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WEIGHTED HERMITE-HADAMARD-TYPE
INEQUALITIES FOR GENERALIZATIONS OF

STEFFENSEN’S INEQUALITY VIA THE EXTENSION

OF MONGOMERY IDENTITY

Josip Pečarić, Anamarija Perušić Pribanić and Ksenija Smoljak
Kalamir∗

In this paper, we obtain some new weighted Hermite-Hadamard-type inequal-
ities which involve generalizations of Steffensen’s inequality obtained by using
the extension of Montgomery identity via Taylor’s formula. Further, we show
that by using the extension of Montgomery identity via Fink’s identity we
can obtain some other weighted Hermite-Hadamard-type inequalities.

1. INTRODUCTION

Convexity is one of the most important notions in mathematical analysis.
Although it is very simple in nature, it is very powerful. It has many applications
in various areas of pure and applied sciences, such as in economics, medicine, op-
timization theory, etc. A great role in the popularization of the subject of convex
functions was played by the famous book “Inequalities” [6] which assembled almost
all important inequalities. Many inequalities are direct consequences of the appli-
cations of the convexity property of functions. One of the most interesting results
relating to convexity is Hermite-Hadamard’s inequality (see [5] and [7]). It gives us
an estimate of the integral mean value of a continuous convex function. Precisely,
if f : [a, b] → R is convex function, then

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f(x) dx ≤ f(a) + f(b)

2
.
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In this paper we will use the weighted Hermite-Hadamard inequality for convex
functions given in the following theorem (see [10], [14], [17]):

Theorem 1. Let p : [a, b] → R be a nonnegative function. If f is a convex function
on [a, b], then we have

(1) P (b)f(m) ≤
∫ b

a

p(x)f(x)dx ≤ P (b)

[
b−m

b− a
f(a) +

m− a

b− a
f(b)

]
,

where

P (t) =

∫ t

a

p(x) dx and m =
1

P (b)

∫ b

a

p(x)x dx.

In 1918 Steffensen proved the following inequality (see [16]):

Theorem 2. Suppose that f is nonincreasing and g is integrable on [a, b] with

0 ≤ g ≤ 1 and λ =
∫ b

a
g(t)dt. Then we have∫ b

b−λ

f(t)dt ≤
∫ b

a

f(t)g(t)dt ≤
∫ a+λ

a

f(t)dt.

The inequalities are reversed for f nondecreasing.

Since its appearance many papers have been devoted to generalizations and
refinements of Steffensen’s inequality and its connection to other important inequal-
ities such as Gauss-Steffensen’s, Hölder’s, Jenssen-Steffensen’s and other inequal-
ities. A complete overview of the results related to Steffensen’s inequality can be
found in monographs [8, 15].

Now, let us recall the well known Montgomery identity from ”Inequalities for
Functions and their Integrals and Derivatives” by Mitrinović, Pečarić and Fink (see
[9]):

Theorem 3. Let f : [a, b] → R and f ′ : [a, b] → R be integrable on [a, b], then

f(x) =
1

b− a

∫ b

a

f(t)dt+

∫ b

a

T1(x, s)f
′(s)ds,

where the Peano kernel is

T1(x, s) =

{ s−a
b−a , a ≤ s ≤ x;
s−b
b−a , x < s ≤ b.

In [1], the authors obtained the following extension of Montgomery identity
using Taylor’s formula:

Theorem 4. Let f : I → R be suct that f (n−1) is absolutely continuous for some
n ≥ 2, I ⊂ R an open interval, a, b ∈ I, a < b. Then the following identity holds

f(x) =
1

b− a

∫ b

a

f (t) dt−
n−2∑
i=0

f (i+1) (x)
(b− x)

i+2 − (a− x)
i+2

(i+ 2)! (b− a)

+
1

(n− 1)!

∫ b

a

Tn (x, s) f
(n) (s) ds,

(2)
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where

Tn(x, s) =

{
−1

n(b−a) (a− s)
n
, a ≤ s ≤ x;

−1
n(b−a) (b− s)

n
, x < s ≤ b.

In [2], the authors used the identity (2) to generalize Steffensen’s inequality
for n−convex functions. Also, the following identities related to generalizations of
Steffensen’s inequality for n−convex functions are proved in [2].

