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A NEW CLASS OF GENERALIZED FUBINI
POLYNOMIALS AND THEIR COMPUTATIONAL

ALGORITHMS

Neslihan Kilar

The aim of this paper is to give many new and elegant formulas for a new

class of generalized Fubini polynomials with the aid of generating functions

and their functional equations. By using these formulas, some computational

algorithms involving a new class of generalized Fubini polynomials and spe-

cial polynomials and numbers are constructed. Using these algorithms, some

values of these numbers and polynomials are computed. Finally, some re-

marks and observations on the results of this paper are presented.

1. INTRODUCTION

Recently, many researchers have studied on special numbers and polynomi-
als involving the Bernoulli type numbers and polynomials, Fubini type numbers
and polynomials, the Stirling numbers, and the combinatorial numbers and sums.
Especially, the Fubini type numbers and polynomials have been studied by many
researchers in different methods. The Fubini type numbers are related to the bino-
mial coefficients, special numbers and polynomials, such as the Apostol-Bernoulli
numbers and polynomials of higher order, the Apostol-Euler numbers and poly-
nomials of higher order, the Apostol-Genocchi numbers and polynomials of higher
order, the Stirling type numbers and polynomials, the Apostol type Frobenius–
Euler polynomials of higher order (see, for detail, [4], [6]-[10], [12], [13], [15], [16],
[35], [37], [50]).
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In order to give main results of this paper, we can use generating functions
and their functional equations methods. By applying functional equations of the
genearting functions for the certain families of the special numbers and polynomials,
we derive many new formulas and relations including the Fubini type numbers
and polynomials, the Apostol-Bernoulli numbers and polynomials of higher order,
the Apostol-Euler numbers and polynomials of higher order, the Apostol-Genocchi
numbers of higher order, the Stirling numbers, the Apostol type Frobenius–Euler
numbers of higher order, the array polynomials, the combinatorial numbers, and
other special numbers and polynomials.

Let us briefly give the notations and definitions to be used throughout this
paper as follows:

Let N, Z, R and C denote the set of positive integers, the set of integers, the
set of real numbers, and the set of complex numbers, respectively, and N0 = N∪{0}.
Besides

0n =

{
1, (n = 0)
0, (n ∈ N)

and (
λ

0

)
= 1 and

(
λ

n

)
=

(λ)n
n!

(n ∈ N; λ ∈ C) ,

where (λ)n is the falling factorial defined by

(λ)0 = 1 and (λ)n = λ (λ− 1) (λ− 2) ... (λ− n+ 1) .

We assuming that ln z denotes the principal branch of the many-valued function
ln z with the imaginary part Im (ln z) constrained by

−π < Im (ln z) ≤ π

(cf. [1]-[52]).

We also need the following generating functions for the special numbers and
polynomials.

The Stirling numbers of the first kind, s (n,m), are defined by

(1) FS1
(t,m) =

(ln(1 + t))
m

m!
=

∞∑
n=0

s (n,m)
tn

n!
,

where m ∈ N0 and

(2) (x)n =

n∑
v=0

s (n, v)xv,

with s (0, 0) = 1 and for v > n, s (n, v) = 0 (cf. [3], [30], [34], [40], [41], [51]; see
also the references cited therein).

The Stirling numbers of the second kind, S (n,m), are defined by

(3) FS2
(t,m) =

(et − 1)
m

m!
=

∞∑
n=0

S (n,m)
tn

n!
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and

xn =

n∑
v=0

S (n, v) (x)v ,

(cf. [3], [30], [34], [40], [41], [51]; see also the references cited therein).

By using (3), the following formula for the numbers S (n,m) is given:

(4) S (n,m) =
1

m!

m∑
v=0

(−1)m−v

(
m

v

)
vn,

where m,n ∈ N0 and S (0, 0) = 1. For m > n (or m < 0), we have
(
n
m

)
= 0 and

S (n,m) = 0

(cf. [3], [30], [34], [40], [41], [51]).

Let α ∈ R (or C). The Apostol-Bernoulli numbers and polynomials of order
α are defined by means of the following generating functions:

(5) FAB (t, α;λ) =

(
t

λet − 1

)α

=

∞∑
n=0

B(α)n (λ)
tn

n!

and

(6) GAB (t, x, α;λ) = FAB (t, α;λ) ext =

∞∑
n=0

B(α)n (x;λ)
tn

n!
,

where |t| < 2π when λ = 1; |t| < |ln (λ)| when λ ̸= 1; 1α = 1 (cf. [32]-[34], [45],
[51]). One can observe that

B(α)n (λ) = B(α)n (0;λ).

Substituting λ = 1 into (5) and (6), we have

B(α)
n = B(α)n (1) and B(α)

n (x) = B(α)n (x; 1),

where B
(α)
n and B

(α)
n (x) denotes the Bernoulli numbers and polynomials of order

α (cf. [32]-[34], [51]).

When α = 1 in (5) and (6), we get

Bn(λ) = B(1)n (λ) and Bn(x;λ) = B(1)n (x;λ).

Substituting λ = 1 and α = −k (k ∈ N) into (5), and using (3), we have the
following well-known relation (cf. [51, Eq. (7.17)]):

B(−k)
n =

(
n+ k

k

)−1

S (n+ k, k) .
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Let α ∈ R (or C). The Apostol-Euler numbers and polynomials of order α
are defined by means of the following generating functions:

(7) FAE (t, α;λ) =

(
2

λet + 1

)α

=

∞∑
n=0

E(α)n (λ)
tn

n!

and

(8) GAE (t, x, α;λ) = FAE (t, α;λ) ext =

∞∑
n=0

E(α)n (x;λ)
tn

n!
,

where |t| < π when λ = 1; |t| < |ln (−λ)| when λ ̸= 1; 1α = 1 (cf. [32]-[34], [45],
[51]). One can observe that

E(α)n (λ) = E(α)n (0;λ).

When α = 1 in (7) and (8), we get

En(λ) = E(1)n (λ) and En(x;λ) = E(1)n (x;λ).

Substituting λ = 1 into (7) and (8), we have

E(α)
n = E(α)n (1) and E(α)

n (x) = E(α)n (x; 1),

where E
(α)
n and E

(α)
n (x) denotes the Euler numbers and polynomials of order α (cf.

