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EULER SUMS OF GENERALIZED HARMONIC
NUMBERS AND CONNECTED EXTENSIONS

Mümün Can∗, Levent Kargın, Ayhan Dil and Gültekin Soylu

This paper presents the evaluation of the Euler sums of generalized hyper-
harmonic numbers H

(p,q)
n

ζH(p,q) (r) =

∞∑
n=1

H
(p,q)
n

nr

in terms of the famous Euler sums of generalized harmonic numbers. More-
over, several infinite series, whose terms consist of certain harmonic numbers
and reciprocal binomial coefficients, are evaluated in terms of the Riemann
zeta values.

1. INTRODUCTION

The classical Euler sum ζH (r) is the following Dirichlet series

ζH (r) =

∞∑
n=1

Hn

nr
,

where Hn is the nth harmonic number. This series is also known as the harmonic
zeta function. The famous Euler’s identity for this sum is [14,22,30]

(1) 2ζH (r) = (r + 2) ζ (r + 1)−
r−2∑
j=1

ζ (r − j) ζ (j + 1) , r ∈ N\ {1} ,
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where ζ (r) is the classical Riemann zeta function (for more details, see for instance
[40]). Many generalizations of the Euler sums (the so called Euler-type sums) are
given using generalizations of harmonic numbers (see [2–4, 7, 8, 10, 21, 26, 36, 37, 41,
43,45–49]). Evaluation of the Euler-type sums and construction of closed forms are
active fields of study in analytical number theory. Furthermore [3, 7, 10, 16, 17] are
some of the studies that make this area interesting in the sense that the Euler sums
have potential applications in quantum field theory and knot theory, especially in
evaluation of the Feynman diagrams.

Euler actually considered also the more general form [5,19,22,30]

(2) ζH(p) (m) =

∞∑
n=1

H
(p)
n

nm
,

where H
(p)
n defined by

H(p)
n = 1 +

1

2p
+

1

3p
+ · · ·+ 1

np
, (p ∈ Z, n ∈ N) ,

is the nth partial sum of ζ (p) and is called the nth generalized harmonic number

for p > 1. In particular, H
(p)
0 = 0 and H

(1)
n = Hn, the nth harmonic number.

When p ≤ 0 it is called the sum of powers of integers.

One of the most important issues here is to write the Euler-type sums as
combinations of the Riemann zeta function as in (1). This problem has remained
important for various Euler-type sums from the era of Euler to the present day. It’s
shown by Euler himself that, the cases of p = 1, p = q, p + q odd, and for special
pairs (p, q) ∈ {(2, 4), (4, 2)}, the sums of the form (2) have evaluations in terms
of the Riemann zeta function (see [5, 19, 22, 30]). There is a very comprehensive
literature on this subject, both theoretical and numerical ( [1,6,7,10,14,19–21,29,
36,41–45,48]). One of these results; the Euler identity (1) was further extended in
the works of Borwein et al. [6] and Huard et al. [24]. For odd weight N ≥ 3 and
p = 1, 2, . . . , N − 2, we have [24, Theorem 1] (or [6, p. 278])

ζH(p) (N − p) = (−1)
p
[(N−p−1)/2]∑

j=0

(
N − 2j − 1

p− 1

)
ζ (N − 2j) ζ (2j)(3)

+ (−1)
p
[p/2]∑
j=0

(
N − 2j − 1

N − p− 1

)
ζ (N − 2j) ζ (2j)− ζ (0) ζ (N) .

Moreover, these so called ”linear Euler sums” satisfy a simple reflection formula

(4) ζH(p) (r) + ζH(r) (p) = ζ (p+ r) + ζ (p) ζ (r) .