Theorem 5 ([2]). Let f : I → R be such that f (n−1) is absolutely continuous
for some n ≥ 2, I ⊂ R an open interval, a, b ∈ I, a < b. Let g, u : [a, b] → R
be integrable functions such that u is positive and 0 ≤ g ≤ 1. Let

∫ a+λ

a
u(t)dt =∫ b

a
g(t)u(t)dt and let the function G1 be defined by

(3) G1(x) =

{∫ x

a
(1− g(t))u(t)dt, x ∈ [a, a+ λ],∫ b

x
g(t)u(t)dt, x ∈ [a+ λ, b].

Then ∫ a+λ

a

f(t)u(t)dt−
∫ b

a

f(t)g(t)u(t)dt

+

∫ b

a

G1(x)

(
f(b)− f(a)

b− a
−

n−3∑
i=0

f (i+2)(x)
(b− x)

i+2 − (a− x)
i+2

(i+ 2)! (b− a)

)
dx

= − 1

(n− 2)!

∫ b

a

(∫ b

a

G1(x)Tn−1(x, s)dx

)
f (n)(s)ds.

(4)

Theorem 6 ([2]). Let f : I → R be suct that f (n−1) is absolutely continuous
for some n ≥ 2, I ⊂ R an open interval, a, b ∈ I, a < b. Let g, u : [a, b] → R
be integrable functions such that u is positive and 0 ≤ g ≤ 1. Let

∫ b

b−λ
u(t)dt =∫ b

a
g(t)u(t)dt and let the function G2 be defined by

(5) G2(x) =

{∫ x

a
g(t)u(t)dt, x ∈ [a, b− λ],∫ b

x
(1− g(t))u(t)dt, x ∈ [b− λ, b].

Then ∫ b

a

f(t)g(t)u(t)dt−
∫ b

b−λ

f(t)u(t)dt

+

∫ b

a

G2(x)

(
f(b)− f(a)

b− a
−

n−3∑
i=0

f (i+2)(x)
(b− x)

i+2 − (a− x)
i+2

(i+ 2)! (b− a)

)
dx

= − 1

(n− 2)!

∫ b

a

(∫ b

a

G2(x)Tn−1(x, s)dx

)
f (n)(s)ds.

(6)
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Let us also recall the identity obtained by Fink in 1992 (see [4]):

1

n

(
f(x) +

n−1∑
k=1

Fk(x)

)
− 1

b− a

∫ b

a

f(t)dt(7)

=
1

n!(b− a)

∫ b

a

(x− t)n−1k(t, x)f (n)(t)dt,

where

Fk(x) =
n− k

k!
· f

(k−1)(a)(x− a)k − f (k−1)(b)(x− b)k

b− a
and

(8) k(t, x) =

{
t− a, a ≤ t ≤ x ≤ b,
t− b, a ≤ x < t ≤ b.

In [12] (see also [15]) some generalizations of Steffensen’s inequality were ob-
tained using an extension of weighted Montgomery identity via Fink’s identity. Us-
ing the identity (7) some new generalizations of Steffensen’s inequality for n−convex
functions were obtained in [13] using different reasoning from the one used in [12].

By Tk(x) we will denote

(9) Tk(x) =
n− 1− k

k!
· f

(k)(a)(x− a)k − f (k)(b)(x− b)k

b− a
.

In [13] the authors proved the following identities which were used to obtain
generalizations of Steffensen’s inequality for n−convex functions.

Theorem 7 ([13]). Let f : [a, b] → R be such that f (n−1) is absolutely continuous
for some n ≥ 2 and let g, u be integrable functions on [a, b] such that u is positive

and 0 ≤ g ≤ 1 on [a, b]. Let
∫ a+λ

a
u(t)dt =

∫ b

a
g(t)u(t)dt and let the function G1 be

defined by (3). Then∫ a+λ

a

f(t)u(t)dt−
∫ b

a

f(t)g(t)u(t)dt−
n−2∑
k=0

∫ b

a

Tk(x)G1(x)dx

= − 1

(b− a)(n− 2)!

∫ b

a

(∫ b

a

G1(x)(x− t)n−2k(t, x)dx

)
f (n)(t)dt.

(10)

Theorem 8 ([13]). Let f : [a, b] → R be such that f (n−1) is absolutely continuous
for some n ≥ 2 and let g, u be integrable functions on [a, b] such that u is positive

and 0 ≤ g ≤ 1 on [a, b]. Let
∫ b

b−λ
u(t)dt =

∫ b

a
g(t)u(t)dt and let the function G2 be

defined by (5). Then∫ b

a

f(t)g(t)u(t)dt−
∫ b

b−λ

f(t)u(t)dt−
n−2∑
k=0

∫ b

a

Tk(x)G2(x)dx

= − 1

(b− a)(n− 2)!

