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EXISTENCE AND MULTIPLICITY FOR FRACTIONAL
DIRICHLET PROBLEM WITH ~(¢)-LAPLACIAN
EQUATION AND NEHARI MANIFOLD

J. Vanterler da C. Sousa *, D. S. Oliveira and Ravi P. Agarwal

This paper is divided in two parts. In the first part, we prove coercivity
results and minimization of the Euler energy functional. In the second part,
we focus on the existence and multiplicity of a positive solution of fractional
Dirichlet problem involving the 7(§)-Laplacian equation with non-negative
weight functions in ’Hf’;&?;X(A,R) using some variational techniques and Ne-
hari manifold.

1. INTRODUCTION AND MOTIVATION

Problem of variable exponent spaces LP(*) and the space W1?(*) have been
a subject of active research area [2, 5, 6, 8, 9, 10, 11, 17]. The specific attention
accorded to such problems is due to their applications in mathematical physics.
What has been noticed is a growing interest in elliptic problems in Sobolev space
W1P() using classical variational techniques. Researchers such as Radulescu [37],
Alves [2], Fan [10], Rabinowitz [22], Ambrosetti [3], Winkert [39], Pucci [21],
Motreanu [19], Papageorgiou [20], Bisci [12], Repovs [23], among other researchers,
have dedicated themselves to investigating cutting-edge problems using operators
p(z)- Laplacian and performing applications.

In 2006 Mihailescu [18] discuss the existence of solutions for the problem

—div(|Vu[P™®2Vu) = f(z,u) in A
u(z) =0 on JA.
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For more details see [18]. Another interesting work on the existence of solutions
involving p(z)-Laplacian was investigated by Alves and Barreiro [2]. In 2015,
Chabrowski and Fu [5], considered the existence of solutions in W, (I)(A) for the
p(x)-Laplacian problems in the superlinear and sublinear cases using the mountain
pass theorem technique.

In 2007 Wu [40] investigated the multiplicity of solutions using Nehari man-
ifold for the elliptic equation

. —Apu = M(x)|u|?%u + g(z)|u|" 2w in A
M) u(z) =0 on A

where 1 < ¢ < p < r < p*, A C RY is a bounded domain, A € R/{0}, and
the weight functions f,g € C(A) are satisfying f* = max {£f,0} # 0 and ¢g* =
max {+g,0} # 0. For more details, see [40].

On the other hand, in the recent years increasing attention has been paid to
the study of fractional differential equations [7, 14, 15, 38|. Such equations are
used to model phenomena in medicine, physics, engineering, biology, among other
areas (see for instance [1, 7, 14, 15, 30, 38| and the references therein). Recently,
fractional differential equation problems involving p-Laplacian have gained atten-
tion from some researchers, in particular, involving the -Hilfer fractional operator
4, 16, 24, 26, 27, 32, 33].

In 2020, Sousa et al. [31] proposed a work on variational problems using
fractional derivatives. In this sense, the authors discuss the existence and nonex-
istence of weak solutions for the fractional p-Laplacian using the Nehari manifold
and application of fibration, of the following problem

@)
{ e (ERae

p—2

H@gf?wx)) = M@ (@) + b(@)|é(@) o)
Igiﬁfl)yd)gb(o) — Ig(ﬁil)’d)@(T) — 0

Let 8 = (01,04,....0n), T = (T1,T5,...,Tn) and a = (a1, aa,...,an) where
0 < a1,09,...,any < 1 with §; < T}, for all j € {1,2,..., N}, N € N. Also put
A= Il X _[2 X X IN = [91,T1] X [627T2] X X [QN,TN] where T17T2, ...,TN and
01,03, ...,0n positive constants. Consider also x(-) be an increasing and positive
monotone function on (61,T}), (02,T%), ..., (0, Tn), having a continuous derivative
X' () on (01,T1],(02,T3],...,(On,Tn]. The x-Riemann-Liouville fractional partial
integral of order a of N-variables ¢ = (¢1, @2, ..., on) € L*(A) denoted by Ig,’g (),
is defined by [34, 35, 36]

66 = oy / [ [ X = xsprtots)ds,

Wlthx(sg)(x(ﬁj) X(53)) 7 = x"(51) (X(€2) = x(51)) ™ 71X (52) (x(§2) = x(s2))*2 ™
X' (s3) (x(én) — x(s ))“” 1where
( i) = )F( 2) -+ Tlan), ¢(s;) = d(s1)p(s
2., N