Considering nested partial sums of the harmonic numbers, Conway and Guy
[18] introduced hyperharmonic numbers for an integer r > 1 as

h(r)
n =

n∑
k=1

h
(r−1)
k , n ∈ N,
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with h
(0)
n = 1/n, h

(1)
n = Hn and h

(r)
0 = 0. Hyperharmonic numbers are also im-

portant because they build a step in the transition to the multiple zeta functions
(see [26, 42]). Dil and Boyadzhiev [20] extended Euler’s identity (1) to the Euler
sums of the hyperharmonic numbers:

(5) ζh(q) (r) =

∞∑
n=1

h
(q)
n

nr
, (r > q),

as

ζh(q) (r) =
1

(q − 1)!

q∑
k=1

[
q

k

]
(6)

×

ζH (r − k + 1)−Hq−1ζ (r − k + 1) +

q−1∑
j=1

µ (r − k + 1, j)

 ,

where
[
q
k

]
is the Stirling number of the first kind and

(7) µ (r, j) =

∞∑
n=1

1

nr (n+ j)
=

r−1∑
k=1

(−1)
k−1

jk
ζ (r + 1− k) + (−1)

r−1 Hj

jr
.

Formula (6) was the general form of the results obtained for some special values of
q and r in the study of [29].

Studies on evaluating the Euler sums (2) and (5) in terms of the Riemann zeta
values ζ (m) have motivated researchers to find representations harmonic number
series of the forms

∞∑
n=1

H
(p)
n

(n+m)
r

(
n+m+ l

l

) ,

∞∑
n=1

h
(q)
n

n

(
n+ q

q

) .

It has been shown that some families of these type of series can be evaluated in
terms of the Euler sums and Riemann zeta values (see for example for m = 0,
p = 1, r ∈ {0, 1} [32, 34, 38], for m = r = 0 [33], for m = 0 [32, 44], for m > 0,
r = 1, p ∈ {1, 2} [35,39] and for the series involving hyperharmonic numbers [20]).
We would like to emphasize that in some studies these type of series have been
expressed in terms of hypergeometric series [13,14,29,35,36,39].

In this work we mainly concentrate on the generalized hyperharmonic num-
bers defined as (see [21])

(8) H(p,r)
n =

n∑
k=1

H
(p,r−1)
k , (p ∈ Z, r ∈ N) ,

with H
(p,0)
n = 1/np. These are a unified extension of the generalized harmonic

numbers and hyperharmonic numbers:

H(p,1)
n = H(p)

n and H(1,r)
n = h(r)

n .
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The main objective of this study is the evaluation of Euler sums of generalized
hyperharmonic numbers

ζH(p,q) (r) =

∞∑
n=1

H
(p,q)
n

nr
.

A step towards the solution of this problem is taken in [21]. However, the recurrence
used by the authors did not return a closed formula. Without an available closed
formula, they listed only the following few special cases

ζH(p,2) (r) = ζH(r−1) (p)− ζH(r) (p− 1) + ζH(r) (p) ,

2ζH(p,3) (r) = 2ζH(r) (p) + 3ζH(r−1) (p) + ζH(r−2) (p)− 3ζH(r) (p− 1)

+ ζH(r) (p− 2)− 2ζH(r−1) (p− 1) .

Later, Göral and Sertbaş [23] showed that the Euler sums of generalized hyperhar-
monic numbers can be evaluated in terms of the Euler sums of generalized harmonic
numbers and special values of the Riemann zeta function. However, their method
does not determine the coefficients explicitly. This gap is filled in this study. The

following recurrence relation for H
(p,q)
n depending on the index q,

(q − 1)H(p,q)
n = (n+ q − 1)H(p,q−1)

n −H(p−1,q−1)
n

is obtained. Thanks to this recurrence relation, it is managed to obtain a closed

formula for H
(p,q)
n in terms of H

(p)
n in Theorem 2. This enables the evaluation of

the Euler sums of generalized hyperharmonic numbers in terms of the Euler sums
of generalized harmonic numbers as

ζH(p,q+1) (r) =
1

q!

q∑
m=0

m∑
k=0

(−1)
k

[
q + 1

m+ 1

](
m

k

)
ζH(p−k) (r + k −m) .

A demonstration of this formula is the following example:

2ζH(6,4+1) (6) = −1925ζ (11) +

(
175π2 − 905

4
− 3937π8

544 320

)
ζ (9)

+

(
245π2

12
+

35π4

18
+

31π10

46 656

)
ζ (7) +

(
π4

4
+

5π6

1134
+

31π12

6123 600

)
ζ (5)

− 35

12
ζ2 (5)− 1

3
ζ (3) ζ (5) +

π6

1134
ζ (3) +

π10

29 160
+

1406π12

638 512 875
.