[32]-[34], [45], [51]).

By using (8) and (3), we have

(9) E(α)n (x;λ) = 2α
n∑

r=0

(
n

r

)
xn−r

r∑
j=0

(
α+ j − 1

j

)
j! (−λ)j

(λ+ 1)
j+α

S (r, j) ,

(cf. [32, Eq. (20)], [34], [51]).

Let α ∈ R (or C). The Apostol-Genocchi numbers and polynomials of order
α are defined by means of the following generating functions:

(10) FAG (t, α;λ) =

(
2t

λet + 1

)α

=

∞∑
n=0

G(α)n (λ)
tn

n!

and

(11) GAG (t, x, α;λ) = FAG (t, α;λ) ext =

∞∑
n=0

G(α)n (x;λ)
tn

n!
,

where |t| < π when λ = 1; |t| < |ln (−λ)| when λ ̸= 1; 1α = 1 (cf. [34], [51], [52]).
By using (11), we get

G(α)n (λ) = G(α)n (0;λ).
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Setting α = 1 in (10) and (11), we have

Gn(λ) = G(1)n (λ) and Gn(x;λ) = G(1)n (x;λ).

Substituting λ = 1 into (10) and (11), we have

G(α)
n = G(α)n (1) and G(α)

n (x) = G(α)n (x; 1) ,

where G
(α)
n and G

(α)
n (x) denotes the Genocchi numbers and polynomials of order

α (cf. [34], [51], [52]).

Remark 1. The Apostol-Bernoulli polynomials of order α, B(α)n (x;λ) defined by

(6) when λ ̸= 1 and the Apostol-Genocchi polynomials of order α, G(α)n (x;λ) defined
by (11) when λ ̸= −1 should be restricted correctly to nonnegative integer values
in which cases each of these two polynomial families in (6) and (11) has been
commonly used in the literature when

λ ̸= 1 and λ ̸= −1

respectively. Similarly, this constraint on the order α is tacitly assumed to be sat-
isfied in all these and other analogous situations in this paper (cf. [51], [52]).

In view of (6), (8) and (11), we see that

(12) G(m)
n+m (x;λ) = (n+m)m E

(m)
n (x;λ) = (−2)m B(m)

n+m (x;−λ) ,

where n,m ∈ N0 (cf. [34, Lemma 2-3], [51]).

The Apostol type Frobenius–Euler numbers and polynomials of order m are
defined by means of the following generating functions:

(13) FAH (t,m;λ, u) =

(
1− u

λet − u

)m

=

∞∑
n=0

H(m)
n (λ, u)

tn

n!

and

(14) GAH (t, x,m;λ, u) = FAH (t,m;λ, u) ext =

∞∑
n=0

H(m)
n (x;λ, u)

tn

n!
,

where m ∈ N0, u, λ ∈ C with u ̸= λ and u ̸= 1 (cf. [2], [21], [41], [49]).

Substituting u = −1 into (13) and (14), we get

H(m)
n (λ,−1) = E(m)

n (λ) and H(m)
n (x;λ,−1) = E(m)

n (x;λ)

(cf. [2], [21], [41]).

The λ-Stirling numbers of the second kind, S2 (n,m;λ), are defined by

(15)
(λet − 1)

m

m!
=

∞∑
n=0

S2 (n,m;λ)
tn

n!
,



A new class of generalized Fubini polynomials and their computational algorithms 501

where m ∈ N0 and λ ∈ C (cf. [34], [41], [51]). Substituting λ = 1 into (15), we
have

S2 (n,m; 1) = S (n,m) .

Cakic and Milovanovic [3] gave many applications of the array polynomials,
which are defined by the following generating function:

(16)
(et − 1)

m

m!
ext =

∞∑
n=0

Sn
m (x)

tn

n!
,

where m ∈ N0 (cf. [3], [41], [43]).

By using (16), the following formula for the polynomials Sn
m (x) is given:

Sn
m (x) =

1

m!

m∑
v=0

(−1)m−v

(
m

v

)
(x+ v)

n

(cf. [3], [5], [41], [43]).

Combining the above relation with (4), we have the following well-known
formula:

Sn
m (x) =

n∑
j=0

(
n

j

)
S(j,m)xn−j .

Since S(j,m) = 0 for m > j, we have

S0
0 (x) = Sn

n (x) = 1, Sn
0 (x) = xn

and if m > n, then we see that
Sn
m (x) = 0

(cf. [3], [5], [41], [43]).

The numbers y1(n,m;λ) are defined by means of the following generating
function

(17) Fy1 (t,m;λ) =
(λet + 1)

m

m!
=

∞∑
n=0

y1 (n,m;λ)
tn

n!
,

where m ∈ N0 and λ ∈ C (cf. [43]; see also [20]).

By using (17), the following formula for the numbers y1(n, k;λ) is given (cf.
[43, Eq. (9)]):

y1 (n,m;λ) =
1

m!

m∑
j=0

(
m

j

)
jnλj .

The numbers y2(n,m;λ) are defined by means of the following generating
function

(18)

(
λet + λ−1e−t + 2

)m
(2m)!

=

∞∑
n=0

y2 (n,m;λ)
tn

n!
,
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where m ∈ N0 and λ ∈ C (cf. [43]). The numbers y1(n,m;λ) and the numbers
y2(n,m;λ) are also so-called the combinatorial numbers.

By using (17) and (18), we have

(19) y1 (n, 2m;λ) = λm
n∑

j=0

(
n

j

)
mn−jy2 (j,m;λ)

(cf. [43]).

The Peters polynomials are defined by means of the following generating
function:

(20)
(1 + t)

x(
1 + (1 + t)

λ
)µ =

∞∑
n=0

sn (x;λ, µ)
tn

n!

(cf. [11], [29], [39], [47]).

When x = 0 in (20), the Peters polynomials are reduced to the Peters num-
bers:

sn (0;λ, µ) = sn (λ, µ) .

When µ = 1 and x = 0 in (20), we have the Boole polynomials and numbers,
respectively:

sn (x;λ, 1) = ξ (x;λ)

and
sn (0;λ, 1) = ξ (λ)

(cf. [11]) and also when λ = 1 in the above equation, we have

(21) ξ (1) = sn (0; 1, 1) =
1

2
Chn =

(−1)n n!
2n+1

,

where Chn denote so-called the Changhee numbers (cf. [11], [17], [24], [45], [47]).

