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NEW FAMILY OF ROOT-FINDING ALGORITHMS

BASED ON INVERSE RATIONAL INTERPOLATION

Jovana Džunić

Inverse interpolation with rational functions is investigated for the use in it-
erative refinement of the root approximation. A new family of optimal meth-
ods of arbitrary large order of convergence for solving nonlinear equations is
presented. Experiments are conducted to check the influence of polynomial
degrees in numerator and denominator on convergence properties of the pro-
posed methods. Wolfram Mathematica 12 software was used to carry the
computation due to its capabilities of arbitrary large precision arithmetic.

1. INTRODUCTION

Rational interpolation gave rise to very powerful root-finding algorithms ([8],
[4], [6]) based on direct interpolation. Inverse interpolation is a very natural idea in
root-finding algorithms. If α is the solution to the problem f(x) = 0, and there ex-
ists an inverse function F(x) = f−1(x) in some neighbourhood of α, then α = F(0).
Brent’s hybrid bracketing method relies on a quadratic inverse interpolating polyno-
mial to acquire the next bracketing option. Kung and Traub, in their monumental
paper [7], also used inverse polynomial interpolation and Neville’s algorithm [13]
to construct the optimal n−point family of methods. It comes as a natural idea to
combine rational interpolation and inverse interpolation for a new n−point family
of root-finding algorithms. Experience from practical implementation suggests that
rational interpolants with close degrees of numerator and denominator show good
global interpolating and extrapolating properties. Since interpolatory root-finding

2020 Mathematics Subject Classification. 65H05.
Keywords and Phrases. Nonlinear equations, Multipoint iterative methods, Rational functions,
Inverse interpolation.

418



New family of root-finding algorithms based on inverse rational interpolation 419

algorithms really depend on local approximation properties, the idea is to investi-
gate the influence of type (degree) of the rational interpolant to the performance
of the induced iterative algorithm.

Since optimal multipoint methods can be pieced together of different interpo-
latory schemes ([11, 12]), we combine different rational interpolant types in the al-
gorithm. This opens an option to explore the matching properties of sub-iterations,
through computing. High order multipoint methods (several steps) are therefore
used, and high precision arithmetic is employed (3000 binary digits). Comparison
was conducted on multiple test functions, some of which were algebraic polynomi-
als. Such a choice can be considered an intro to a comparative study of the explored
methods through basins of attraction (as presented in [2, 9]), and are to be the
subject of a succeeding research.

2. PRELIMINARIES

Approximation to a solution of a scalar nonlinear equation f(x) = 0 is ex-
plored where the sought zero α is simple. It is assumed that the close enough initial
value x0 is available. Divided differences for a function g are denoted g[t0, t1, . . . , ts],
where we allow some of the points ti to coincide. This is very helpful when we wish
to express interpolation conditions for the Hermitian information set

S =
{(

tk,F (j)(tk)
)
| j = 0, 1, . . . , sk − 1, k = 0, 1, . . . ,m

}
,

s0 + s1 + · · ·+ sm = n+ 1,

Interpolation conditions

(1) F (j)(tk) = G(j)(tk), j = 0, 1, . . . , sk − 1, k = 0, 1, . . . ,m,

are expressed in a more compact manner as

G[t0] = F [t0], G[t0, t1] = F [t0, t1], . . . , G[t0, t1, . . . , tn] = F [t0, t1, . . . , tn],

due to properties of divided differences, [13].