In addition, a counterpart of the reflection formula (4) is obtained in the following
form:

ζH(p,q+1) (r) + ζH(r,q+1) (p) .

Section 2 completes with this formula which serves to calculate sums similar to the
foregoing example with less computational cost.
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In the last section we further extend our results. In this direction we establish
new and more general identities for the series whose terms are generalizations of
harmonic numbers and reciprocal binomial coefficients. For instance,

∞∑
n=1

H
(p,q)
n

(n+m)
(
n+m+l

l

)
is evaluated in terms of the Riemann zeta values. This leads to several new evalu-
ation formulas for particular series involving the generalized harmonic and hyper-
harmonic numbers. We point out special cases of these formulas which match with
several known results in the literature.

2. EULER SUMS OF GENERALIZED HYPERHARMONIC
NUMBERS

In this section we present an evaluation formula for Euler sums ζH(p,q) (r)
under certain conditions. To state and prove our result we need some preliminaries.

Firstly, recall the polylogarithm defined by

Lip (t) =

∞∑
k=1

tk

kp
, (|t| ≤ 1 if p > 1, and |t| < 1 if p ≤ 1).

The generating function of the numbers H
(p,q)
n in terms of the polylogarithm is [21]

(9)

∞∑
n=0

H(p,q)
n tn =

Lip (t)

(1− t)
q , |t| < 1, p, q ∈ Z.

Our first result presents the following reduction formula for H
(p,q)
n .

Lemma 1. Let p and q be integers with q ≥ 1. Reduction relation for H
(p,q)
n in the

index q is

(10) (q − 1)H(p,q)
n = (n+ q − 1)H(p,q−1)

n −H(p−1,q−1)
n .

Proof. We define the polynomial H
(p,q)
n (z) as

H(p,q)
n (z) =

n∑
k=0

H
(p,q)
k zk.

Considering (9), we obtain the ordinary generating function of H
(p,q)
n (z) as

(11)

∞∑
n=0

H(p,q)
n (z) tn =

Lip (zt)

(1− t) (1− zt)
q .
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From (11), it can be seen that

(12) z
d

dz
H(p,q)

n (z) = H(p−1,q)
n (z) + qzH

(p,q+1)
n−1 (z) .

On the other hand, we utilize (8) twice to find that

H(p,q)
n =

n∑
k=1

H
(p,q−1)
k =

n∑
k=1

k∑
j=1

H
(p,q−2)
j

= (n+ 1)H(p,q−1)
n −

n∑
j=1

jH
(p,q−2)
j

= (n+ 1)H(p,q−1)
n − d

dz
H(p,q−2)

n (z)

∣∣∣∣
z=1

,

or equivalently

(13)
d

dz
H(p,q−2)

n (z)

∣∣∣∣
z=1

= (n+ 1)H(p,q−1)
n −H(p,q)

n

(8)
= nH(p,q−1)

n −H
(p,q)
n−1 .

Therefore, (12) and (13) yield the desired formula.

The objective here is to express H
(p,q)
n in terms of H

(p)
n . In [21] this relation

is listed for at most q = 4 due to the complexity of the process. However, the next

result provides a general solution to this problem where the numbers H
(p,q)
n are

expressed in terms of the numbers H
(p)
n and

[
q
j

]
r
. Here

[
q
j

]
r
denotes the r-Stirling

number of the first kind defined by the ”horizontal” generating function [11,12,28]

(14) (x+ r) (x+ r + 1) · · · (x+ r + q − 1) =

q∑
j=0

[
q

j

]
r

xj .

