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SHARP INEQUALITIES FOR THE COMPLETE
ELLIPTIC INTEGRALS OF THE FIRST AND SECOND

KINDS

Wei-Dong Jiang

By studying the monotonicity properties of K(r), E(r) and some combinations
of elementary functions and special functions, some new inequalities for the
complete elliptic integrals of the first and second kinds are established. where

K(r) =
∫ π/2

0
(1 − r2 sin2 θ)−1/2dθ, E(r) =

∫ π/2

0
(1 − r2 sin2 θ)1/2dθ denote the

complete elliptic integrals of the first and second kind, r ∈ (0, 1).

1. INTRODUCTION

For 0 < r < 1 and r′ =
√
1− r2. Legendre’s complete elliptic integrals of the

first and second kinds [14, 15] are defined by K = K(r) =
∫ π/2

0
(1− r2 sin2 θ)−1/2dθ,

K′ = K′(r) = K(r′),
K(0) = π/2, K(1) = ∞

and  E = E(r) =
∫ π/2

0
(1− r2 sin2 θ)1/2dθ,

E ′ = E ′(r) = E(r′),
E(0) = π/2, E(1) = 1,

respectively.
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It is well known that the complete elliptic integrals have many important ap-
plications in physics, engineering, geometric function theory, quasiconformal anal-
ysis, theory of mean values, number theory and other related fields [4, 5, 6, 9, 14,
15, 28, 24, 30, 32, 25, 23, 35].

Recently, the complete elliptic integrals have attracted the attention of nu-
merous mathematicians. In particular, many remarkable properties and inequalities
for the complete elliptic integrals can be found in the literature [1, 2, 3, 7, 8, 10,
11, 17, 18, 19, 20, 21, 36, 41, 46, 22, 47, 37, 38, 39, 42, 27, 40, 43, 44, 45,
33, 29, 48]

In 1992, Anderson et al.[8] discovered that K can be approximated by the
inverse hyperbolic tangent function, and proved that

π

2
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π

2
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r

)
(1)

for r ∈ (0, 1).

It is also worth mentioning that the left hand side of inequality (1) was
improved by Alzer and Qiu [2, Thoerem 18]. They proved that the double inequality
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holds for all r ∈ (0, 1) with the best possible constants α = 3/4 and β = 1 and
proposed an open problem as follows.

Open problem: The double inequality
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)3/4+αr
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)3/4+βr

(3)

holds for all r ∈ (0, 1) with the best possible constants α = 0 and β = 1/4. This
problem has been proved in [18].

Alzer and Qiu [2, Theorem 20] proved that the following double inequality

a+ α3(1− r′) + log(1 + 1/r′) < K(r) < a+ β3(1− r′) + log(1 + 1/r′)(4)

hold For a = π/2 − log 2 = 0.2853... and all real numbers r ∈ (0, 1) with the best
possible constants

α3 =
π

4
− 1

2
= 0.2853... and β3 = 3 log 2− π

2
= 0.5086....

M. Vuorinen [31] conjectured that inequality

E(r) > π

2

(
1 + r′3/2

2

)2/3

(5)
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holds for all r ∈ (0, 1). This conjecture was proved by R. W. Barnard et al. in [12].
Later, they also provided an upper bound for E(r) [13]

E(r) < π

2

(
1 + r′2

2

)1/2

, 0 < r < 1.(6)

Recently, some bounds for E(r) were discovered in the paper [34]. For exam-
ple, Theorem 1.2 in [34] states that, for r ∈ (0, 1), the following double inequalities
hold.

π

2
− 3π

16

r − r′2arthr

r
< E(r) < π

2
−

(
π

2
− 1

)
r − r′2arthr

r
(7)

π

2
− log r′ − rarthr < E(r) < π

2
−

(
2− π

4

)
log r′ − rarthr(8)

In this paper, inspired by the double inequalities (7) and (8), we obtain
several optimal upper and lower bounds for complete elliptic integrals of the first
and second kind, by studying the monotonicity properties of functions, which are
defined in terms of K and E .

2. PRELIMINARIES AND LEMMAS

In order to establish our main results we need several formulas and Lemmas,
which we present in this section.