By using (20), we obtain the following relation for the Peters polynomials:

(22) (x)n =

n∑
v=0

µ∑
d=0

(
µ

d

)(
n

v

)
(λd)v sn−v (x;λ, µ) ,

where µ ∈ N (cf. [47, Eq. (28)]).

The polynomials Yn,2(x;λ) are defined by means of the following generating
function:

(23)
2 (1 + λt)

x

λ2t+ 2(λ− 1)
=

∞∑
n=0

Yn,2 (x;λ)
tn

n!

(cf. [47]). Substituting x = 0 into (23), we have

Yn,2 (λ) = Yn,2 (0;λ)
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(cf. [47]).

With the aid of (3), (6) and (23), we obtain

(24) Bn
(
x;

λ

2− λ

)
=

(2− λ)n

2

n−1∑
j=0

λ−jS(n− 1, j)Yj,2 (x;λ) ,

where n ∈ N (cf. [47, Eq. (25)]).

In [24] Kucukoglu and Simsek defined the numbers βn (k) by means of the
following generating function:

(25)
(
1− z

2

)k
=

∞∑
n=0

βn (k)
zn

n!
,

where k ∈ N0, z ∈ C with |z| < 2.

By using (25), we have

(26) βn (k) =
(−1)nn!

2n

(
k

n

)
=

(
k

n

)
Chn,

hence

Chn =
(−1)nn!

2n
,

where n, k ∈ N0 (cf. [24, Eq. (4.9)]).

1.1 Generating functions for Fubini type numbers and poly-
nomials

The Fubini numbers, which are denoted by wg(n), count the number of weak
orderings on a set of n elements (cf. [8]). Here weak ordering is a mathematical
formalization of the intuitive notion of a ranking of a set, some of whose members
may be tied with each other. That is, weak orders are also a generalization of
totally ordered sets (see, for detail, [38]).

The numbers wg(n) are defined by the following generating function:

(27)
1

2− et
=

∞∑
n=0

wg(n)
tn

n!
,

where wg (0) = 1 (cf. [9]; see also [4], [6]-[8], [10], [13], [35], [36], [50]).

By using (27), Koninck [8] defined by following combinatorial sum:

wg(k) =

k∑
v=1

vk

k−v∑
j=0

(−1)j
(
j + v

j

) ,
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and for k ≥ 1, few values of the numbers wg(k) are given as follows:

wg(1) = 1, wg(2) = 3, wg(3) = 13, wg(4) = 75, wg(5) = 541

(cf. [4], [8], [10], [37]; see also the references cited therein).

Apart from the above notation, it is known that the Fubini numbers are also
denoted by ϕ(n), a(n) and Hn by some sources.

The Fubini type polynomials of order m are defined by means of the following
generating function:

(28) Fa (t, x,m) =
2m

(2− et)
2m ext =

∞∑
n=0

a(m)
n (x)

tn

n!
,

where m ∈ N0 and |t| < ln 2 (cf. [13]; see also [14], [15]).

Substituting x = 0 into (28), we get

a(m)
n (0) = a(m)

n ,

where a
(m)
n denote the Fubini type numbers of order m (cf. [13]).

Substituting x = 0 and m = 1 into (28), and using (27), we have

a(1)n = 2

n∑
j=0

(
n

j

)
wg(j)wg(n− j)

(cf. [13, Theorem 4.7]).

The generalized Fubini numbers of order m are defined by means of the
following generating function

(29) Fg(t,m; k) =

(
et − 1

k + 1− ket

)m

=

∞∑
n=1

f
(m)
n,k

tn

n!
,

where m ∈ N and k ∈ N0 (cf. [13]).

Substituting m = 1 into (29), we have

f
(1)
n,k = fn,k

(cf. [36, p. 398, Eq. (10.24)]).

Putting k = 0 in (29), we get

f
(m)
n,0 = m!S(n,m).

By using (29), the following formula for the numbers f
(m)
n,k is given:

f
(m)
n,k =

n−1∑
j=1

(
n

j

)
f
(l)
j,kf

(m−l)
n−j,k ,
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where n > 1 (cf. [13]).

Substituting k = m = 1 into (29), for n > 0, we get

fn,1 = wM (n) ,

where the numbers wM (n) are defined by means of the following generating function

(30)
et − 1

2− et
=

∞∑
n=0

wM (n)
tn

n!

with wM (0) = 0 (cf. [36, p. 397]).

By using (30) and (27), we have

wM (n) =

n−1∑
j=0

(
n

j

)
wg(j),

where n ∈ N (cf. [13, Eq. (16)]).

The two variable Fubini polynomials, F
(m)
n (x; y), are defined by

(31)
ext

(1− y (et − 1))
m =

∞∑
n=0

F (m)
n (x; y)

tn

n!
,

where m ∈ N (cf. [16, Eq. (2.1)]).

Setting x = 0 in (31), we get

F (m)
n (y) = F (m)

n (0; y)

(cf. [16]).

The results of this paper is briefly summarized as below:

In Section 2, we define new classes of special polynomials. By using gen-
erating functions with their functional equations methods, we give not only some
fundamental properties of these polynomials, but also we derive some new formu-
las, identities and relations associated with these polynomials and other special
numbers and polynomials.

In Section 3, by using generating functions of special numbers and polynomi-
als and their functional equations, we give some identities and formulas involving
the Apostol type numbers and polynomials of higher order, the generalized Fubini
numbers of higher order, the Stirling type numbers, the Changhee numbers, the
numbers y1(n,m;λ), the numbers y2(n,m;λ), and the numbers βn (k).

In Section 4, we give some algorithms for the generalized Fubini numbers and
polynomials of higher order, the Apostol-Euler polynomials of higher order, and
the Stirling numbers of the second kind. By using these algorithms, we calculate
the numerical values of the generalized Fubini numbers and polynomials of higher
order. Additionally, we present some plots of the generalized Fubini polynomials
of higher order for some of their special cases.
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In Section 5, we give further remarks and observations on the special poly-
nomials with conclusion.