The essence of the proof is based on the relationship between r-Stirling numbers and
symmetric polynomials. The kth elementary symmetric polynomial ek (X1, . . . , Xq)
in variables X1, . . . , Xq is defined by (see for example [27])

e0 (X1, . . . , Xq) = 1,

ek (X1, . . . , Xq) =
∑

1≤j1<j2<···<jk≤q

k∏
i=1

Xji , 1 ≤ k ≤ q,

ek (X1, . . . , Xq) = 0, k > q,

and possesses the identity

(15)

q∏
j=1

(x−Xj) =

q∑
j=0

(−1)
r−j

eq−j (X1, . . . , Xq)x
j .
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The comparison of (14) with (15) obviously leads to the following relationship [28,
Theorem 4.1]

(16) eq−j (n+ 1, n+ 2, . . . , n+ q) =

[
q

j

]
n+1

.

Theorem 2. Let p and q be integers with q ≥ 0. Then,

(17) q!H(p,q+1)
n =

q∑
k=0

(−1)
k

[
q

k

]
n+1

H(p−k)
n .

Proof. We employ (10) on the right-hand side of

(q − 1) qH(p,q+1)
n = (n+ q) (q − 1)H(p,q)

n − (q − 1)H(p−1,q)
n ,

and see that

(q − 1) qH(p,q+1)
n = H(p,q−1)

n {(n+ q) (n+ q − 1)}
−H(p−1,q−1)

n {(n+ q) + (n+ q − 1)}+H(p−2,q−1)
n

=

2∑
k=0

(−1)
k
e2−k (n+ q − 1, n+ q)H(p−k,q+1−2)

n .

These initial steps suggest that the following equality should hold:

(q + 1− r) (q + 1− (r − 1)) · · · (q − 1) qH(p,q+1)
n(18)

=

r∑
k=0

(−1)
k
er−k (n+ q − (r − 1) , n+ q − (r − 2) , . . . , n+ q)H(p−k,q+1−r)

n .

To prove this by induction we show that it is also true for r + 1 ≤ q. We multiply
(18) by (q − r) and then use (10). Hence we find that

(q − r) (q + 1− r) (q + 1− (r − 1)) · · · (q − 1) qH(p,q+1)
n

=

r∑
k=0

(−1)
k
er−k (n+ q − (r − 1) , . . . , n+ q) (n+ q − r)H(p−k,q−r)

n

+

r∑
k=0

(−1)
k+1

er−k (n+ q − (r − 1) , . . . , n+ q)H(p−k−1,q−r)
n

= er (n+ q − (r − 1) , . . . , n+ q) (n+ q − r)H(p,q−r)
n

+

r∑
k=1

(−1)
k
H(p−k,q−r)

n {(n+ q − r) er−k (n+ q − (r − 1) , . . . , n+ q)

+er+1−k (n+ q − (r − 1) , . . . , n+ q)}

+ (−1)
r+1

e0 (n+ q − r, . . . , n+ q)H(p−(r+1),q−r)
n
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=

r+1∑
k=0

(−1)
k
er+1−k (n+ q − r, . . . , n+ q)H(p−k,q+1−(r+1))

n .

The case r = q in (18) gives

q!H(p,q+1)
n =

q∑
k=0

(−1)
k
eq−k (n+ 1, . . . , n+ q)H(p−k)

n ,

which combines with (16) to give the statement.

Now, we are ready to state and prove our evaluation formula for ζH(p,q) (r) .
Thanks to this formula the evaluation of the Euler sums of generalized hyperhar-
monic numbers reduces to the evaluation of the Euler sums of generalized harmonic
numbers.

Theorem 3. For p, q ≥ 1 and r > q + 1, we have

ζH(p,q+1) (r) =
1

q!

q∑
m=0

m∑
k=0

(−1)
k

[
q + 1

m+ 1

](
m

k

)
ζH(p−k) (r + k −m) .

Proof. From (17) and the following identity [31, p. 1661][
n

k

]
r+1

=

n∑
m=k

[
n+ 1

m+ 1

](
m

k

)
rm−k,

we have

H(p,q+1)
n =

1

q!

q∑
k=0

(−1)
k

[
q

k

]
n+1

H(p−k)
n

=
1

q!

q∑
k=0

q∑
m=k

(−1)
k

[
q + 1

m+ 1

](
m

k

)
nm−kH(p−k)

n .

Multiplying both sides with n−r and summing over over the positive integer values
on n, we deduce the desired result.