(F + G)[t0, t1, . . . , tn] = F [t0, t1, . . . , tn] + G[t0, t1, . . . , tn],

(λ · F)[t0, t1, . . . , tn] = λ · F [t0, t1, . . . , tn],

lim
t1→t0

F [t0, t1, t2, . . . , tn] = F [t0, t0, t2, . . . , tn],(2)

(F · G)[t0, t1, . . . , tn] =
n∑

j=0

F [t0, t1, . . . , tj ] · G[tj , tj+1, . . . , tn],(3)

F [t0, t1, . . . , tn] = F [ti0 , ti1 , . . . , tin ],

where (i0, i1, . . . , in) is any permutation of indices (0, 1, . . . , n).
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Theorem 1 (Cauchy Theorem). Let F(t) and G(t) be sufficiently differentiable
real functions and let them coincide on the Hermitian data set

S =
{(

tk,F (j)(tk)
)
| j = 0, 1, . . . , sk − 1, k = 0, 1, . . . ,m

}
,

s0 + s1 + · · ·+ sm = n+ 1,

that is, they satisfy (1). Then,

F(t)− G(t) = (F − G)[t, t0, t1, . . . , tn](t− t0)(t− t1) . . . (t− tn)

=
F (n+1)(ζ)− G(n+1)(ζ)

(n+ 1)!
(t− t0)(t− t1) . . . (t− tn),

for some ζ in the interior of I(t, t0, . . . , tn), the smallest segment that contains all
t, t0, . . . , tn.

We use a class of functions S defined as in [7]:

S = {f |f is a real analytic function defined on an open interval Df ⊂ R which
contains a simple zero αf of f and f ′ does not vanish on Df}.

Definition 2. Let φ be an iteration function and αf denote a zero of the function
f. If there exists an r = r(φ) ∈ N such that for any f ∈ S,

lim
x→αf

φ(f)(x)− αf

(x− αf )r
= A

exists for a constant A which does not vanish at least for one f ∈ S, then φ is of
order of convergence r and an asymptotic error constant A = AEC(φ, f).

Kung-Traub’s conjecture: Multipoint iterative methods without memory, cost-
ing n function evaluations per iteration, have order of convergence at most 2n−1.

Such multipoint methods are called optimal.

3. NEW FAMILY OF METHODS

The interpolatory multipoint iteration function xk+1 = φ(xk), k ∈ N is
investigated in the form

(4)



y0 = xk, y1 = y0 + γf(y0),

y2 = y0 −
f(y0)

f [y1, y0]
,

yj = Ψj(y0, y1, ..., yj−1), j = 3, 4, . . . , n,

xk+1 = yn.
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The value γ = 0 for the real parameter is allowed. In this manner both derivative
free methods and Newton based iterations are explored simultaneously, [4, 12]. The
approximation y2 in (4) defines Newton’s step for γ = 0 and Steffensen’s iteration
[14] when γ ̸= 0. This allows that the two sampling procedures are simultaneously
considered:

1o for γ = 0 information set is

S =
{(

y0, f(y0)
)
,
(
y0, f

′(y0)
)
,
(
y2, f(y2)

)
, . . . ,

(
yn−1, f(yn−1)

)}
≡
{(

y0, f(y0)
)
,
(
y1, f

′(y1)
)
, . . . ,

(
yn−1, f(yn−1)

)}
, y0 = y1;

2o for γ ̸= 0 information set is

S =
{(

y0, f(y0)
)
,
(
y1, f(y1)

)
,
(
y2, f(y2)

)
, . . . ,

(
yn−1, f(yn−1)

)}
.

Both sampling types are known to provide optimal order of convergence for multi-
point methods [7, 11, 12]. Approximations yj , j = 3, 4, . . . , n will be the result of
inverse rational interpolation based on the available information. Iterative scheme
(4) uses n function evaluations per iteration. It is aimed at optimal with the order
of convergence r = 2n−1.

Data set on function f in some neighborhood of the simple zero α can be
transformed into an information set on its inverse function F ≡ f−1. Each pair(
yj , f(yj)

)
is information of the type

(
F(f(yj)), f(yj)

)
. Also, by differentiating the

key relation
y = f

(
f−1(y)

)
= f

(
F(y)

)
,

we gain information on F ′(y)

f ′(F(y)
)
F ′(y) = 1 =⇒ F ′(y) =

1

f ′
(
F(y)

) =
(
f ′(F(y)

))−1
.