∫ b

a

(∫ b

a

G2(x)(x− t)n−2k(t, x)dx

)
f (n)(t)dt.

(11)
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The aim of this paper is to use the identities related to generalizations of
Steffensen’s inequality for n−convex functions by the extension of Montgomery
identity via Taylor’s formula or via Fink’s identity to obtain new weighted Hermite-
Hadamard-type inequalities for (n+ 2)−convex functions.

2. MAIN RESULTS

The purpose of this section is to establish some new weighted Hermite-
Hadamard-type inequalities for (n + 2)−convex functions. Motivated by results
proved in [11] using Theorem 5 we obtain the following result.

Theorem 9. Let I ⊂ R be an open interval and let a, b ∈ I be such that a < b.
Let the function f : I → R be such that f (n−1) is absolutely continuous and f is
(n + 2)−convex on I for n ≥ 2. Let g, u : [a, b] → R be integrable functions such

that u is positive and 0 ≤ g ≤ 1. Let
∫ a+λ

a
u(t)dt =

∫ b

a
g(t)u(t)dt, let the function

G1 be defined by (3) and let Tn−1 be defined by

(12) Tn−1(x, s) =

{
−1

(n−1)(b−a) (a− s)
n−1

, a ≤ s ≤ x;
−1

(n−1)(b−a) (b− s)
n−1

, x < s ≤ b.

If

(13) −
∫ b

a

G1(x)Tn−1(x, s)dx ≥ 0, s ∈ [a, b]

then

P1(b) · f (n) (m1) ≤

(n− 2)!

[∫ a+λ

a

f(t)u(t)dt−
∫ b

a

f(t)g(t)u(t)dt

+

∫ b

a

G1(x)

(
f(b)− f(a)

b− a
−

n−3∑
i=0

f (i+2)(x)
(b− x)

i+2 − (a− x)
i+2

(i+ 2)! (b− a)

)
dx

]

≤ P1(b) ·
[
b−m1

b− a
f (n)(a) +

m1 − a

b− a
f (n)(b)

]
,

(14)

where

(15) P1(b) =
1

(n− 1) · n · (b− a)

∫ b

a

G1(x) ((b− x)n − (a− x)n) dx

and

m1 =
1

(n− 1) · n · (b− a) · P1(b)

×
∫ b

a

G1(x)

(
(b− x)n+1 − (a− x)n+1

n+ 1
+ x · ((b− x)n − (a− x)n)

)
dx.

(16)
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Proof. The function f satisfies the conditions of Theorem 5, so the identity (4)
holds. Now, let us define the function p1 on [a, b] by

(17) p1(s) = −
∫ b

a

G1(x)Tn−1(x, s) dx, s ∈ [a, b],

where G1 and Tn−1 are defined by (3) and (12). Under the assumption (13) it is
obvious that p1 is a non-negative function.

Notice that, for odd number n ≥ 2, we have Tn−1(x, s) ≤ 0, for s ∈ [a, b].
Therefore, for odd numbers n ≥ 2 the condition (13) is always satisfied.

Since f is an (n+2)−convex function, the function f (n) is convex. Applying
Theorem 1 with non-negative function p1 and convex function f (n) we obtain the
following inequality

P1(b) · f (n) (m1) ≤ −
∫ b

a

(∫ b

a

G1(x)Tn−1(x, s)dx

)
f (n)(s)ds

≤ P1(b) ·
[
b−m1

b− a
f (n)(a) +

m1 − a

b− a
f (n)(b)

](18)

where the expressions P1(b) and m1 are given by

P1(b) = −
∫ b

a

(∫ b

a

G1(x)Tn−1(x, s)dx

)
ds

and

m1 = − 1

P1(b)

∫ b

a

(∫ b

a

G1(x)Tn−1(x, s)dx

)
s ds.