As mentioned in the introductory section the sums ζH(p,q) (r) were listed up
to q = 3 in [21]. With the help of Theorem 3 these sums can be evaluated for
further choices of q. For instance for q = 4 one can obtain:

ζH(p,4) (r) = ζH(p) (r) +
11

6
ζH(p) (r − 1) + ζH(p) (r − 2) +

1

6
ζH(p) (r − 3)

− 11

6
ζH(p−1) (r)− 2ζH(p−1) (r − 1)− 1

2
ζH(p−1) (r − 2) + ζH(p−2) (r)

+
1

2
ζH(p−2) (r − 1)− 1

6
ζH(p−3) (r) .



Euler sums of generalized harmonic numbers and connected extensions 409

Hence, with the use of some values of ζH(p) (r) listed in forthcoming Remark 5, a
few concrete expressions of ζH(p,4) (r) are:

• ζH(1,4) (5) =
11

2
ζ (5)−

(
1− 11

36
π2

)
ζ (3)− 1

2
(ζ (3))

2 − 11

216
π2 − π4

810
+

π6

540
,

• ζH(2,4) (5) = −10ζ (7) +

(
5

6
π2 − 21

2

)
ζ (5) +

(
π4

45
+

5

6
π2 +

5

12

)
ζ (3)

+
11

4
(ζ (3))

2
+

7π4

1080
− 55π6

13608
,

• ζH(3,4) (5) = ζH(3) (5) +
154

3
ζ (7) +

(
14

3
− 55

12
π2

)
ζ (5)− 2 (ζ (3))

2

−
(
7π2

18
+

11π4

270

)
ζ (3)− π4

540
+

π6

324
,

• ζH(4,4) (5) = −11

6
ζH(3) (5)−

125

2
ζ (9) +

(
35

6
π2 − 63

)
ζ (7)

+

(
35

6
π2 +

π4

18

)
ζ (5) +

π4

30
ζ (3)− π6

1944
+

143π8

680400
,

• ζH(5,4) (5) = 231ζ (9) +

(
21− 385

18
π2

)
ζ (7)−

(
11

60
π4 +

23

12
π2

)
ζ (5)

+
1

2
(ζ (5))

2
+ ζ (3) ζ (5)− 7π4

540
ζ (3)− π8

8100
+

π10

187110
.

The following corollary gives the reflection formula for the Euler sums of
generalized hyperharmonic numbers. Combined with (3), this corollary shows that
ζH(p,q+1) (r) + ζH(r,q+1) (p) can be written as a combination of the Riemann zeta
values. In this way, particular the Euler sums of type ζH(p,q) (p) can be evaluated
with less computation.

Corollary 4. Let p > q + 1, r > q + 1 and p+ r be even. Then

ζH(p,q+1) (r) + ζH(r,q+1) (p)

= ζ (p+ r) +
2

q!

q∑
m=0
m odd

m∑
k=0

(−1)
k

[
q + 1

m+ 1

](
m

k

)
ζH(p−k) (r + k −m)

+
1

q!

q∑
m=0

m∑
k=0

(−1)
m+k

[
q + 1

m+ 1

](
m

k

)
ζ (p− k) ζ (r + k −m) .

Proof. Let (p+ r) be even. It is obvious from Theorem 3 that

ζH(p,q+1) (r) + ζH(r,q+1) (p)

=
1

q!

q∑
m=0

m∑
k=0

(−1)
k

[
q + 1

m+ 1

](
m

k

){ ∞∑
n=1

H
(p−k)
n

nr+k−m
+ (−1)

m
∞∑

n=1

H
(r+k−m)
n

np−k

}
.
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We write the right-hand side as

q∑
m=0
m odd

m∑
k=0

(−1)
k

[
q + 1

m+ 1

](
m

k

){ ∞∑
n=1

H
(p−k)
n

nr+k−m
−

∞∑
n=1

H
(r+k−m)
n

np−k

}

+
∑

0≤m≤q/2

2m∑
k=0

(−1)
k

[
q + 1

2m+ 1

](
2m

k

){ ∞∑
n=1

H
(p−k)
n

nr+k−2m
+

∞∑
n=1

H
(r+k−2m)
n

np−k

}
.