NG 9)---@(sn), ds; = dsidsa---dsn,
for all je{L,2, }. Analogously, it is defined IT? (-

)-
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Let ¢,x € C™(A) two functions such that x is increasing and x’(§;) # 0
je{1,2,...,N}, fj € A. The y-Hilfer fractional partial derivative of N-variables,

denoted by HQQ’ ’X( 1), of order v and type 8 (0 < § < 1), is defined by [34, 35, 36]

~ @ 1 oN —B)(1-a
(3) ng‘mﬂ) 9(51] )7X<X’(€j)8€j>1&5j6)(1 )

with 0&; = 061,08 - - 06y and X' (&) = X' (&)X (&2) - - - X/ (€n), forall j € {1,2,..., N}
Analogously it is defined HD7: ’ﬁ X( ).

Throughout this work, we will use the following notations I7X(-) := I%’é( ),
a, «@ B \B; B85 a,B;
LX) =L (), MOy () o= M0 () and MO () =MD ().

Motivated by the above works, in the present paper, we consider the fractional
Dirichlet problem involving the (§)-Laplacian equation given by

Hg(ﬂﬁ $X (‘HQOHB X¢(€) (&)=

#(&) =0 on JA

gL X¢(£>) = (©)Ie9 70 + A©)lg" 9%

where 7, w, 5 € C(A) such that 1 < w(€) < ¥(€) < s(§) <74(8), 14(8) = 722 if
2> ay(§);7a(8) = oo if

2 < (6,1 < 77 = essinfeeay(§) <€) <A = esssupgeay(§) < oo, 1 <
wm <wh <y <9t <sm <sT A >0€Rand n,A € C(A) are non-negative
weight functions with compact support in A := [0,7T] x [0,7] and H@{;f X(.) and
Hp2FX(.) are x-Hilfer fractional derivative of order 1/y(¢) < a < 1 and type
0 < B <1 given by Eq.(3). The fractional operator

o B: o B: Y€)-2., 3
H@TvB’X (’H@Uf’x(ﬁ(g)‘ Hgoiﬁ,Xd)(g))
is a generalization of the operator
H@ Bix <’H® B Xd)(g) H@O#@Xd)(g)) ,

in which v(§) =~y > 1.
The corresponding Euler functional of our problem (4) is defined by
(5)

&) = [ o5 of Ve [ el Ode- [ o A©lorOde

The main contributions and consequences of our paper, which becomes clearer
in detail as follows:

1. First, we present a new class of problems with ~y(¢)-Laplacian of variable
exponents as detailed by Eq.(4).



Existence and multiplicity for fractional Dirichlet problem.... 483

2. We prove some coercivity results and minimization of the Euler energy func-
tional Eq.(5).

3. We establish the multiplicity results of positive solutions for Eq.(4) with non-
negative weight functions.

4. We prove that the fractional Eq.(4) has at least two positive solutions.

5. A natural consequence of the results investigated here is the classic case when
the limit o — 1.

To investigate the main results as highlighted above, we make use of the
Nehari manifold technique.

The rest of the article is divided as follows: Section 2, we present some impor-
tant concepts and results for use throughout the paper, in particular, we highlight
the proof of an extension to the Harnack inequality for the y-Hilfer fractional op-
erator. Section 3, we investigate the main results of the paper, i.e, we discuss the
existence and multiplicity of positive solutions to Eq.(4) using the Nehari manifold
and the Harnack inequality.

2. MATHEMATICAL BACKGROUND - AUXILIARY RESULTS

Consider the space [8, 10]

-ﬂf)(A):{¢:AﬁR:/A|¢(£>|”<°dé<oo},

¢l = inf {5 >0: /A

(so-called Luxemburg norm) and (37(5)(A), I|- ”'v(f)) is a Banach space. Write,

with the norm

KB

d§<1}

£ ={ye 2L®(\),y > 1}.

