and HeWQA
method. In the other two proposed method, HWNA and HeWNA, we will solve
the resulting non-linear system with help of Newton-Raphson method. Boundary
conditions are also handled well by the proposed methods. Main advantage of
proposed methods is that solutions with high accuracy are obtained using a few
iterations. We also observe that small perturbation in initial vector does not sig-
nificantly change the solution. Which shows that our method is numerically stable.
From the error analysis it can be concluded that methods based Hermite wavelets
should be preferred over Haar wavelets methods.

Our convergence analysis shows that that ||Ek,M || tends to zero as M tends
to infinite. Which shows that accuracy of solution increases as J increases.

Computational work illustrate the validity and accuracy of the procedure. It
will be interesting to see what happens to the proposed method in this paper when
we try to solve coupled Lane-Emden equations, nonlinear SBVPs, nonlinear PDEs,
fractional PDEs etc [1, 2, 3, 4, 11, 19, 31, 39, 40, 41]. We can also see how these
newly developed wavelets will behave when we couple them with SVM kernels [44].
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