2. GENERATING FUNCTION FOR TWO NEW CLASSES OF
SPECIAL POLYNOMIALS

In this section, we define generating functions for two new classes of spe-
cial polynomials. By using these generating functions, we both investigate some
properties of these polynomials, and give some identities and relations related to
the Apostol-Bernoulli numbers and polynomials of higher order, the Apostol-Euler
numbers and polynomials of higher order, the Peters polynomials, the Stirling num-
bers, the Fubini type numbers.

We known define two new classes of special polynomials. By Appell polynomi-
als method, the first new class polynomials are defined by the following generating
function:

(32)

(
et − 1

k + 1− ket

)m

ext =

∞∑
n=0

Pn (x; k,m)
tn

n!
.

By using (32), we have the following properties for the polynomials Pn (x; k,m):

d

dx
Pn (x; k,m) = nPn−1 (x; k,m)

and

Pn (x; k,m) =

n−1∑
j=0

(
n

j + 1

)
xn−1−jf

(m)
j+1,k.

In order to give the following generating function for the new second class of poly-
nomials, we use similar method in the works of Simsek [46, Eq. (19)] and [48, Eq.
(3)]:

(33) H(t, x,m; k) =

(
et − 1

k + 1− ket

)m

(1 + t)
x
=

∞∑
n=0

Qn (x; k,m)
tn

n!
,

where m, k ∈ N and |t| <
∣∣∣ln( k

k+1

)∣∣∣.
When x = 0 in (33), we have

∞∑
n=1

f
(m)
n,k

tn

n!
=

∞∑
n=0

Qn (0; k,m)
tn

n!
.

After some elementary calculations, then comparing the coefficients of tn

n! on both
sides of the above equation, we get

Qn+1 (0; k,m) = f
(m)
n+1,k.
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For m = 0 in (33), we obtain

Qn (x; k, 0) = (x)n.

When k = 0 in (33) and using (3), we have

Qn (x; 0,m) = m!

n∑
j=0

(
n

j

)
S(j,m) (x)n−j .

Setting x = k = 0 in (33), we get

Qn (0; 0,m) = f
(m)
n,0 .

When k = m = 1 and x = 0 in (33), then using (30), we have

Qn (0; 1, 1) = wM (n) .

Theorem 2. Let n ∈ N. Then we have

(34) Qn (x; k,m) =

n−1∑
j=0

(
n

j + 1

)
(x)n−1−j f

(m)
j+1,k.

Proof. Combining (33) with (29), we obtain

H(t, x,m; k) = (1 + t)
x
Fg(t,m; k).

From the above functional equation, we get

∞∑
n=0

Qn (x; k,m)
tn

n!
=

∞∑
n=0

n−1∑
j=0

(
n

j + 1

)
(x)n−1−j f

(m)
j+1,k

tn

n!
.

Comparing the coefficients of tn

n! on both sides of the above equation, we arrive at
the desired result.

Combining (34) with (22), we have the following relation including the Peters
polynomials and the polynomials Qn (x; k,m).

Theorem 3. Let n, µ ∈ N. Then we have

Qn (x; k,m) =

n−1∑
j=0

n−1−j∑
v=0

µ∑
d=0

(
n

j + 1

)(
µ

d

)(
n− 1− j

v

)
(λd)v sn−1−j−v (x;λ, µ) f

(m)
j+1,k.

Theorem 4. Let n ∈ N0. Then we have

Qn (x; 1, 2m) =
(2m)!

2m

n∑
r=0

r∑
j=0

(
n

r

)(
r

j

)
(x)r−j S (n− r, 2m) a

(m)
j .
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Proof. Substituting k = 1 into (33), using (3) and (28), we get

H(t, x, 2m; 1) =
(2m)!

2m
FS2

(t, 2m)Fa (t, 0,m) (1 + t)x.

From the above functional equation, we have

∞∑
n=0

Qn (x; 1, 2m)
tn

n!
=

(2m)!

2m

∞∑
n=0

S (n, 2m)
tn

n!

∞∑
n=0

a(m)
n

tn

n!

∞∑
n=0

(x)n
tn

n!
.

Thus,

∞∑
n=0

Qn (x; 1, 2m)
tn

n!
=

(2m)!

2m

∞∑
n=0

n∑
r=0

r∑
j=0

(
n

r

)(
r

j

)
(x)r−j S (n− r, 2m) a

(m)
j

tn

n!
.

Comparing the coefficients of tn

n! on both sides of the above equation, we obtain the
desired result.

Theorem 5. Let v ∈ N. Then we have

(35) Qv (x; k,m) =

v−1∑
j=0

(
v

j + 1

)
f
(m)
j+1,k

v−1−j∑
n=0

xns (v − 1− j, n) .

Proof. By using (33), we have

∞∑
v=0

Qv (x; k,m)
tv

v!
=

∞∑
v=1

f
(m)
v,k

tv

v!

∞∑
n=0

xn (ln (1 + t))
n

n!
.

Combining the above equation with (1), we obtain

∞∑
v=0

Qv (x; k,m)
tv

v!
=

∞∑
v=1

f
(m)
v,k

tv

v!

∞∑
v=0

v∑
n=0

xns (v, n)
tv

v!
.

Therefore

∞∑
v=0

Qv (x; k,m)
tv

v!
=

∞∑
v=0

v−1∑
j=0

(
v

j + 1

)
f
(m)
j+1,k

v−1−j∑
n=0

xns (v − 1− j, n)
tv

v!
.

Comparing the coefficients of tv

v! on both sides of the above equation, we arrive at
the desired result.

Remark 6. By combining (35) with (2), we see that (35) is reduced to (34).

Theorem 7. Let n ∈ N0. Then we have

Qn (x; k,m) =
m!

2m (k + 1)
m

n∑
v=0

(
n

v

) v∑
j=0

(
v

j

)
(36)

×E(m)
j

(
− k

k + 1

)
S (v − j,m) (x)n−v .
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Proof. By using (3), (7) and (33), we have the following functional equation:

H(t, x,m; k) =
m!

2m (k + 1)
mFS2

(t,m)FAE

(
t,m;− k

k + 1

)
(1 + t)

x
.

From the above equation, we get

∞∑
n=0

Qn (x; k,m)
tn

n!
=

m!

2m (k + 1)
m

∞∑
n=0

S (n,m)
tn

n!

×
∞∑

n=0

E(m)
n

(
− k

k + 1

)
tn

n!

∞∑
n=0

(x)n
tn

n!
.