Let ¢(€) be a measurable real valued function and ¢(£) > 0 for £ € A. Then
the space ﬁ;((g)) (A) is defined with the norm [8, 10]

191l ¢+ 6),ec6)) :inf{5>0:/Ac(§)‘ 5

Definition 1. [25] Let 0 < a < 1,0 < 8 < 1 and v € CT(A). The left-sided

X-fractional derivative space H,Oy‘(g)% = ’H,O;(f)X(A) is defined by

Hic(?))% _ { ¢ e LYOA): HDZ"B;X¢> e L7 (A),p(A) =0 }
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with the following norm

~(§)
[6|l,j08x = inf{ k>0 / ds<1}.
¥(€) A

The space Hf;('g)x (A) is denoted by the closure of C§°(A) in ,va))x( ). We

will 1se [|] 50,500 (a) = ]H% Bix ¢‘ for ¢ € H2ZX(A) in the following discus-

¢
k

v(€) ‘Hggf;xé(g)
k

sions.

Proposition 2. [25,31,32] Let0 < a < 1,0 < <1 and1 <~(§) < 0o. Assume
that o > 1/v(€) and the sequence {¢} converges weakly to ¢ in H:E?;X(A;R) i.e.,
¢ — ¢. Then ¢, — ¢ in C (A,R), ie., |[¢— ¢, = 0 as k — oco.

Proposition 3. [32, 33] The conjugate space of L7O(A) is L7 EO(A), where

(5) + (5) =1. For any ¢ € L7 (A) and v e £V ©(A), we have
1 1
[otena] < (L4 m) I6le Il
< 2H¢”7(§)””H /
Proposition 4. [8, 10] Denote p(¢) = [, [¢(£) |7(5)d£ Vo € LVE(A), then we
have

1ol <1 (=1,>1) <= p(¢) <1;
- +
2. |19l > 1= ||¢||1(5) < p(d) < ||¢Hz(g)§

n
3. ol <1= ||¢||»y(§) p(¢) < ||¢Hz(§)§
Proposition 5. [8, 10] If ¢, ¢, € L7 (A),n = 1,2,..., then the follows state-
ments are equivalent to each other:
2. lim p(¢n — ¢) = 0;
n—oo

3. ¢n — ¢ in measure on A and lim p(¢p,) = p().

n—oo

Proposition 6. [8, 10, 25] If v~ > 1 and y© < oo, then the spaces L7V (A),

fc’zg)( ) and Hz(f)X(A) are separable and reflexive Banach spaces.

Proposition 7. [8] Let v(§) and w(§) be measurable functions such that v(£) €
L2(A) and 1 <y (&w(&) < oo forpe &€ A, Let ¢ € L“O(A), ¢ #0. Then

By ST = 161 < [161"¢ Noter < 19060

+
[Shwe 21 = 1800w < 1690 <180 @ue
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Consider the following condition:
(A1): Assume that the boundary of A possesses the cone property [17].

Theorem 8. [17] Under the condition (A1) and v € C(A). Suppose that

A€ L7, A€) > 0 for € € A, B € C(A) and B~ > 1, By < Bo(é) <
1
(€

B (B@)+-% 5 = ) Ifhe CR) and

e veeR

Nv(€)
N~y(§) - h(ﬁ)(N ¥(€)
)

then the embedding from W€ (A) to .,? (A is compact. Moreover, these is a
constant Cs > 0 such that the inequality

) [ Ao < cs(lel” + 101"

holds.

Theorem 9. [17] Under the condition (A;) and v € C(A). Suppose that
n € L), nE) >0 forE € A,a € CA) and a™ > 1, ag < ap(é) <

aF L L: w — L&)w n
0 (a(§)+a0(§) 1)-1f € C), (6 < Sy Tyw©) and

(6) 1< h(§) <

1< B <

1<w() < 95000, veeR
o NA(€) 7(6)
M@ e @) ~ O <T@y

then the embedding from WY€) (A) to .,2”;2(5) (A) is compact. Moreover, there is a
constant C7 > 0 such that the inequality

[ n©lo s < cx (ol + o).
A

Proposition 10. [17] Assume that the conditions of Theorem 8 and Theorem 9
hold, respectively. Let ¢ € WOV (€ (A) then there are positive constants Cg, Co, C1g,
C11 > 0 such that the following inequalities hold

® [ oo < {7 16>
Collgl*™, i ol <1,

©) JRGIERE Cull" . if 9] > 1.
* Culgll® . if ¢l < 1.
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Theorem 11. [28] (Harnack inequality) Let t, > 0,0 < 01 < 03 < 03 and p > 0.
Let further a € (0,1), 0 < 8 < 1, x(0) = 0 and ¢9 > 0. Then for any function
@ € Z (ts, tx + o3p) and that satisfies

(10) PN (¢ — o) (t) =0, a.a.t € (ts, by + o3p)
there holds the inequality

3 < 3
(11) %1/113¢ = 0301‘1411{(%5

where W— = (tx + o1p, tx + 02p) and W+ = (t. + 02p,tx + 03p).