For real numbers a, b and c with c ̸= 0,−1,−2, ..., the Gaussian hypergeo-
metric function is defined by

F (a, b; c;x) =2 F1(a, b; c;x) =

∞∑
n=0

(a, n)(b, n)

(c, n)

xn

n!
, for|x| < 1.(9)

Here, (a, 0) = 1 for a ̸= 0 and (a, b) denotes the shifted factorial function

(a, n) = a(a+ 1)(a+ 2)(a+ 3) · · · (a+ n− 1)

for n = 1, 2 · · · .
For 0 < r < 1, the following formulas were presented in [9, 1.20 Exercises]

and [9, (3.13)]:
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K(r) =
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2
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E(r) = π

2
F (

1

2
,−1

2
; 1; r2).

Lemma 1. [16, 24] If n ≥ 1, then

n+
1

4
<

[
Γ(n+ 1)

Γ(n+ 1
2 )

]2
< n+

4

π
− 1.(10)

Lemma 2. [2, 26] Let an and bn(n = 0, 1, 2, · · · ) be real numbers, and let the
power series A(t) =

∑∞
n=0 ant

n and B(t) =
∑∞

n=0 bnt
n be convergent for |t| < R.

If bn > 0 for n = 0, 1, 2, · · · , and if an

bn
is strictly increasing (or decreasing) for

n = 0, 1, 2, · · · , then the function A(t)
B(t) is strictly increasing (or decreasing) on

(0, R).

3. MAIN RESULTS

Theorem 1. The function f1(r) = r[π/2−E(r)]/(r−r′2 sinh r) in strictly increasing
from (0, 1) onto (3π/20, π/2− 1). Moreover, the double inequality

(11)
π

2
−
(π
2
− 1

) r − r′2 sinh r

r
< E(r) < π

2
− 3π

20

r − r′2 sinh r

r

holds for all r ∈ (0, 1).

Proof. Using series expansion

sinhx =

∞∑
n=0

x2n+1

(2n+ 1)!
,

and

E(r) = π

2
F (

1

2
,−1

2
; 1; r2),

we have

f1(r) =
π
2 − E(r)

1− (1− r2) sinh r
r

=
π

2

∑∞
n=0 Rnr

2n∑∞
n=0 Snr2n

(12)
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where Rn =
( 1
2 ,n)(

1
2 ,n+1)

2[(n+1)!]2 and Sn = (2n+3)(2n+2)−1
(2n+3)! .

Let Tn = Rn/Sn. Then

Tn+1

Tn
=

(2n+ 5)(2n+ 3)(2n+ 1)(4n2 + 10n+ 5)

2(4n2 + 18n+ 19)(n+ 2)
.(13)

simple computations lead to

(2n+ 5)(2n+ 3)(2n+ 1)(4n2 + 10n+ 5)− 2(4n2 + 18n+ 19)(n+ 2)

= 224n4 + 576n3 + 648n2 + 32n5 + 270n− 1 > 0

for all n ≥ 1. This implies that

Tn+1

Tn
> 1.(14)

Inequality (14) implies that Tn is strictly increasing for n = 1, 2, · · · , there-
fore, from (12) and Lemma 2 we clearly see that f1(r) is strictly increasing in
(0, 1). Moreover, making use of l’Hôpital’s rule we have f1(0

+) = 3π/20 and
f1(1

−) = π/2− 1.

Theorem 2. The function f2(r) = [π2 arthr− rE(r)]/(r2arthr) in strictly increasing
from (0, 1) onto (7π/24, π/2). Moreover, the double inequality

(15)
π

2

arthr

r
(1− r2) < E(r) < π

2

arthr

r

(
1− 7

12
r2
)

holds for all r ∈ (0, 1).

Proof. Using series expansion we have

f2(r) =
π
2 arthr− rE(r)

r2arthr
=

π

2

∑∞
n=1 Rnr

2n∑∞
n=1 Snr2n

,(16)

where Rn = 1
2n+1 + (1/2,n)2

(2n−1)(n!)2 and Sn = 1
2n−1 .