Corollary 3. Let R(t) = R(t; t0, t1, . . . , tn) be a rational function that coincides
with F ≡ f−1 in the following manner:

(F −R)
[
f(t0), . . . , f(tj)

]
= 0, j = 0, 1, . . . , n.

Points tj are some approximations to the zero α of the function f, not necessarily
distinct. Then,

(5) F(0)−R(0) = α−R(0) =
(F −R)(n+1)(ζ)

(n+ 1)!

n∏
j=0

(0−f(tj)) = O

(
n∏

k=0

(tj − α)

)
.

Proof. The first part of (5) is the Cauchy theorem 1. The second part easily follows
from the Taylor expansion of f,

f(tj) =���*
0

f(α) + f ′(α)(tj − α) +O(tj − α)2 = O(tj − α).

And this settles the proof.
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Corollary 4. Multipoint iterative scheme (4) where steps

yj = Ψj(y0, y1, ..., yj−1), j = 3, 4, . . . , n,

are defined by inverse rational interpolation

yj = Rj(0) = Rj(0; y0, y1, ..., yj−1),

is an optimal iteration.

Proof. Note that y0−α = O(xk−α), and y1−α = O(xk−α) and y2−α = O(xk−α)2.
For n = 3, according to (5) we have

y3 − α = O(y0 − α)O(y1 − α)O(y2 − α)

= O(xk − α)O(xk − α)O(xk − α)2 = O(xk − α)4 = 23−1.

Thus, from here we proceed by the induction.

yn − α = O(y0 − α)O(y1 − α)O(y2 − α)O(y3 − α) . . .O(yn−1 − α)

= O(xk − α)O(xk − α)O(xk − α)2O(xk − α)4 . . .O(xk − α)2
n−2

= O(xk − α)1+1+2+22+···+2n−2

= O(xk − α)2
n−1

.

This confirms the optimality of the proposed family of methods.

Corollary 5. Let multipoint iterative scheme (4) be optimal with arbitrarily defined
optimal steps

yj = Ψj(y0, y1, ..., yj−1), yj − α = O(xk − α)2
j−1

j = 3, 4, . . . , n,

Then, an iterative scheme

y0 = xk, y1 = y0 + γf(y0),

y2 = y0 −
f(y0)

f [y1, y0]
,

yj = Ψj(y0, y1, ..., yj−1), j = 3, 4, . . . , n,

xk+1 = yn+1 = Rn+1(0; y0, y1, ..., yn),

is an optimal iteration of higher order of convergence than (4).

Remark 6. Rational interpolation problem is not always solvable. Previous state-
ments assume the existence of the solution to the rational interpolating problem.
The procedure for calculating Rj presented in the following section will always pro-
duce a result. However, cancellation of terms in the final rational expression will
lead to the drop in convergence order in the induced iteration with accordance to
the lost information.
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4. OBTAINING FORMULAS FOR THE NEW FAMILY OF
METHODS

We devise a procedure for determining a rational interpolant of the form

Rn+1(t) ≡ Ra,b(t) =
Pa(t)

Qb(t)
, a, b ∈ N0, deg(Pa) = a, deg(Qb) = b,

a+ b+ 1 = n+ 1,

based on information at points y0, y1, . . . , yn,

Ra,b[f(y0)] = F [f(y0)], Ra,b[f(y0), f(y1)] = F [f(y0), f(y1)], . . . ,
Ra,b[f(y0), f(y1), . . . , f(yn)] = F [f(y0), f(y1), . . . , f(yn)].

Note that for b = 0 we are handling a polynomial interpolant.

Let us assume first that all yj are distinct. For brevity we will use f(yj) = fj .
Then

Pa(fj)

Qb(fj)
= F(fj) =⇒ Pa(fj) = F(fj)Qb(fj), j = 0, 1, . . . , n

(6) ⇐⇒ Pa(fj)−F(fj)Qb(fj) = 0, j = 0, 1, . . . , n.

We introduce Newton’s form for the polynomials Pa and Qb.