3. EXISTENCE AND MULTIPLICITY OF POSITIVE SOLUTIONS

Consider the Euler functional defined by Eq.(5). Then, by Theorem 8 and
Theorem 9 and Proposition 4, yields

1 NPSNE(G) A w 1 s
= [ roae o] ae - = [ w@ner©as - = [ aceloroae

1 - A w™ wt 1 s st
> ol = Z=n (Mol + 1817 + =05 (ol +11ell”")

€x(0)

v

Note that, €,(-) is not bounded below on whole H B’X(A), since wt <~ <

vt < s~ < st, but must bounded on the Nehari mamfold Mix(A) which is given
by

MA(A) = {¢ € HEX(A) /10}: (€(6). ) = 0}

The all critical points of €, must be on 9 (A) and local minimizes on €y (A) are
usually critical points of . Thus, ¢ € M, (A) if, and only if,

L) = (€60
= [ [rogo] Ve a [ wi@iorOas - [ a@loroas o
(12

Then, for ¢ € My (A), yields
(TN (), 9)

IRG @ oo g - o / (@O e = [ 5(©A©I6l

(7+ —w)A /A ()6 de — / A©)|6*@de.

IN
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Now let’s decompose the Nehari manifold 9ty (A) into three parts

ML (A) = {6 € My(A) : (T4(6), 6) > 0}
M (A) = {6 € M(A) : (T4(6), 6) < 0}
MY (A) = {6 € MA(A) : (T4(6). 9) = 0}

Theorem 12. Let ¢g be a local mazimum or minimum for €x on Mx(A). If
B0 ¢ MY(A), then ¢g is a critical point of €.

Lemma 13. The functional €y is bounded and coercive below on My (A).

Proof. Indeed, ¢ € My (A) and ||¢|| > 1. From (12) and Proposition 4 and Propo-
sition 10, yields

Qf,\(ﬁf’)

:/ ‘H@aﬁw‘ dg A/ &)|g|©de — / )lgl*®

> / rogpx o] ae - X /A n(£>|¢|w<5>d5

= ([ [rene i [ wienooue)

> (- k) [ raged” d£+/\<l_—:_>/An(§)l¢I““)d£
>

(= )”W Cr (S ) ol

Since v~ > w™, so €(¢) — o0 as ||¢|| — oo. Hence, €, is bounded below and
coercive on €y (A). O

Lemma 14. There exists A1 > 0 such that for 0 < X\ < A\ we have fmg = 0.

Proof. Suppose otherwise, this is, MY # () for all A € R\ {0}. Let ¢ € MG (A) such
that [|¢|| > 1. Then, using Eq.(12), Eq.(8) and definition of 9 (A), yields

0 = (M(¢).9)

= / ‘H@aﬁx(b‘v(&)dgf)\/ w(E)n(€)|p|wEde — / ()6 ©dg
A

> —/A‘Hgng;xﬂ’ﬂé)dg—w"‘ (/A‘Hggf;xqb‘ ()dg—/AA(f)Wls(&)dS)

S G

> (v -w /‘HQ 7ﬁx¢‘ d§+ /A £)|ol* () ge.
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From Proposition 10, yields

0= (" —whlgll" +Cs(w™ —sT)gll°

+

Cwt\ T
(13) ol = €z (L= )
Similarly,
0 = (T(6).0)
_ aix 4|70 e - WO ge _ 5(€)
= ot [ [rog o] ag e [ w@ierOde - [ ac@ioreas

By |7E) _ w
[ o] i - [ migrore

-8 ( [ [rogee[ V- [ n<£)|¢|w<@d£).