Let Tn = Rn

Sn
= 2n−1

2n+1 + 1
π

(
Γ(n+1/2)
Γ(n+1)

)2

. Then

Tn+1 − Tn =
4

(2n+ 1)(2n+ 3)
− 4n+ 3

4π(n+ 1)2

(
Γ(n+ 1

2 )

Γ(n+ 1)

)2

.(17)

We only need to prove Tn+1 − Tn > 0 ,which is equivalent to

16π(n+ 1)2

(2n+ 1)(2n+ 3)(4n+ 3)
>

(
Γ(n+ 1

2 )

Γ(n+ 1)

)2

.(18)
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By Lemma 1, we only need to prove

16π(n+ 1)2

(2n+ 1)(2n+ 3)(4n+ 3)
>

4

4n+ 1
(19)

Since π > 3, we only to prove

12(n+ 1)2

(2n+ 1)(2n+ 3)(4n+ 3)
>

1

4n+ 1
(20)

easy calculation gives

12(n+ 1)2(4n+ 1)− (2n+ 1)(2n+ 3)(4n+ 3)

= 32n3 + 64n2 + 36n+ 3 > 0

for all n ≥ 1, n ⊆ N .

Thus Tn+1 > Tn, which implies that Tn is strictly increasing for n = 1, 2, · · · ,
therefore, from (16) and Lemma 2 we clearly see that f2(r) is strictly increasing
in (0, 1). Moreover, using l’Hôpital’s rule we have f2(0

+) = 7π/24 and f2(1
−) =

π/2.

Theorem 3. The function f3(r) = [π2 arcsin r − rE(r)]/(r2 arcsin r) in strictly in-
creasing from (0, 1) onto (5π/24, 1/2(π − 4/π)). Moreover, the double inequality

(21)
π

2
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r

[
1− (1− 4

π2
)r2

]
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2

arcsin r

r

(
1− 5

12
r2
)

holds for all r ∈ (0, 1).

Proof. Using series expansion we have

f3(r) =
π
2 arcsin r − rE(r)

r2 arcsin r
=

π

2

∑∞
n=1 Rnr
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(22)

where
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( 12 , n)(

1
2 , n)

n!

[
1

(1 + 2n)( 12 , n)
+

1
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]
and

Sn =
( 12 , n)(

1
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n!

2n
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,
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2n

[
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( 1
2 ,n)

n!

]
= 2n−1

2n

[
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2 )√

πΓ(n+1)

]
. Then

Tn+1 − Tn =
12n2 + 8n− 3

2n(2n+ 3)(2n+ 1)(n+ 1)
+

(2n+ 3)Γ(n+ 1/2)

4
√
πn(n+ 1)Γ(n+ 1)

> 0.(23)
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Inequalities (22) and (23) together with Lemma 2 lead to the conclusion that f3(r)
is strictly increasing in (0, 1). Moreover, making use of l’Hôpital’s rule we have

f3(0
+) = 5π/24 and f3(1

−) = π
2

(
1− 4

π2

)
.

Theorem 4. The function f4(r) = [π2 arthr−rK(r)]/(r2arthr) in strictly increasing
from (0, 1) onto (π/24, π/2− 1). Moreover, the double inequality

(24)
π

2

arthr

r

[
1− (1− 2

π
)r2

]
< K(r) <

π

2

arthr

r

(
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12
r2
)

holds for all r ∈ (0, 1).

Proof. Using series expansion we have

f4(r) =
π
2 arthr− rK(r)

r2arthr
=

π

2

∑∞
n=1 Rnr

2n∑∞
n=1 Snr2n

(25)

where Rn = 1
2n+1 − (1/2,n)2

(n!)2 and Sn = 1
2n−1 .

Let Tn = Rn

Sn
= 2n−1

2n+1 − 2n−1
π

(
Γ(n+1/2)
Γ(n+1)

)2

. Then

Tn+1 − Tn =
4

(2n+ 1)(2n+ 3)
− 6n+ 5

4π(n+ 1)2

(
Γ(n+ 1

2 )

Γ(n+ 1)

)2

(26)

We only need to prove Tn+1 − Tn > 0 ,which is equivalent to

16π(n+ 1)2

(2n+ 1)(2n+ 3)(6n+ 5)
>

(
Γ(n+ 1

2 )

Γ(n+ 1)

)2

(27)

By Lemma 1, we only need to prove

16π(n+ 1)2

(2n+ 1)(2n+ 3)(6n+ 5)
>

4

4n+ 1
(28)

Since π > 3, we only to prove

12(n+ 1)2

(2n+ 1)(2n+ 3)(6n+ 5)
>

1

4n+ 1
(29)

easy calculation gives

12(n+ 1)2(4n+ 1)− (2n+ 1)(2n+ 3)(6n+ 5)

= 24n3 + 40n2 + 14n− 3 > 0

for all n ≥ 1, n ⊆ N .