By the reflection formula (4) we have

∞∑
n=1

H
(p−k)
n

nr+k−2m
+

∞∑
n=1

H
(r+k−2m)
n

np−k
= ζ (p+ r − 2m) + ζ (p− k) ζ (r + k − 2m) .

Moreover, for odd m, it can be seen from (3) that

∞∑
n=1

H
(p−k)
n

nr+k−m
−

∞∑
n=1

H
(r+k−m)
n

np−k
= 2ζH(p−k) (r + k −m)− ζ (p+ r −m)

− ζ (p− k) ζ (r + k −m) .

Hence, we obtain the desired equation.

Remark 5. For interested readers we would like to list some values of ζH(p) (r),
used in the evaluations of ζH(p,4) (5) , 1 ≤ p ≤ 5, and ζH(6,5) (6) . These are calculated
with the help of (1), (3) and (4).

• ζH(1) (2) = 2ζ (3) , • ζH(3) (6) = 85
2 ζ (9)− 7π2

2 ζ (7)− π4

15 ζ (5) ,

• ζH(1) (3) = π4

72 , • ζH(4) (2) = −ζ2 (3) + 37π6

11340 ,

• ζH(1) (4) = 3ζ (5)− π2

6 ζ (3) , • ζH(4) (3) = −17ζ (7) + 5π2

3 ζ (5) + π4

90 ζ (3) ,

• ζH(1) (5) = − 1
2ζ

2 (3) + π6

540 , • ζH(4) (4) = 13π8

113 400 ,

• ζH(2) (2) = 7π4

360 , • ζH(4) (5) = − 125
2 ζ (9) + 35π2

6 ζ (7) + π4

18 ζ (5) ,

• ζH(2) (3) = − 9
2ζ (5) +

π2

2 ζ (3) , • ζH(5) (2) = 11ζ (7)− 2π2

3 ζ (5)− π4

45 ζ (3) ,

• ζH(2) (4) = ζ2 (3)− π6

2835 , • ζH(5) (4) = 127
2 ζ (9)− 35π2

6 ζ (7)− 2π4

45 ζ (5) ,

• ζH(2) (5) = −10ζ (7) + 5π2

6 ζ (5) • ζH(5) (5) = 1
2ζ

2 (5) + π10

187110 ,

+π4

45 ζ (3) , • ζH(5) (6) = 463
2 ζ (11)− 21π2ζ (9)− 7

30π
4ζ (7) ,

• ζH(3) (2) = 11
2 ζ (5)− π2

3 ζ (3) , • ζH(6) (3) = 7π2

2 ζ (7)− 83
2 ζ (9) + π4

15 ζ (5)

• ζH(3) (3) = 1
2ζ

2 (3) + π6

1890 , + π6

945ζ (3) ,

• ζH(3) (4) = 18ζ (7)− 5π2

3 ζ (5) , • ζH(6) (5) = 21π2ζ (9)− 461
2 ζ (11) + 7π4

30 ζ (7)

+ π6

945ζ (5) .
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3. SERIES INVOLVING HARMONIC NUMBERS AND
RECIPROCAL BINOMIAL COEFFICIENTS

In this section we introduce evaluation formulas for some series involving the
harmonic numbers and their generalizations.

Theorem 6. Let p ≥ 1 and q, l ≥ 0 be integers with l ≥ q. For m ≥ 1,

∞∑
n=1

H
(p,q)
n

(n+m)
(
n+m+l

l

)(19)

=

l−q∑
j=0

(
l − q

j

){
(−1)

j+p−1
Hm+j

(m+ j)
p +

p−1∑
k=1

(−1)
j+k−1

(m+ j)
k
ζ (p+ 1− k)

}

and

∞∑
n=1

H
(p,q)
n

n
(
n+l
l

)(20)

= ζ (p+ 1)−
l−q∑
j=1

(
l − q

j

){
(−1)

j+p
Hj

jp
+

p−1∑
k=1

(−1)
j+k

jk
ζ (p+ 1− k)

}
.