Using Proposition 10, yields

IN

0< (vF =507 + ACio(s™ —w )6

(14) loll = € (A==22)

4T —wt
If A is sufficiently small A = ( S :7, ) (Z; 7:}“1 ) “=7" then from inequalities

w

(13) and (14) we get ||¢|| < 1 is a contradiction. So MY = O

Using Lemma 14, for 0 < A < A1, we can write D\ (A) = M (A) UM, (A).
Then
+ _ inf ¢ - _ H —
ay = in A(¢) and o) = inf
pemt(A) pEM (A)

Lemma 15. If0 < A < A1, then for all ¢ € M (A), €x(¢) < 0.

Ex (o).

Proof. Indeed, consider ¢ € Dﬁj\r(A) Using the definition of €, (¢), follows that

L[ Egasx g @y - A w©ge _ L ()
&0 < — [ [ogo] Ve - 2 [ welorOas - = [ Aol
(15)

Since ¢ € M (A) and multiply (12) by (—w™), yields

(16) _/j\A(g)‘¢|h(£)d£< (H)/‘Hgagxas‘w(&)

Moreover, using (12) together with the inequality (15), one has

(gy0) < (= + o5 ) [ [Popeo] Ve (- ) [ A
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Applying the inequality (16) in (17), it follows

A [ A AT
eA(¢) < s+’y—w+ ||¢||H3(§)X <0.

Hence, we have a)f = inf &,(¢) <O0. O

peMY (A)
Theorem 16. If0 < \ < )y, these exists a minimizer of €5 on 9] (A).

Proof. Since €,(-) is bounded below on My (A), so it is also about MY (A). Then,
there exists a minimizing sequence {¢;}} C M (A) such that

n—oo

lim €\(¢) = inf €\(¢)=af <O0.
peMY (A)

A

Since €, is coercive, ¢ is bounded in H*7X(A). Thus, we may assume that

v(€)
o — o € Hg(gx(A) and then we have

o = op in 29
and
6 = o5 in Ly ).
Now, we shall prove ¢ — ¢F in H*ZX(A). Otherwise, suppose ¢ 4 ¢ in

5 v(&)
Hs(g)X(A) Then,

7(€)
dg.

. R1¢3) ‘
/ ’Hgng,x ¢8_‘ d¢ < lim inf/ ‘Hggfyx QSI
A n—oo A
Moreover, by the compact embeddings, yields

/n(ﬁ)laﬁo*l““)d{ = nli_{rgoinf/n(g)wmw(é)dg
A A

[ A0 = m int [ a©lo7Oue
A A

n—oo

Using (€ (¢7), #F) = 0 and Theorem 9, we obtain
A\Fn n

v(§)

1 1 .
e @) > (5 - =) [ [Fonar " ae
1 1 Fw(®
(=) [a@ler i

11 : ©
lim €, (o)) > ( - ) lim / ‘H@gf,x 9 g
n—oo A

ea (- o) g [ @ ot ae

n—oo
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and

of =t e > (- )it o (- ) (e 1),

pem’ ytoos w™
since = > wt, for ¢ > 1, yields

af = inf &,(¢) > 0.
pem’

So, ¢ € M (A) (see Lemma 15), one has &, (¢) < 0. So this is a contradiction.
Hence, ¢ € I} (A) in HZZX(A) and

Ex(dg) = nh_{TOlo Ex(¢;) = inf €x(¢).

pemt
Thus, ¢ is a minimizer for €, on M (A). O
Lemma 17. If0 < A < Ay, then for all € M (A), €x(¢) > 0.

Proof. Consider ¢ € M (A). Using the definition of €y (A) and (12), yields

@) > = [ ([mops
(18)

v(€)

A w(&)) S 5
Znelor ) de- = [ el

and
J oo = [ [mogr o Cae - [ nolor0de

Using Eq.(18)-Eq.(19), Propositions 4 and 10 and the condition v~ > w™, yields

/ ‘H DOPX d§
7/ |¢|w<s g - - (/ ‘Hggf”‘qﬁ‘mdg B A/An(ﬁ)laél‘“(f)dé‘)
(=-5)/ ]H:o“w] Piea (- ) [ anera
(5 - )16+ Cuor (5 = o= ol
(S;If O ) Il

So, if we choose A < C“”(S’iﬂ*l, we get €5 (¢) > 0. Consider My (A) = M (A)U

1077 (s —w™)
My (A) (see Lemma 14), M (A) N M (A) = 0, and Lemma 15, one has ¢ €
My (A). O

€x(0)

Y]
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Theorem 18. If 0 < A < Ay, there exists a minimizer of €x(-) on M (A).