This means that the sequence Tn is strictly increasing for n = 1, 2, · · · , there-
fore, from (25) and Lemma 2 we clearly see that f4(r) is strictly increasing in (0, 1).
Moreover, using l’Hôpital’s rule we have f4(0

+) = π/24 and f4(1
−) = π/2− 1.
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Theorem 5. The function f5(r) = [π2 −K(r)−rarthr]/(log(r′)) in strictly decreas-
ing from (0, 1) onto (2, π/4 + 2). Moreover, the double inequality

(30)
π

2
− (2 +

π

4
) log r′ − rarthr < K(r) <

π

2
− 2 log r′ − rarthr.

holds for all r ∈ (0, 1).

Proof. Making Use of series expansion one has

f5(r) =
π
2 − rarthr−K(r)

1
2 log(1− r2)

=

∑∞
n=1 Rnr
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(31)

where Rn = π (1/2,n)2

(n!)2 + 2
2n−1 and Sn = 1
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Let Tn = Rn
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(
π (1/2,n)2

(n!)2 + 2
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)
= n

[(
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Γ(n+1)

)2

+ 2
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]
. Then

Tn+1 − Tn =
1

4(n+ 1)2

(
Γ(n+ 1

2 )

Γ(n+ 1)

)2

− 2

4n2 − 1
(32)

We only need to prove Tn+1 − Tn < 0 ,which is equivalent to

(
Γ(n+ 1)

Γ(n+ 1
2 )

)2

>
4n2 − 1

8(n+ 1)2
(33)

By Lemma 1, we only need to prove

4n+ 1

4
>

4n2 − 1

8(n+ 1)2
(34)

Simple calculation gives

4n+ 1

4
− 4n2 − 1

8(n+ 1)2
=

8n3 + 14n2 + 12n+ 3

8(n+ 1)2
> 0

for all n ≥ 1, n ⊆ N .

Hence, the sequence Tn is strictly decreasing for n = 1, 2, · · · , therefore, from
(31) and Lemma 2 we clearly see that f5(r) is strictly increasing in (0, 1). Moreover,
using l’Hôpital’s rule we have f5(0

+) = 2 + π
4 and f5(1

−) = 2
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4. CONCLUDING REMARKS

Remark 1. The upper bound for K(r) in Theorem 4 is sharper than the corre-
sponding one in (1).

Remark 2. Moreover, based on numerical experiments, we note that our upper and
lower bounds from Theorem 5 are better than the corresponding upper and lower
bounds from (3). Indeed, we consider the functions u, l : (0, 1) → R defined by

u(r) =
π

2
− 2 log r′ − rarthr− π

2

(
arthr

r

)3/4+r/4

,

l(r) =
π

2
− (2 +

π

4
) log r′ − rarthr− π

2

(
arthr

r

)3/4

.

Then Figure 1 shows that the upper and lower bounds in (30) for K(r) are better
than the upper and lower bounds in (3).

(a) The graph of the functions u(r) (b) The graph of the functions l(r)

Figure 1: The graph of the functions u(r) and l(r)

Remark 3. Consider the functions zu, zl : (0, 1) → R defined by

zu(r) =
π

2
− 2 log r′ − rarthr−

[π
2
− log 2 + (3 log 2− π

2
)(1− r′) + log(1 + 1/r′)

]
,

zl(r) =
π

2
− (2 +

π

4
) log r′ − rarthr−

[
π

2
− log 2 + (

π

4
− 1

2
)(1− r′) + log(1 + 1/r′)

]
.

The plots presented in Figure 2 demonstrates that the upper and lower bounds in
(30) for K(r) are better than the upper and lower bounds in (4).
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(a) The graph of the functions zu(r) (b) The graph of the functions zl(r)

Figure 2: The graph of the functions zu(r) and zl(r)
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