By calculating the above expressions we obtain the following:

P1(b) = −
∫ b

a

(∫ b

a

G1(x)Tn−1(x, s)dx

)
ds = −

∫ b

a

G1(x)

(∫ b

a

Tn−1(x, s)ds

)
dx

=
1

(n− 1) · (b− a)

∫ b

a

G1(x)

(∫ x

a

(a− s)n−1ds+

∫ b

x

(b− s)n−1ds

)
dx

=
1

(n− 1) · n · (b− a)

∫ b

a

G1(x) ((b− x)n − (a− x)n) dx
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and

m1 =
−1

P1(b)

∫ b

a

(∫ b

a

G1(x)Tn−1(x, s)dx

)
s ds

=
−1

P1(b)

∫ b

a

G1(x)

(∫ b

a

Tn−1(x, s) · s ds

)
dx

=
1

P1(b) · (n− 1) · (b− a)

∫ b

a

G1(x)

(∫ x

a

s(a− s)n−1ds+

∫ b

x

s(b− s)n−1ds

)
dx

=
1

(n− 1) · n · (b− a) · P1(b)

×
∫ b

a

G1(x)

(
(b− x)n+1 − (a− x)n+1

n+ 1
+ x · ((b− x)n − (a− x)n)

)
dx.

Using the identity (4) for the middle part of the inequality (18), the inequality (18)
becomes the inequality (14). This completes the proof.

Similarly, using Theorem 6 we obtain the following new weighted Hermite-
Hadamard-type inequality.

Theorem 10. Let I ⊂ R be an open interval and let a, b ∈ I be such that a < b.
Let the function f : I → R be such that f (n−1) is absolutely continuous and f is
(n + 2)−convex on I for n ≥ 2. Let g, u : [a, b] → R be integrable functions such

that u is positive and 0 ≤ g ≤ 1. Let
∫ b

b−λ
u(t)dt =

∫ b

a
g(t)u(t)dt , let the function

G2 be defined by (5) and let Tn−1 be defined by (12). If

(19) −
∫ b

a

G2(x)Tn−1(x, s)dx ≥ 0, s ∈ [a, b],

then

P2(b) · f (n) (m2) ≤

(n− 2)!

[∫ b

a

f(t)g(t)u(t)dt−
∫ b

b−λ

f(t)u(t)dt

+

∫ b

a

G2(x)

(
f(b)− f(a)

b− a
−

n−3∑
i=0

f (i+2)(x)
(b− x)

i+2 − (a− x)
i+2

(i+ 2)! (b− a)

)
dx

]

≤ P2(b) ·
[
b−m2

b− a
f (n)(a) +

m2 − a

b− a
f (n)(b)

]
,

(20)

where

P2(b) =
1

(n− 1) · n · (b− a)

∫ b

a

G2(x) ((b− x)n − (a− x)n) dx
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and

m2 =
1

(n− 1) · n · (b− a) · P2(b)

×
∫ b

a

G2(x)

(
(b− x)n+1 − (a− x)n+1

(n+ 1)
+ x · ((b− x)n − (a− x)n)

)
dx.

Proof. Similar to the proof of Theorem 9 using the identity (6).

Remark 1. If f is an (n+ 2)−concave function, then the inequalities in (14) and
(20) are reversed. This follows from the fact that if f is (n+2)−concave function,
then −f (n) is convex, so applying the inequality (1) on −f (n) we obtain the reversed
inequalities in (14) and (20).

Remark 2. Let us show that Theorems 9 and 10 can also be proved by different
method, introduced in [3]. Using the idea from the mentioned paper the expressions
P1(b) and m1 can be calculated as follows.

The value P1(b) can be obtained from the identity (4) taking f(t) =
tn

n!
. Then

f (n)(t) = 1, and by simple calculation we get

P1(b) = (n− 2)!

[∫ a+λ

a

tn

n!
u(t)dt−

∫ b

a

tn

n!
g(t)u(t)dt

+

∫ b

a

G1(x)

(
bn − an

n!(b− a)
−

n−3∑
i=0

xn−i−2

(n− i− 2)!
· (b− x)

i+2 − (a− x)
i+2

(i+ 2)! (b− a)

)
dx

]

= (n− 2)!

[∫ a+λ

a

tn

n!
u(t)dt−

∫ b

a

tn

n!
g(t)u(t)dt

+

∫ b

a

G1(x)

(
bn − an

n!(b− a)
−

n−1∑
i=2

xn−i

(n− i)!
· (b− x)

i − (a− x)
i

i! (b− a)

)
dx

]

= (n− 2)!

[∫ a+λ

a

tn

n!
u(t)dt−

∫ b

a

tn

n!
g(t)u(t)dt

+

∫ b

a

G1(x)

(
bn − an

n!(b− a)
−
(

bn − an

n!(b− a)
− xn−1

(n− 1)!
+

(a− x)n − (b− x)n

n!(b− a)

))
dx

]

=

∫ b

a

G1(x)
(b− x)n − (a− x)n

(n− 1) · n · (b− a)
dx.