Pa(t) = Pa[f0] + Pa[f0, f1](t− f0) + . . .

+ Pa[f0, . . . , fa](t− f0) . . . (t− fa−1),

= p0 + p1(t− f0) + · · ·+ pa(t− f0) . . . (t− fa−1),

where p0 = Pa[f0], p1 = Pa[f0, f1], . . . , pa = Pa[f0, . . . , fa],

is used for short notation. Also,

Qb(t) = 1 +Qb[f0, f1](t− f0) + · · ·+Qb[f0, . . . , fb](t− f0) . . . (t− fb−1),

= 1 + q1(t− f0) + · · ·+ qb(t− f0) . . . (t− fb−1),

q1 = Qb[f0, f1], . . . , qb = Qb[f0, . . . , fb],

=⇒ Qb[f0] = 1 is a chosen fixed value.

Conditions (6) are thus rewritten as

(7) (Pa −Qb F)[f0, . . . , fj ] = 0, j = 0, 1, . . . , n.

Based on Leibniz formula (3), having in mind Qb[f0] = 1, the system (7) becomes

(8)



p0 = F [f0] = F(f(y0)) = y0,

p1 − q1F [f1] = F [f0, f1],

p2 − q1F [f1, f2]− q2F [f2] = F [f0, f1, f2],
...

pn − q1F [f1, . . . , fn]− q2F [f2, . . . , fn]− · · · − qnF [fn] = F [f0, . . . , fn].
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Obviously, for Pa(t) and Qb(t) it is valid

pj = Pa[f0, . . . , fj ] =
P

(j)
a (ζ)

j!
= 0,∀j > a,

qj = Qb[f0, . . . , fj ] =
Q

(j)
b (ζ)

j!
= 0,∀j > b.

These features provide us with the block triangular system of equations (8), making
it easier to solve. If, for example a ≥ b, matrix form of (8) reads

Av = u, v =
[
p0 p1 . . . pa q1 . . . qb

]T
,

u =
[
F [f0] F [f0, f1] . . . F [f0, f1, . . . , fn]

]T
,

A =



1 0 0 . . . 0 0 0 . . . 0
0 1 0 . . . 0 −F [f1] 0 . . . 0
0 0 1 . . . 0 −F [f1, f2] −F [f2] . . . 0
...

...
...

...
...

...
...

0 0 0 . . . 1 −F [f1, . . . , fa] −F [f2, . . . , fa] . . . −F [fb, . . . , fa]
0 0 0 . . . 0 −F [f1, . . . , fa+1] −F [f2, . . . , fa+1] . . . −F [fb, . . . , fa+1]
...

...
...

...
...

...
...

0 0 0 . . . 0 −F [f1, . . . , fn] −F [f2, . . . , fn] . . . −F [fb, . . . , fn]


.

In the case when a < b matrix of the system Av = u takes the form

A =



1 0 0 . . . 0 0 0 . . . 0
0 1 0 . . . 0 −F [f1] 0 . . . 0
0 0 1 . . . 0 −F [f1, f2] −F [f2] . . . 0
...

...
...

...
...

...
...

0 0 0 . . . 1 −F [f1, . . . , fa] −F [f2, . . . , fa] . . . 0
...

...
...

...
...

...
...

0 0 0 . . . 0 −F [f1, . . . , fn] −F [f2, . . . , fn] . . . −F [fb, . . . , fn]


.

Once the system is solved we can seek the next approximation yn+1 = Ra,b(0) using
Horner-like form for polynomials Pa and Qb.

Pa(t) = p0 + (t− f0)

(
p1 + (t− f1)

(
p2 + . . .

+ (t− fa−2)
(
pa−1 + pa(t− fa−1)

)
. . .

))
.

When y0 and y1 coincide, by the argument of continuity (2) the above results
still hold. Thus, both derivative free and Newton based iterations are constructed
using (8).
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Iteration scheme (4) with inverse rational interpolation does not specify the
type of rational interpolant. For this reason more explicit results on the general
iterative formula can not be obtained. It is expected that particular choice for
a and b from one step to another can produce triangular algorithms that lead to
easier implementation.