Therefore

∞∑
n=0

Qn (x; k,m)
tn

n!
=

m!

2m (k + 1)
m

∞∑
n=0

n∑
v=0

(
n

v

)

×
v∑

j=0

(
v

j

)
S (v − j,m) E(m)

j

(
− k

k + 1

)
(x)n−v

tn

n!
.

Comparing the coefficients of tn

n! on both sides of the above equation, we arrive at
the desired result.

Combining (36) with (2), we have the following theorem:

Theorem 8. Let n ∈ N0. Then we have

Qn (x; k,m) =
m!

2m (k + 1)
m

n∑
v=0

(
n

v

) v∑
j=0

n−v∑
r=0

(
v

j

)

×E(m)
j

(
− k

k + 1

)
S (v − j,m) s (n− v, r)xr.

Theorem 9. Let n ∈ N0. Then we have

(37) Qn (x; k,m) =
(−1)m

(2k + 2)m

m∑
j=0

(−1)j
(
m

j

) n∑
v=0

(
n

v

)
E(m)
v

(
j;− k

k + 1

)
(x)n−v.

Proof. By using (33), we have

∞∑
n=0

Qn (x; k,m)
tn

n!
= (1 + t)x

m∑
j=0

(
m

j

)
(−1)m−j

(2k + 2)m

(
2

1− k
k+1e

t

)m

ejt.

Combining the above equation with (8), and by applying the Cauchy product for-
mula to the final equation, we obtain

∞∑
n=0

Qn (x; k,m)
tn

n!
=

∞∑
n=0

m∑
j=0

(−1)m−j

(2k + 2)m

(
m

j

) n∑
v=0

(
n

v

)
E(m)
v

(
j;− k

k + 1

)
(x)n−v

tn

n!
.
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Comparing the coefficients of tn

n! on both sides of the above equation, we arrive at
the desired result.

Combining (37) with (12), the following relation including the Apostol-Bernoulli
polynomials and the generalized Fubini polynomials is given:

Corollary 10. Let n ∈ N0. Then we have

Qn (x; k,m) =
1

(k + 1)m

m∑
j=0

(−1)j
(
m

j

) n∑
v=0

(
n

v

)
(x)n−v

(v +m)m
B(m)
v+m

(
j;

k

k + 1

)
.

Theorem 11. Let n ∈ N0. Then we have

Qn (x; k,m) = m!

n∑
j=0

j∑
v=0

(
n

j

)(
j

v

)
S (j − v,m) (x)n−j F

(m)
v (k) .

Proof. By using (3), (33) and (31), we obtain

∞∑
n=0

Qn (x; k,m)
tn

n!
= m!

∞∑
n=0

S (n,m)
tn

n!

∞∑
n=0

F (m)
n (k)

tn

n!

∞∑
n=0

(x)n
tn

n!
.

Thus,

∞∑
n=0

Qn (x; k,m)
tn

n!
= m!

∞∑
n=0

n∑
j=0

j∑
v=0

(
n

j

)(
j

v

)
S (j − v,m) (x)n−j F

(m)
v (k)

tn

n!
.

Comparing the coefficients of tn

n! on both sides of the above equation, we obtain the
desired result.

3. RELATIONS AMONG GENERALIZED FUBINI NUMBERS,
APOSTOL TYPE NUMBERS AND STIRLING TYPE NUMBERS

In this section, using the properties of generating functions and their func-
tional equations for many special numbers and polynomials, we give some identities
and formulas including the Apostol-Bernoulli numbers of higher order, the Apostol-
Euler numbers and polynomials of higher order, the Apostol-Genocchi numbers of
higher order, the Apostol type Frobenius–Euler numbers of higher order, the gener-
alized Fubini numbers of higher order, the Stirling numbers, the λ-Stirling numbers,
the array polynomials, the numbers y1(n,m;λ), the numbers y2 (n,m;λ), the num-
bers Yn,2(λ), and the numbers βn (k).
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Theorem 12. Let n,m ∈ N. Then we have

(38) f
(m)
n,k =

m!

2m (k + 1)
m

n∑
j=0

(
n

j

)
S (n− j,m) E(m)

j

(
− k

k + 1

)
.

Proof. By using (3), (7) and (29), we have the following functional equation:

Fg(t,m; k) =
m!

2m (k + 1)
mFS2

(t,m)FAE

(
t,m;− k

k + 1

)
.

From the above equation, we get

∞∑
n=1

f
(m)
n,k

tn

n!
=

m!

2m (k + 1)
m

∞∑
n=0

S (n,m)
tn

n!

∞∑
n=0

E(m)
n

(
− k

k + 1

)
tn

n!
.

Since S (0,m) = 0 for m ̸= 0, we have

∞∑
n=1

f
(m)
n,k

tn

n!
=

m!

2m (k + 1)
m

∞∑
n=1

n∑
j=0

(
n

j

)
S (n− j,m) E(m)

j

(
− k

k + 1

)
tn

n!
.

Comparing the coefficients of tn

n! on both sides of the above equation, we arrive at
the desired result.

Combining (38) with (12), we obtain the following corollaries:

Corollary 13. Let n,m ∈ N. Then we have

(39) f
(m)
n,k =

(−1)m

(k + 1)
m

n∑
j=0

(
n

j

)(
j +m

m

)−1

S (n− j,m)B(m)
j+m

(
k

k + 1

)
.

Corollary 14. Let n,m ∈ N. Then we have

f
(m)
n,k =

1

2m (k + 1)
m

n∑
j=0

(
n

j

)(
j +m

m

)−1

S (n− j,m)G(m)
j+m

(
− k

k + 1

)
.

Substituting m = 1 into (39) and using (24), we obtain the following result.

Corollary 15. Let n,m ∈ N. Then we have

fn,k = − 1

2k + 1

n−1∑
j=0

(
n

j

) j∑
v=0

(
2k + 1

2k

)v

S(j, v)Yv,2

(
2k

2k + 1

)
.

Combining (38) with (21) and (26), we arrive at the following theorem:

Theorem 16. Let n,m ∈ N. Then we have

f
(m)
n,k =

(−1)mChm

(k + 1)
m

n∑
j=0

βj (n)

Chj
S (n− j,m) E(m)

j

(
− k

k + 1

)
.
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Theorem 17. Let n ∈ N0 and m ∈ N. Then we have

(40) f
(m)
n+1,k =

(−1)m

2m (k + 1)
m

m∑
j=0

(−1)j
(
m

j

)
E(m)
n+1

(
j;− k

k + 1

)
.