Proof. Since € is bounded below on 9t\(A) and so on M, (A), then there exists
a minimizing sequence {¢; } C M, (A) such that

lim €x(¢,,) = inf €Ey(A)=a, >0.
n—oo ¢€9ﬁ;(1\)

Since €, is coercive, ¢,, is bounded in ’H ’B X( ), we can may assume that ¢, — ¢

in Hs(f)X(A) Using the compact embeddlngs7 follows that

on — by in 2o (A)

and

bn = by in L5 ().

Moreover, if ¢; € 9, (A), then there is a constant ¢ > 0 such that t¢, € M5 (A)
and €x(¢g ) > Ex(ty ). Indeed, since

(I\(¢), ¢)
L
= /7(6)‘}1@3;’3’%‘7 df—/\/ w(©)n(&)|e|*©de — / (©)|6]*© e,
A A

then
(TA(tgq), teg )
= [ @ Emn )| Ve - x [ wom@iss e
- [ s©a©o51Oa
t“ﬁ,ﬁ/ ‘H@aﬁx¢a‘

- / A©) 7 1*Ode.
A

(&)

%

dE — M /A n(€) |6y 1€ de

Note that I} (t¢, ) < 0, since w™ <7+ < s7, and under the assumptions on a and
A. So using the definition of 9t (A), follows that t¢, € M (A).

Affirmation: ¢, — ¢, in HJ s o (A)
Then using the fact that

’Y(f)

. v(&)
/A H5 N g | de < lim. inf/ 5 | d,




492 J. Vanterler da C. Sousa, D. S. Oliveira and Ravi P. Agarwal

yields
Ex(tog )
t o, v(€ v e
7/ ooy | e =255 [ nieieq 0

. H ;
<M [7 /A‘ Do}
£ —15(8)
)y, [°9dg

< lim €)(tg,,) < lim €)(¢,)= inf €& =a,.
< lim €,\(tg,) < lim €x\(¢y,) N o) = ay

t s(e)
. /AA<5)|¢>0\ ¢

© -
o[ Pae AT [l

This implies that €x(t¢, ) < inf €\(¢) = a, , which is a contradiction. Hence,

peMy (A)
¢, — ¢y in Hg(f)X(A) and so
Ex(¢g) = lim €x(¢,) = inf Er(¢).
PEM (A)
Thus, ¢, is a minimizer for €, on M, (A). O

Corollary 19. Using Theorem 16 and Theorem 18, there exists ¢ € 9 (A) and
dy € M (A) such that E\(¢g) = inf €E\(@) and €x(¢y) = inf  Ex(e).
PEM (A) €my (A)

Moreover, since € (¢5) = €x(|¢5]) and |¢5| € MF(A), we may assume @3 > 0.

Now making use Theorem 12, ¢ are critical points of € on H:(g)X(A) and hence

are weak solutions of (4). Finally, using the Harnack inequality (Theorem 11), we
concluded that ¢6—L are positive solutions of (4).

4. CONCLUSION AND REMARKS

We end this paper with the objectives achieved, that is, we investigate the
existence and multiplicity of the Dirichlet fractional problem involving the equa-
tion y(&)-Laplacian with non-negative weight functions using some variational tech-
niques and the Nehari manifold. The particular choice of the y-Hilfer operator to
work with this problem is motivated by several factors, in particular, the wide
range of possible particular cases from the choice of the ¢ function. In addition,
we can highlight the variational structure created through the v-Hilfer fractional
operator, which makes the results more attractive. On the other hand, there is the
memory factor that is directly linked to fractional operators. However, there are
some open problems and future work motivated by Dirichlet problems proposed via
the v-Hilfer fractional operator, as shown below:
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1. Note that the results investigated here were considered only when ﬁ <

a < 1, because for 0 < a < % we need density results, and we don’t have them
yet. This is an open problem in the area.

2. We can think of working the problem (4) in the context of a double phase
or involving a Kirchhoff-type equation.

The results presented above contribute significantly to the area of fractional
operators with p(z)-Laplacian equations and will certainly serve as a basis and mo-
tivation for other future works, in particular, for the problems highlighted above.
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