Remark 7. When working in double precision arithmetic it is a more stable choice
to use Newton’s polynomial form starting from the latest approximation. However,
when working in computing environment of very high precision arithmetic such ap-
proach is not very relevant. The above strategy is chosen with simplicity of notation
in mind.

5. NUMERICAL EXPERIMENTS

Based on error relation (5) we can conclude that the geometry of the rational
interpolant Rj(t; f0, f1, . . . , fj) in each sub step has strong influence on the error
relation, that is on the asymptotic error constant of the method. For this reason we
here explore through examples and computing the possibility of the rational type
preference for an iteration function.

We list particular members of the proposed family, both derivative free and
Newton based iterations.

M1 :



y0 = xk, y1 = y0 + γf(y0),

y2 = y0 −
f(y0)

f [y1, y0]
,

y3 = R1,1(0; y0, y1, y2),

xk+1 = y3,

r = 4; R1,1(t) =
p0 + p1(t− f0)

1 + q1(t− f0)

1 0 0
0 1 −F [f1]
0 0 −F [f1, f2]

p0p1
q1

 =

 F [f0]
F [f0, f1]

F [f0, f1, f2]

 .

M2 :



y0 = xk, y1 = y0 + γf(y0),

y2 = y0 −
f(y0)

f [y1, y0]
,

y3 = R2,0(0; y0, y1, y2),

xk+1 = y3,

r = 4;

R2,0(t) = p0 + p1(t− f0) + p2(t− f0)(t− f1)1 0 0
0 1 0
0 0 1

p0p1
p2

 =

 F [f0]
F [f0, f1]

F [f0, f1, f2]

 .
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Next, we present iterative methods of order 8.

M3 :



y0 = xk, y1 = y0 + γf(y0),

y2 = y0 −
f(y0)

f [y1, y0]
,

y3 = R1,1(0; y0, y1, y2),

y4 = R1,2(0; y0, y1, y2, y3),

xk+1 = y4,

=


y3 = M1(xk),

y4 = R1,2(0; y0, y1, y2, y3),

xk+1 = y4,

R1,2(t) =
p0 + p1(t− f0)

1 + q1(t− f0) + q2(t− f0)(t− f1)
,


1 0 0 0
0 1 −F [f1] 0
0 0 −F [f1, f2] −F [f2]
0 0 −F [f1, f2, f3] −F [f2, f3]



p0
p1
q1
q2

 =


F [f0]

F [f0, f1]
F [f0, f1, f2]

F [f0, f1, f2, f3]

 .

M4 :



y0 = xk, y1 = y0 + γf(y0),

y2 = y0 −
f(y0)

f [y1, y0]
,

y3 = R1,1(0; y0, y1, y2),

y4 = R2,1(0; y0, y1, y2, y3),

xk+1 = y4,

=


y3 = M1(xk),

y4 = R2,1(0; y0, y1, y2, y3),

xk+1 = y4,

;

R2,1(t) =
p0 + p1(t− f0) + p2(t− f0)(t− f1)

1 + q1(t− f0)
,


1 0 0 0
0 1 0 −F [f1]
0 0 1 −F [f1, f2]
0 0 0 −F [f1, f2, f3]



p0
p1
p2
q1

 =


F [f0]

F [f0, f1]
F [f0, f1, f2]

F [f0, f1, f2, f3]

 .

M5 :



y0 = xk, y1 = y0 + γf(y0),

y2 = y0 −
f(y0)

f [y1, y0]
,

y3 = R1,1(0; y0, y1, y2),

y4 = R3,0(0; y0, y1, y2, y3),

xk+1 = y4,

=


y3 = M1(xk),

y4 = R3,0(0; y0, y1, y2, y3),

xk+1 = y4,

;

R3,0(t) = p0 + p1(t− f0) + p2(t− f0)(t− f1) + p3(t− f0)(t− f1)(t− f2)
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1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



p0
p1
p2
p3

 =


F [f0]

F [f0, f1]
F [f0, f1, f2]

F [f0, f1, f2, f3]

 .