Proof. By using (29), we have

∞∑
n=1

f
(m)
n,k

tn

n!
=

1

(k + 1)
m

m∑
j=0

(−1)m−j

(
m

j

)
etj(

1− k
k+1e

t
)m .

Combining above equation with (8), we get

∞∑
n=0

1

n+ 1
f
(m)
n+1,k

tn

n!
=

(−1)m

2m (k + 1)
m

m∑
j=0

(−1)j
(
m

j

) ∞∑
n=0

1

n+ 1
E(m)
n+1

(
j;− k

k + 1

)
tn

n!
.

Comparing the coefficients of tn

n! on both sides of the above equation, we arrive at
the desired result.

Taking x = 0 in (37), we also arrive at the equation (40).

Theorem 18. Let n,m ∈ N. Then we have

f
(m)
n,k =

m!

km

n∑
j=0

(
n

j

)
S (j,m)H(m)

n−j (k, k + 1) .

Proof. By using (3), (14) and (29), we have

Fg(t,m; k) =
m!

km
FS2 (t,m)FAH (t,m; k, k + 1) .

From the above functional equation, we get

∞∑
n=1

f
(m)
n,k

tn

n!
=

m!

km

∞∑
n=0

S (n,m)
tn

n!

∞∑
n=0

H(m)
n (k, k + 1)

tn

n!
.

Since S (0,m) = 0 for m ̸= 0, we obtain

∞∑
n=1

f
(m)
n,k

tn

n!
=

m!

km

∞∑
n=1

n∑
j=0

(
n

j

)
S (j,m)H(m)

n−j (k, k + 1)
tn

n!
.

Comparing the coefficients of tn

n! on both sides of the above equation, we arrive at
the desired result.

Theorem 19. Let n,m ∈ N. Then we have

(41) S (n,m) = (k + 1)
m

n−1∑
j=0

(
n

j + 1

)
y1

(
n− 1− j,m;− k

k + 1

)
f
(m)
j+1,k.
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Proof. By using (3), (17) and (29), we have the following functional equation:

FS2
(t,m) = (k + 1)

m
Fg(t,m; k)Fy1

(
t,m;− k

k + 1

)
.

From the above functional equation, we get

∞∑
n=0

S (n,m)
tn

n!
= (k + 1)

m
∞∑

n=0

f
(m)
n+1,k

tn+1

(n+ 1)!

∞∑
n=0

y1

(
n,m;− k

k + 1

)
tn

n!
.

Therefore

∞∑
n=0

S (n,m)
tn

n!
= (k + 1)

m
∞∑

n=0

n−1∑
j=0

(
n

j + 1

)
y1

(
n− 1− j,m;− k

k + 1

)
f
(m)
j+1,k

tn

n!
.

Comparing the coefficients of tn

n! on both sides of the above equation, we arrive at
the desired result.

Combining (41) with (19), we arrive at the following theorem:

Theorem 20. Let n,m ∈ N. Then we have

S (n, 2m) = (k + 1)
m
(−k)m

n−1∑
j=0

(
n

j + 1

)
f
(2m)
j+1,k

×
n−1−j∑
v=0

(
n− 1− j

v

)
mn−1−j−vy2

(
v,m;− k

k + 1

)
.

Theorem 21. Let n,m ∈ N. Then we have

S (n,m) = (−1)m (k + 1)
m

n−1∑
j=0

(
n

j + 1

)
S2

(
n− 1− j,m;

k

k + 1

)
f
(m)
j+1,k.

Proof. By using (3), (15) and (29), we have

∞∑
n=0

S (n,m)
tn

n!
= (−1)m (k + 1)

m
∞∑

n=1

f
(m)
n,k

tn

n!

∞∑
n=0

S2

(
n,m;

k

k + 1

)
tn

n!
.

From the above equation, it is easily to find that

∞∑
n=0

S (n,m)
tn

n!
= (−1)m (k + 1)

m

×
∞∑

n=0

n

n−1∑
j=0

(
n− 1

j

)
f
(m)
j+1,k

j + 1
S2

(
n− 1− j,m;

k

k + 1

)
tn

n!
.

Comparing the coefficients of tn

n! on both sides of the above equation, we arrive at
the desired result.
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Theorem 22. Let n,m ∈ N. Then we have

n∑
j=0

(
n

j

)
B

(−m)
n−j B

(m)
j

(
k

k + 1

)
= (−1)m (k + 1)

m
f
(m)
n,k .

Proof. By using (5) and (29), we obtain

(−1)m

(k + 1)
mFAB (t,−m; 1)FAB

(
t,m;

k

k + 1

)
=

∞∑
n=1

f
(m)
n,k

tn

n!
.

Thus,

(−1)m

(k + 1)
m

∞∑
n=0

n∑
j=0

(
n

j

)
B

(−m)
n−j B

(m)
j

(
k

k + 1

)
tn

n!
=

∞∑
n=1

f
(m)
n,k

tn

n!
.

Since B(m)
0

(
k

k+1

)
= 0, we get

(−1)m

(k + 1)
m

∞∑
n=1

n∑
j=0

(
n

j

)
B

(−m)
n−j B

(m)
j

(
k

k + 1

)
tn

n!
=

∞∑
n=1

f
(m)
n,k

tn

n!
.

Comparing the coefficients of tn

n! on both sides of the above equation, we arrive at
the desired result.

Theorem 23. Let n,m ∈ N. Then we have

(42) S (n,m) =
(k + 1)

m
2m

m!

n−1∑
j=0

(
n

j + 1

)
E(−m)
n−1−j

(
− k

k + 1

)
f
(m)
j+1,k.

Proof. By using (3), (7) and (29), we obtain

FS2
(t,m) =

(k + 1)
m
2m

m!
FAE

(
t,−m;− k

k + 1

)
Fg(t,m; k).

From the above equation, we get

∞∑
n=0

S (n,m)
tn

n!
=

(k + 1)
m
2m

m!
t

∞∑
n=0

E(−m)
n

(
− k

k + 1

)
tn

n!

