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ANALYTICAL AND ASYMPTOTIC
REPRESENTATIONS FOR TWO SEQUENCE RELATED

TO GAUSS’ LEMNISCATE FUNCTIONS

Xue-Feng Han, Chao-Ping Chen∗ and H. M. Srivastava

Let the sequences Gn and gn be defined by

Gn :=

∫ 1

0

dt

(1− t2n)1/n
(n ≧ 2) and gn :=

∫ ∞

0

dt

(1 + t2n)1/n
(n ≧ 1).

In this paper, we first derive analytical representations for these two sequences

Gn and gn in terms of the gamma function. By using the obtained analytical

representations, we then deduce asymptotic expansions for Gn and gn.

1. INTRODUCTION AND MOTIVATION

The lemniscate, also called the lemniscate of Bernoulli (see, for example, [20]), is
the locus of points (x, y) in the plane satisfying the following equation:

(x2 + y2)2 = x2 − y2.

In the polar coordinates (r, θ), the equation becomes r2 = cos(2θ) and its arc length
is given by the function

arcslx =

∫ x

0

dt√
1− t4

(|x| ≦ 1),(1)
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where arcslx is called the arc lemniscate sine function studied by Carl Friedrich
Gauss (1777–1855) during the period 1797–1798. Another lemniscate function,
investigated by Gauss, is the hyperbolic arc lemniscate sine function, defined as
follows:

arcslhx =

∫ x

0

dt√
1 + t4

(x ∈ R).(2)

The functions (1) and (2) can be found to be investigated in several recent works
(see, for example, [2, 3, 13, 14, 15], [4, p. 259], [6, (2.5)–(2.6)], [16, Ch. 1] and
[17, p. 286]). In particular, Neuman [13] introduced Gauss’ arc lemniscate tangent
and the hyperbolic arc lemniscate tangent functions.

Gauss’ constant G is given by

G =
1

agm(1,
√
2)

=
2

π

∫ 1

0

dt√
1− t4

= 0.8346268 · · · ,

where agm(a, b) is the arithmetic-geometric mean, so that

G =
1

2π
B

(
1

4
,
1

2

)
where B(x, y) denotes the beta function. Gauss’ constant G is used in the definition
of the lemniscate constant L given by

L = πG.

For a very informative history of the lemniscate integral and its importance
in the early developments of the elliptic integrals and the elliptic functions, see
Ayoub’s historical survey article [2]. Siegel [16] considered the lemniscate integral
to be so important that he began his development of the theory of elliptic functions
with a thorough discussion of the lemniscate integral.

The integrals in (1) and (2) are closely related. Indeed, if we set

v =

√
2x√

1 + x4
,

then an easy elementary calculation reveals that∫ v

0

dt√
1− t4

=
√
2

∫ x

0

dt√
1 + t4

.(3)

The relation (3) is very important because it represents the key intermediary step
in the famous problem of doubling the arc length of the lemniscate. For discussions
of this historically important problem, see the aforementioned paper of Ayoub [2]
and Siegel’s textbook [16].

Klamkin [11] proposed the following elegant problem:
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Without performing any integration, determine the following ratio:(∫ 1

0

dt√
1− t4

)
:

(∫ 1

0

dt√
1 + t4

)
.

Subsequently, Farnell [10] proved that the desired ratio is
√
2. Raynor and the

proposer (Klamkin) obtained the following more general result (see [10, Editorial
Note]):(∫ 1

0

dt

(1− t2n)1/n

)
:

(∫ 1

0

dt

(1 + t2n)1/n

)
= sec

( π
2n

)
(n = 2, 3, 4, · · · ).(4)

Motivated by (4), and observing that∫ 1

0

dt

(1 + t2n)1/n
=

∫ ∞

1

du

(1 + u2n)1/n
,

we define the sequences Gn and gn by

Gn =

∫ 1

0

dt

(1− t2n)1/n
(n ≧ 2)(5)

and

gn =

∫ ∞

0

dt

(1 + t2n)1/n
= 2

∫ 1

0

dt

(1 + t2n)1/n
(n ≧ 1).(6)

Thus, clearly, the formula (4) can be written as follows:

Gn
1
2gn

= sec
( π
2n

)
(n = 2, 3, 4, · · · ).(7)

In this paper, we first give analytical representations for the above-defined
sequences Gn and gn in terms of the gamma function. By using the obtained
analytical representations, we then present asymptotic expansions for the sequences
Gn and gn.