Proof. Using the formula (see [25, p.909])

1∫
0

tn+m−1 (1− t)
l
dt =

1

(n+m)
(
n+m+l

l

) ,
we can write

H
(p,q)
n

(n+m)
(
n+m+l

l

) =

1∫
0

H(p,q)
n tn+m−1 (1− t)

l
dt.

With the help of (9), we get

∞∑
n=1

H
(p,q)
n

(n+m)
(
n+m+l

l

) =

1∫
0

tm−1 (1− t)
l−q

Lip (t) dt

=

l−q∑
j=0

(
l − q

j

)
(−1)

j
∞∑

n=1

1

np (n+m+ j)
.

Then (19) follows from (7). If m = 0, then we have

∞∑
n=1

H
(p,q)
n

n
(
n+l
l

) = ζ (p+ 1) +

l−q∑
j=1

(
l − q

j

)
(−1)

j
∞∑

n=1

1

np (n+ j)
,

which is equivalent to (20).
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Now, we deal with some special cases of Theorem 6. Setting q = l gives

(21)

∞∑
n=1

H
(p,q)
n

(n+m)
(
n+m+q

q

) =
(−1)

p−1
Hm

mp
+

p−1∑
i=1

(−1)
i−1

mi
ζ (p+ 1− i)

and

(22)

∞∑
n=1

H
(p,q)
n

n
(
n+q
q

) = ζ (p+ 1) .

Note that the variable q does not appear in the right-hand sides and all these series
converge very slowly.

For p = 1, (21) and (22) give Proposition 5 and Proposition 6 in [20]

∞∑
n=1

h
(q)
n

n
(
n+q
q

) =
1

6
π2 and

∞∑
n=1

h
(q)
n−1

n
(
n+q
q

) = 1,

respectively. (21) also yields [44, Eq. (2.30)] for q = 1. Additionally, when p = 1
in Theorem 6, we reach at

∞∑
n=1

h
(q)
n

(n+m)
(
n+m+l

l

) =

l−q∑
j=0

(
l − q

j

)
(−1)

j Hm+j

m+ j

and
∞∑

n=1

h
(q)
n

n
(
n+l
l

) =
1

6
π2 +

l−q∑
j=1

(−1)
j

(
l − q

j

)
Hj

j
.

Now employing [15, Eq.(18)]

m∑
k=0

(−1)
k

(
m

k

)
Hn+k

n+ k
=

Hn+m −Hm

n
(
n+m
m

)
and [9, Eq. (9.4b)]

n∑
j=1

(−1)
j+1

(
n

j

)
Hj

j
= H(2)

n

gives the following closed forms for series involving hyperharmonic numbers with
reciprocal binomial coefficients.

Corollary 7. Let q, l ≥ 0 be integers with l ≥ q. For all integers m ≥ 1

∞∑
n=1

h
(q)
n

(n+m)
(
n+m+l

l

) =
Hm+l−q −Hl−q

m
(
n+m+l−q

l−q

)
and

∞∑
n=1

h
(q)
n

n
(
n+l
l

) =
1

6
π2 −H

(2)
l−q.
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For p = q = 1, Theorem 6 gives [39, Eq. (2.31)]

∞∑
n=1

Hn

(n+m)
(
n+m+q

q

) =
Hn+q−1 −Hq−1

n
(
n+q−1
q−1

)
and [38]

∞∑
n=1

Hn

n
(
n+l
l

) =
1

6
π2 −H

(2)
l−1.

For q = 1, (20) becomes

∞∑
n=1

H
(p)
n

n
(
n+l
l

)(23)

= ζ (p+ 1)−
l−1∑
j=1

(
l − 1

j

){
(−1)

j+p
Hj

jp
+

p−1∑
k=1

(−1)
j+k

jk
ζ (p+ 1− k)

}
,

which is also given by Sofo [33, Theorem 2.2] in a slightly different form.

Setting q = 1 in (19) yields the following corollary involving generalized
harmonic numbers.

Corollary 8. For all integers m, p, l ≥ 1,

∞∑
n=1

H
(p)
n

(n+m)
(
n+m+l

l

)(24)

=

l−1∑
j=0

(
l − 1

j

)
(−1)

j

{
(−1)

p−1
Hm+j

(m+ j)
p +

p−1∑
k=1

(−1)
k−1

(m+ j)
k
ζ (p+ 1− k)

}
.