To calculate m1 we take the function f(t) =
tn+1

(n+ 1)!
since its n−th derivative
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is f (n)(t) = 1 and from the identity (4) we get

m1 = − 1

P1(b)

∫ b

a

(∫ b

a

G1(x)Tn−1(x, s)dx

)
sds

=
(n− 2)!

P1(b)

[∫ a+λ

a

tn+1

(n+ 1)!
u(t)dt−

∫ b

a

tn+1

(n+ 1)!
g(t)u(t)dt

+

∫ b

a

G1(x)

(
bn+1 − an+1

(n+ 1)!(b− a)
−

n−3∑
i=0

xn−i−1

(n− i− 1)!
· (b− x)

i+2 − (a− x)
i+2

(i+ 2)! (b− a)

)
dx

]

=
(n− 2)!

P1(b)

[∫ a+λ

a

tn+1

(n+ 1)!
u(t)dt−

∫ b

a

tn+1

(n+ 1)!
g(t)u(t)dt

+

∫ b

a

G1(x)

(
bn+1 − an+1

(n+ 1)!(b− a)
−

n−2∑
i=1

xn−i

(n− i)!
· (b− x)

i+1 − (a− x)
i+1

(i+ 1)! (b− a)

)
dx

]

=
(n− 2)!

P1(b)

[∫ a+λ

a

tn+1

(n+ 1)!
u(t)dt−

∫ b

a

tn+1

(n+ 1)!
g(t)u(t)dt

+

∫ b

a

G1(x)

(
bn+1 − an+1

(n+ 1)!(b− a)
−
(

bn+1 − an+1

(n+ 1)!(b− a)
− xn

n!
+ x · (a− x)n − (b− x)n

n!(b− a)

+
(a− x)n+1 − (b− x)n+1

(n+ 1)!(b− a)

))
dx

]
=

1

P1(b)

[∫ b

a

x ·G1(x)
(b− x)n − (a− x)n

(n− 1) · n · (b− a)
dx

+

∫ b

a

G1(x)
(b− x)n+1 − (a− x)n+1

(n− 1) · n · (n+ 1) · (b− a)
dx

]
.

Now using Theorem 7 we obtain the following new weighted Hermite-Hadamard-
type inequalities for (n + 2)−convex functions related to generalization of Stef-
fensen’s inequality by the extension of Montgomery identity via Fink’s identity.

Theorem 11. Let the function f : [a, b] → R be such that f (n−1) is absolutely
continuous and f is (n + 2)−convex on [a, b] for n ≥ 2. Let g, u : [a, b] → R be

integrable functions such that u is positive and 0 ≤ g ≤ 1. Let
∫ a+λ

a
u(t)dt =∫ b

a
g(t)u(t)dt, let the function G1 be defined by (3) and let k(t, x) be defined by (8).

If

(21) −
∫ b

a

G1(x)(x− t)n−2k(t, x)dx ≥ 0, t ∈ [a, b]
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then

P3(b) · f (n) (m3) ≤

(n− 2)!(b− a)

[∫ a+λ

a

f(t)u(t)dt−
∫ b

a

f(t)g(t)u(t)dt−
n−2∑
k=0

∫ b

a

Tk(x)G1(x)dx

]

≤ P3(b) ·
[
b−m3

b− a
f (n)(a) +

m3 − a

b− a
f (n)(b)

]
,

(22)

where

(23) P3(b) =
1

(n− 1) · n

∫ b

a

G1(x) ((x− b)n − (x− a)n) dx,

m3 =
1

(n− 1) · n · P3(b)

×
∫ b

a

G1(x)

(
2 · (x− b)n+1 − (x− a)n+1

n+ 1
+ (b(x− b)n − a(x− a)n)

)
dx

(24)

and Tk is defined by (9).

Proof. Let us define the function p3 : [a, b] → R by

(25) p3(t) = −
∫ b

a

G1(x)(x− t)n−2k(t, x)dx.

From the condition (21) we have that the function p3 is non-negative.

Further, for (n+2)−convex function function f we have that f (n) is convex.
Hence, we can apply Theorem 1 on functions f (n) and p3 to obtan

P3(b) · f (n) (m3) ≤ −
∫ b

a

(∫ b

a

G1(x)(x− t)n−2k(t, x)dx

)
f (n)(t)dt

≤ P3(b) ·
[
b−m3

b− a
f (n)(a) +

m3 − a

b− a
f (n)(b)

]
.