M6 :



y0 = xk, y1 = y0 + γf(y0),

y2 = y0 −
f(y0)

f [y1, y0]
,

y3 = R2,0(0; y0, y1, y2),

y4 = R1,2(0; y0, y1, y2, y3),

xk+1 = y4,

=


y3 = M2(xk),

y4 = R1,2(0; y0, y1, y2, y3),

xk+1 = y4,

;

M7 :



y0 = xk, y1 = y0 + γf(y0),

y2 = y0 −
f(y0)

f [y1, y0]
,

y3 = R2,0(0; y0, y1, y2),

y4 = R2,1(0; y0, y1, y2, y3),

xk+1 = y4,

=


y3 = M2(xk),

y4 = R2,1(0; y0, y1, y2, y3),

xk+1 = y4,

;

M8 :



y0 = xk, y1 = y0 + γf(y0),

y2 = y0 −
f(y0)

f [y1, y0]
,

y3 = R2,0(0; y0, y1, y2),

y4 = R3,0(0; y0, y1, y2, y3),

xk+1 = y4,

=


y3 = M2(xk),

y4 = R3,0(0; y0, y1, y2, y3),

xk+1 = y4,

.

Methods of order r = 16, there are 16 in total

M9−M33 :


y4 = M3(xk)−M8(xk),

y5 = Ra,b(0; y0, y1, y2, y3, y4), (a, b) ∈ {(1, 3), (2, 2), (3, 1), (4, 0)}

xk+1 = y4,

In the process we use the following:

R1,3(t) =
p0 + p1(t− f0)

1 + q1(t− f0) + q2(t− f0)(t− f1) + q3(t− f0)(t− f1)(t− f2)
,


1 0 0 0 0
0 1 −F [f1] 0 0
0 0 −F [f1, f2] −F [f2] 0
0 0 −F [f1, f2, f3] −F [f2, f3] −F [f3]
0 0 −F [f1, f2, f3, f4] −F [f2, f3, f4] −F [f3, f4]



p0
p1
q1
q2
q3

 =


F [f0]

F [f0, f1]
F [f0, f1, f2]

F [f0, f1, f2, f3]
F [f0, f1, f2, f3, f4]

 .

R2,2(t) =
p0 + p1(t− f0) + p2(t− f0)(t− f1)

1 + q1(t− f0) + q2(t− f0)(t− f1)
,
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1 0 0 0 0
0 1 0 −F [f1] 0
0 0 1 −F [f1, f2] −F [f2]
0 0 0 −F [f1, f2, f3] −F [f2, f3]
0 0 0 −F [f1, f2, f3, f4] −F [f2, f3, f4]



p0
p1
p2
q1
q2

 =


F [f0]

F [f0, f1]
F [f0, f1, f2]

F [f0, f1, f2, f3]
F [f0, f1, f2, f3, f4]

 .

R3,1(t) =
p0 + p1(t− f0) + p2(t− f0)(t− f1) + p3(t− f0)(t− f1)(t− f2)

1 + q1(t− f0)
,


1 0 0 0 0
0 1 0 0 −F [f1]
0 0 1 0 −F [f1, f2]
0 0 0 1 −F [f1, f2, f3]
0 0 0 0 −F [f1, f2, f3, f4]



p0
p1
p2
p3
q1

 =


F [f0]

F [f0, f1]
F [f0, f1, f2]

F [f0, f1, f2, f3]
F [f0, f1, f2, f3, f4]

 .

R4,0(t) = p0 + p1(t− f0) + p2(t− f0)(t− f1) + p3(t− f0)(t− f1)(t− f2)

+p4(t− f0)(t− f1)(t− f2)(t− f3),
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



p0
p1
p2
p3
p4

 =


F [f0]

F [f0, f1]
F [f0, f1, f2]

F [f0, f1, f2, f3]
F [f0, f1, f2, f3, f4]

 .