∞∑
n=0

f
(m)
n+1,k

n+ 1

tn

n!
.

Hence,

∞∑
n=0

S (n,m)
tn

n!
=

(k + 1)
m
2m

m!

∞∑
n=0

n

n−1∑
j=0

(
n− 1

j

)
f
(m)
j+1,k

j + 1
E(−m)
n−1−j

(
− k

k + 1

)
tn

n!
.

Comparing the coefficients of tn

n! on both sides of the above equation, we arrive at
the desired result.
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Remark 24. By using (41) and (42), we obtain the following well-known result:

E(−m)
n

(
− k

k + 1

)
= m!2−my1

(
n,m;− k

k + 1

)
(cf. [43, Eq. (28)]).

4. COMPUTATIONAL ALGORITHMS FOR THE GENERALIZED
FUBINI NUMBERS AND POLYNOMIALS

Algorithms are used in many branches of science such as computer science,
applied mathematics and communications systems. Due to their importance, in
this section, by using (4), (9), (34) and (38), we give algorithms for the generalized
Fubini numbers and polynomials of higher order, the Apostol-Euler polynomials
of higher order, and the Stirling numbers of the second kind. Here note that, we
do not study on the computational complexity of algorithms. We only use these
algorithms to calculate the numerical values of the generalized Fubini numbers and
polynomials of higher order. That is, with the aid of these algorithms, some numer-
ical values of these numbers and polynomials are given by the tables. Moreover,
using Mathematica version 12.0 with the Wolfram language, we illustrate some
plots of the generalized Fubini polynomials of higher for some of their randomly
chosen cases.

By using similar method in Kucukoglu and Simsek [22] and equation (4), we
give the following algorithms:

Algorithm 1 For n,m ∈ N0, this algorithm will return values of the numbers
S(n,m).

procedure STIRLING SEC NUM(n: nonnegative integer,
m: nonnegative integer)

Global variable S ← 0
Local variable v: nonnegative integer
if n = 0 ∧ m = 0 then

return 1
else

if m > 0 ∨ n > 0 ∨ m > n then
return 0

else
for v = 0; v ≤ m; v = v + 1 do

S← S + Power(−1,m− v)
↪→ ∗Binomial Coef(m, v) ∗ Power(v, n)

end for
return (1/Factorial(m)) ∗ S

end if
end if

end procedure
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By using (9), we give an algorithm for the Apostol-Euler polynomials of higher
order as follows:

Algorithm 2 For n ∈ N0 and λ, α ∈ C, this algorithm will return values of the

polynomials E(α)n (x;λ) by the aid of Algorithm 1.

procedure APOST EULER POLY HIG(n: nonnegative integer,
x: parameter, λ: complex number, α: complex number)

Global variable E ← 0
Local variable r, j: nonnegative integer
for r = 0; r ≤ n; r = r + 1 do

for j = 0; j ≤ r; j = j + 1 do
E← E +Binomial Coef(n, r) ∗ Power(x, n− r)

↪→ ∗Binomial Coef(α+ j − 1, j)
↪→ ∗ (Factorial(j) ∗ Power(−λ, j)/Power(λ+ 1, j + α))
↪→ ∗ STIRLING SEC NUM(r, j)

end for
end for
return Power(2, α) ∗ E

end procedure

In the literature, there are some computational algorithms for special numbers
and polynomials (see, for detail, [18]-[20], [22], [23], [25]-[28], [42], [44]). It
should be also noted that there are many different programming languages for
the Algorithm 1 and Algorithm 2. For example, the Stirling numbers of the second
kind are computed the command StirlingS2[n,m] in Mathematica with the Wolfram
language, see [53]. Moreover, Kucukoglu and Simsek also gave an algorithm for
the generalized Stirling numbers (see [25, Algorithm 1 and Eq. (14)]). Here, these
algorithms have been given in order to run the Algorithm 3. Moreover, many
algorithms can be given to calculate numerical values of the generalized Fubini
numbers and polynomials of higher order. We only use the equation (38). By using
this equation, we give an algorithm for the generalized Fubini numbers of higher
order as follows:
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Algorithm 3 For n,m ∈ N and k ∈ N0, this algorithm will return values of the

numbers f
(m)
n,k by the aid of Algorithm 1 and Algorithm 2.

procedure GENERALIZED FUBINI NUM HIG(n: positive number,
k: nonnegative number, m: positive number)

Global variable F ← 0
Local variable j: nonnegative integer
for j = 0; j ≤ n; j = j + 1 do

F← F +Binomial Coef(n, j)
↪→ ∗ STIRLING SEC NUM(n− j,m)
↪→ ∗APOST EULER POLY HIG(j, 0,−k/(k + 1),m)

end for
return (Factorial(m)/ (Power(k + 1,m) ∗ Power(2,m))) ∗ F

end procedure

By using (34), we give an algorithm for the polynomialsQn(x; k,m) as follows:

Algorithm 4 For n,m, k ∈ N, this algorithm will return values of the polynomials
Qn(x; k,m) by the aid of Algorithm 3.

procedure Q POLY (n: positive number, x: parameter, k: positive number,
m: positive number)

Global variable Q ← 0
Local variable j: nonnegative integer
for j = 0; j ≤ n− 1; j = j + 1 do

Q← Q+Binomial Coef(n, j + 1) ∗ FallingFact(x, n− 1− j)
↪→ ∗GENERALIZED FUBINI NUM HIG(j + 1, k,m)

end for
return Q

end procedure

By using Algorithm 3, we compute a few values of the numbers f
(m)
n,k for

m = 1 as follows:

Table 1: A few values of the numbers f
(1)
n,k (see also [36]).

n/k 1 2 3 4 5
1 1 1 1 1 1
2 3 5 7 9 11
3 13 37 73 121 181
4 75 365 1015 2169 3971
5 541 4501 17641 48601 108901

By using Algorithm 3, we compute a few values of the numbers f
(m)
n,k for

m = 2 as follows:
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Table 2: A few values of the numbers f
(2)
n,k.

n/k 1 2 3 4 5
1 0 0 0 0 0
2 2 2 2 2 2
3 18 30 42 54 66
4 158 446 878 1454 2174
5 1530 7350 20370 43470 79530

By using Algorithm 3, we compute a few values of the numbers f
(m)
n,k for

m = 3 as follows:

Table 3: A few values of the numbers f
(3)
n,k.

n/k 1 2 3 4 5
1 0 0 0 0 0
2 0 0 0 0 0
3 6 6 6 6 6
4 108 180 252 324 396
5 1590 4470 8790 14550 21750

Note that, using (38) and the properties of the Stirling numbers of the second

kind for m > n, S (n,m) = 0, some values of the numbers f
(m)
n,k are equal to zero,

given in Table 2 and Table 3.