(26)

From Theorem 1 we see that P3(b) and m3 can be calculated as follows

P3(b) =

∫ b

a

p3(t)dt = −
∫ b

a

(∫ b

a

G1(x)(x− t)n−2k(t, x)dx

)
dt

= −
∫ b

a

G1(x)

(∫ b

a

(x− t)n−2k(t, x)dt

)
dx

= −
∫ b

a

G1(x)

(∫ x

a

(x− t)n−2(t− a)dt+

∫ b

x

(x− t)n−2(t− b)dt

)
dx

=
1

(n− 1) · n

∫ b

a

G1(x) ((x− b)n − (x− a)n) dx
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and

m3 =
1

P3(b)

∫ b

a

p3(t)t dt =
−1

P3(b)

∫ b

a

(∫ b

a

G1(x)(x− t)n−2k(t, x)dx

)
t dt

=
−1

P3(b)

∫ b

a

G1(x)

(∫ b

a

(x− t)n−2k(t, x) · t dt

)
dx

=
−1

P3(b)

∫ b

a

G1(x)

(∫ x

a

t(x− t)n−2(t− a)dt+

∫ b

x

t(x− t)n−2(t− b)dt

)
dx

=
1

P3(b) · (n− 1) · n

×
∫ b

a

G1(x)

(
2 · (x− b)n+1 − (x− a)n+1

n+ 1
+ (b(x− b)n − a(x− a)n)

)
dx.

Since the function f satisties the conditions of Theorem 7 we can apply the identity
(10) for the middle part in (26), i.e. we have

−
∫ b

a

(∫ b

a

G1(x)(x− t)n−2k(t, x)dx

)
f (n)(t)dt

= (n− 2)! · (b− a)

(∫ a+λ

a

f(t)u(t)dt−
∫ b

a

f(t)g(t)u(t)dt−
n−2∑
k=0

∫ b

a

Tk(x)G1(x)dx

)
.

(27)

Thus we have proved the desired assertion (22).

Similar using Theorem 8 we obtain the following weighted Hermite-Hadamard-
type inequalities .

Theorem 12. Let the function f : [a, b] → R be such that f (n−1) is absolutely
continuous and f is (n + 2)−convex on [a, b] for n ≥ 2. Let g, u : [a, b] → R
be integrable functions such that u is positive and 0 ≤ g ≤ 1. Let

∫ b

b−λ
u(t)dt =∫ b

a
g(t)u(t)dt and let the function G2 be defined by (5) and let k(t, x) be defined by

(8). If

(28) −
∫ b

a

G2(x)(x− t)n−2k(t, x)dx ≥ 0, t ∈ [a, b]

then

P4(b) · f (n) (m4) ≤

(n− 2)!(b− a)

[∫ b

a

f(t)g(t)u(t)dt−
∫ b

b−λ

f(t)u(t)dt−
n−2∑
k=0

∫ b

a

Tk(x)G2(x)dx

]

≤ P4(b) ·
[
b−m4

b− a
f (n)(a) +

m4 − a

b− a
f (n)(b)

]
,

(29)
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where

(30) P4(b) =
1

(n− 1) · n

∫ b

a

G2(x) ((x− b)n − (x− a)n) dx,

m4 =
1

(n− 1) · n · P4(b)

×
∫ b

a

G2(x)

(
2 · (x− b)n+1 − (x− a)n+1

n+ 1
+ (b(x− b)n − a(x− a)n)

)
dx

(31)

and Tk is defined by (9).

Proof. Similar to the proof of Theorem 11.

Remark 3. As in Remark 1 we have the following:
If f is an (n + 2)−concave function, then the inequalities in (22) and (29) are
reversed.

Remark 4. Theorems 11 and 12 can also be proved by different method, introduced
in [3] as showed in Remark 2.

3. CONCLUSION

The Hermite-Hadamard inequality is very important in mathematics since
it can be used in many different studies in pure and applied mathematics. As
a result, the aim of this article is to use weighted Hermite-Hadamard inequality
on some generalizations of Steffensen’s inequality which were obtained by using
the extension of Montgomery identity via Taylor’s formula in [2] or by using the
extension of Montgomery identity via Fink’s identity in [13]. In this way we obtain
new weighted Hermite-Hadamard inequalities for (n + 2)−convex functions which
have identities related to generalizations of Steffensen’s inequality as a middle part
of the inequality.
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12. J. Pečarić, A. Perušić, A. Vukelić: Generalisations of Steffensen’s inequality
via Fink identity and related results. Advances in Inequalities and Applications, 2014
(2014), Article No. 9.
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