Tested methods do belong to some two and three point families of methods
proposed in [3, 10] and [5], for example. n−point family based on inverse poly-
nomial interpolation was first proposed in [7]. Methods M1−M33 were tested in
order to look for particular signs of compatibility between types of rational inter-
polants. Similar tests can be conducted on higher order iterative schemes with the
same question in mind.

Very fast convergence of the tested methods is the reason that τ = 10−200

was used as the tolerance error bound throughout iterations. Maximal number of
iterations was set to 20. Computational order of convergence [11]

rC ≈ log |f(xk+1)/f(xk)|
log |f(xk)/f(xk−1)|

.

was calculated in each example to verify conclusions derived in theory. Conver-
gence for all test functions was obtained, and rC confirmed theoretical order of
convergence.

Test functions used in experiments are tabled in 1. Results of the experiments
are stored in the supplementary Excel file.

https://docs.google.com/spreadsheets/d/16eO2txV39eZjlW-IfD3LBcA5Puvb5WHx/edit#gid=1982049200
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Table 1: Table of test functions

test function zero initial approximation

f1(t) = (t− 2)(t4 + t+ 1)e−t2−4t α = 2 x0 = 1.3

f2(t) = e−t4+t+2 − cos(t+ 1) + t7 + 1 α = −1 x0 = 0.3

f3(t) = (t− 1)(t8 + t3 + 1) sin(t) α = 1 x0 = 1.7

f4(t) = et
2−1 sin(t/3) +

t
√
t4 + 1

t2 + 4
α = 0 x0 = −1.8

f5(t) = t2 − (1− t)25 α ≈ 0.144 x0 = 0.52

f6(t) = t2 sin(t)2 + et cos(t) sin(t)) − 18; α ≈ 9.690 x0 = 10

f7(t) = et
2−4 + sin(t− 2)− t4 + 15 α = 2 x0 = 0.83

f8(t) =

12∏
k=1

(t− k) α = 5 x0 = 5.41

f9(t) = log(4− t2) sin(t) + cos(2t)− 1 α = 0 x0 = −0.9

f10(t) = log(t2 + 1) + et sin(t) α = 0 x0 = 0.3

f11(t) = t4 + sin(π/t2)− 5 α ≈ 1.414 x0 = 1

f12(t) =
1

t4
− t2 − 1

t
+ 1 α = 1 x0 = 1.8

f13(t) = (t+ 2) log(t10 + t+ 1); α = −2 x0 = −3

f14(t) = et
3+t cos t−1t+ log(t sin t+ 1) α = 0 x0 = 0.46

f15(t) = t5 + t4 +
1

t2 + 1
− 5t2

2
α = 1 x0 = 1.5

Experiments on these test functions show several features of multipoint meth-
ods that are statistically speaking true:

� Increase of convergence order of the method does lower the number of function
evaluations used.
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� Some test functions work better with derivative-free methods, and some are
more suitable for Newton-type methods.

� The change in degree of the polynomial in the numerator of the rational
interpolant does not affect the number of iterations of the method, since this
is dictated by the convergence order.

� The increase in degree of the polynomial has an effect on the approximation
accuracy in the manner depicted in figure 1.

Figure 1: Influence of the rational interpolant type

6. CONCLUSIONS AND FUTURE EXPLORATION

Test functions of different kinds show slight preference to rational interpolants
of degree Rb+1,b or similar close degrees combined. Perhaps this could be explained
with the linearization of functions when examined on very small domains.

Inverse rational interpolation of small degree can be explored for use in hybrid
methods such as Brent’s [1]. Such an approach may enhance the rate of convergence
using less steps of the Bisection method. This new family of methods provides
space to explore possible recursive triangular algorithms in implementation, with
the operational complexity and stability of computation in mind.
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