By using Algorithm 4, we compute a few values of the polynomialsQn(x; k,m)
for m = 1 as follows:

Q0(x; k, 1) = 0,

Q1(x; k, 1) = 1,

Q2(x; k, 1) = 1 + 2k + 2x,

Q3(x; k, 1) = 1 + 6k2 + 3x2 + 6k(1 + x),

Q4(x; k, 1) = 1 + 24k3 + 6x− 6x2 + 4x3 + 12k2(3 + 2x) + 2k(7 + 6x+ 6x2),

Q5(x; k, 1) = 1 + 120k4 − 15x+ 35x2 − 20x3 + 5x4 + 120k3(2 + x)

+30k2(5 + 4x+ 2x2) + 10k(3 + 5x+ 2x3).

By using Algorithm 4, we compute a few values of the polynomialsQn(x; k,m)
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for m = 2 as follows:

Q0(x; k, 2) = 0,

Q1(x; k, 2) = 0,

Q2(x; k, 2) = 2,

Q3(x; k, 2) = 6(1 + 2k + x),

Q4(x; k, 2) = 2(7 + 36k2 + 6x+ 6x2 + 12k(3 + 2x)),

Q5(x; k, 2) = 10(3 + 48k3 + 5x+ 2x3 + 36k2(2 + x)) + 60k(5 + 4x+ 2x2).

By using Algorithm 4, we calculate a few values of the polynomialsQn(x; k,m)
for m = 3 as follows:

Q0(x; k, 3) = 0,

Q1(x; k, 3) = 0,

Q2(x; k, 3) = 0,

Q3(x; k, 3) = 6,

Q4(x; k, 3) = 12(3 + 6k + 2x),

Q5(x; k, 3) = 30(5 + 24k2 + 4x+ 2x2 + 12k(2 + x)).

It is time to give plots of the polynomials Qn (x; k,m). Using Mathematica
[53] via Wolfram language, we show some plots of the polynomials Qn (x; k,m) for
some of their randomly chosen special cases.

Figure 1 is obtained by k = m = 1, and n ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8} using (34)
for x ∈ [−60, 60].

-60 -40 -20 20 40 60
x

-5×107

5×107

1×108

Qn(x; k,m)

Q0(x; 1, 1)

Q1(x; 1, 1)

Q2(x; 1, 1)

Q3(x; 1, 1)

Q4(x; 1, 1)

Q5(x; 1, 1)

Q6(x; 1, 1)

Q7(x; 1, 1)

Q8(x; 1, 1)

Figure 1: Plots of the polynomials Qn (x; 1, 1) in state that n ∈
{0, 1, 2, 3, 4, 5, 6, 7, 8} and x ∈ [−60, 60].
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Figure 2 is obtained by k = 1, m = 2 and n ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8} using
(34) for x ∈ [−60, 60].

-60 -40 -20 20 40 60
x

-1.0×108

-5.0×107

5.0×107

1.0×108

1.5×108

Qn(x; k,m)

Q0(x; 1, 2)

Q1(x; 1, 2)

Q2(x; 1, 2)

Q3(x; 1, 2)

Q4(x; 1, 2)

Q5(x; 1, 2)

Q6(x; 1, 2)

Q7(x; 1, 2)

Q8(x; 1, 2)

Figure 2: Plots of the polynomials Qn (x; 1, 2) in state that n ∈
{0, 1, 2, 3, 4, 5, 6, 7, 8} and x ∈ [−60, 60].

Figure 3 is obtained by k = 1, m = 3 and n ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8} using
(34) for x ∈ [−60, 60].

-60 -40 -20 20 40 60
x

-5×106

5×106

1×107

Qn(x; k,m)

Q0(x; 1, 3)

Q1(x; 1, 3)

Q2(x; 1, 3)

Q3(x; 1, 3)

Q4(x; 1, 3)

Q5(x; 1, 3)

Q6(x; 1, 3)

Q7(x; 1, 3)

Q8(x; 1, 3)

Figure 3: Plots of the polynomials Qn (x; 1, 3) in state that n ∈
{0, 1, 2, 3, 4, 5, 6, 7, 8} and x ∈ [−60, 60].

Notes that the polynomials Q0 (x; 1, 1), Q0 (x; 1, 2), Q1 (x; 1, 2), Q0 (x; 1, 3),
Q1 (x; 1, 3) and Q2 (x; 1, 3) are equal to zero. On the other hand, it can be observed
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that the values of the polynomials Q1 (x; 1, 1), Q2 (x; 1, 1), Q3 (x; 1, 1), Q2 (x; 1, 2),
Q3 (x; 1, 2), Q3 (x; 1, 3) and Q4 (x; 1, 3) are quite close to the Ox-axis.

5. CONCLUSIONS

In this paper, we constructed new families of special polynomials with their
generating functions. By using method of generating functions and their functional
equations, we investigated some properties of these new polynomials. We also de-
rived many interesting identities, relations and formulas related to the Fubini type
numbers, the Apostol type numbers and polynomials of higher order, the Stirling
type numbers, the Peters polynomials, the array polynomials, the combinatorial
numbers, and other special numbers and polynomials. Furthermore, we gave not
only algorithms for the calculation of the generalized Fubini numbers and poly-
nomials of higher order, the Apostol-Euler polynomials of higher order, and the
Stirling numbers of the second kind, but also illustrated some plots of the general-
ized Fubini polynomials of higher order for some of their randomly selected special
cases. Therefore, the results of this paper may be used especially in mathematics,
mathematical physics, computer engineering, communications systems, and other
branches of engineering and related areas.

It is among my future plans to investigate the relationships of this new family
of polynomials given in this paper in depth with other fields and to study mathe-
matical modeling of real world problems with the help of these polynomials.

Acknowledgments. The author would like to thank the referees for their
valuable comments.
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