The following particular cases can be deduced setting p = 2 and p = 3:

∞∑
n=1

H
(2)
n

(n+m)
(
n+m+l

l

) =
π2

6m
(
m+l−1
l−1

) −
l−1∑
j=0

(−1)
j

(
l − 1

j

)
Hm+j

(m+ j)
2 ,(25)

∞∑
n=1

H
(3)
n

(n+m)
(
n+m+l

l

) =

l−1∑
j=0

(−1)
j

(
l − 1

j

)
Hm+j

(m+ j)
3

+
1

m
(
m+l−1
l−1

) {ζ (3)− π2

6
(Hm+l−1 −Hm−1)

}
.

It is worth noting that the special case with choices m = 6 and l = 3 in (25)
is recorded in [35, Remark 1] despite a misprint. The correct form is as follows

∞∑
n=1

H
(2)
n

(n+ 6)
(
n+9
3

) =
1

168
ζ (2)− 37073

7902720
.
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For our final results, we deal with the special case q = 2 of Theorem 6. By
the aid of (17),

[
q
0

]
r
= r (r + 1) · · · (r + q − 1) and

[
q
q

]
r
= 1, we have

∞∑
n=1

H
(p)
n(

n+l
l

) =

∞∑
n=1

H
(p,2)
n

n
(
n+l
l

) +

∞∑
n=1

H
(p−1)
n

n
(
n+l
l

) −
∞∑

n=1

H
(p)
n

n
(
n+l
l

) ,
where l is any integer greater than 1. From (20), (23) and some arrangements we
obtain

∞∑
n=1

H
(p)
n(

n+l
l

) = ζ (p) +

l−1∑
j=1

(−1)
j

{(
l − 1

j

)
µ (p− 1, j)−

(
l − 2

j − 1

)
µ (p, j)

}
,

where µ (p, j) is given in (7). A slightly different form of the equation above is given
in [33, Theorem 2.1]. Similarly

∞∑
n=1

nH
(p)
n

(n+m)
(
n+m+l

l

) =

∞∑
n=1

H
(p,2)
n

(n+m)
(
n+m+l

l

) +

∞∑
n=1

H
(p−1)
n

(n+m)
(
n+m+l

l

)
−

∞∑
n=1

H
(p)
n

(n+m)
(
n+m+l

l

) .
Then exploiting (20) and (24) in the last equation yields the following corollary.

Corollary 9. Let l > 1 be an integer. Then

∞∑
n=1

nH
(p)
n

(n+m)
(
n+m+l

l

)
= µ (p− 1,m) +

l−1∑
j=1

(−1)
j

{(
l − 1

j

)
µ (p− 1,m+ j)−

(
l − 2

j − 1

)
µ (p,m+ j)

}
,

where µ (p, j) is given in (7).

For l = 2 this formula can be read as

∞∑
n=1

nH
(p)
n

(n+m) (n+m+ 1) (n+m+ 2)

= (−1)
p+1 m+ 2

2 (m+ 1)
pHm+1 + (−1)

p Hm

2mp−1

+

p−2∑
k=1

(−1)
k−1

{
1

2mk
− 1

2 (m+ 1)
k

}
ζ (p− k) +

p−1∑
k=1

(−1)
k−1

2 (m+ 1)
k
ζ (p+ 1− k) .

The first few cases of this formula are listed below:

∞∑
n=1

nHn

(n+m) (n+m+ 1) (n+m+ 2)
=

1

2 (m+ 1)
(Hm+1 + 1) ,
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∞∑
n=1

nH
(2)
n

(n+m) (n+m+ 1) (n+m+ 2)
=

π2

12 (m+ 1)
− (m+ 2)

2 (m+ 1)
2Hm+1 +

1

2m
Hm,

∞∑
n=1

nH
(3)
n

(n+m) (n+m+ 1) (n+m+ 2)
=

ζ (3)

2 (m+ 1)
+

π2

12m (m+ 1)
2

+
m+ 2

2 (m+ 1)
3Hm+1 −

1

2m2
Hm.
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