2. ANALYTICAL REPRESENTATIONS FOR Gn AND gn

The proposed analytical representations for the sequences Gn and gn are
given by Theorem 1 below.

Theorem 1. The sequences Gn and gn have the following analytical representations:

Gn =
Γ(1 + 1

2n )Γ(
1
2 − 1

2n )

2
1
n
√
π

(n ≧ 2)(8)

and

gn =
21−

1
n
√
πΓ
(
1 + 1

2n

)
Γ
(
1
2 + 1

2n

) (n ≧ 1).(9)
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Proof. By an elementary change of variables given by

u = 1− t2n (0 ≦ t ≦ 1),

we obtain

Gn =
1

2n

∫ 1

0

u(1−
1
n )−1(1− u)

1
2n−1du =

1

2n
B

(
1− 1

n
,
1

2n

)
=

Γ(1− 1
n )Γ(

1
2n )

2nΓ(1− 1
2n )

=
Γ(1− 1

n )Γ(1 +
1
2n )

Γ(1− 1
2n )

.(10)

by using the recurrence formula

(11) Γ(z + 1) = zΓ(z).

The gamma function satisfies the following duplication formula [1, p. 256]:

Γ(2z) =
22z−1

√
π

Γ(z)Γ

(
z +

1

2

)
.(12)

The choice z = 1− 1
2n in (12) yields

(13)
Γ(1− 1

n )

Γ(1− 1
2n )

=
Γ( 12 − 1

2n )

2
1
n
√
π

.

Substitution of the expression (13) into (10) leads us to the desired result (8).

Next, by an elementary change of variables given by

u = 1 + t2n (t ≧ 0),

we obtain

gn =

∫ ∞

0

dt

(1 + t2n)1/n
=

1

2n

∫ ∞

1

u−
1
n (u− 1)

1
2n−1du

=
1

2n

∫ 1

0

v
1
2n−1(1− v)

1
2n−1dv =

1

2n
B

(
1

2n
,
1

2n

)
(where u = 1/v)

=
1

2n

Γ( 1
2n )Γ(

1
2n )

Γ
(
2
(

1
2n

) ) =
21−

1
n
√
πΓ
(
1 + 1

2n

)
Γ
(
1
2 + 1

2n

) ,

where we have made use of (11) and (12). The proof of Theorem 1 is thus completed.

Remark 2. By the following reflection formula for the gamma function [1, p.256] :

Γ(z)Γ(1− z) =
π

sin(πz)
(z /∈ Z := {0,±1,±2, · · · )},

we have

Γ

(
1

2
− 1

2n

)
Γ

(
1

2
+

1

2n

)
= π sec

( π
2n

)
.(14)

Thus, from (8) and (9) we retrieve (7) by means of (14).
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3. ASYMPTOTIC EXPANSIONS FOR Gn AND gn

In this section, we establish the asymptotic expansions for Gn and gn, which
are based upon the Bell polynomials. The Bell polynomials, named in honor of
Eric Temple Bell (1883–1960), are a triangular array of polynomials given by (see,
for example, Comtet [8, pp. 133–134], Cvijović [9] and Masjed-Jamei et al. [12])

Bn,k(x1, x2, · · · , xn−k+1)

=
∑ n!

j1! j2! · · · jn−k+1!

(x1
1!

)j1 (x2
2!

)j2
· · ·
(

xn−k+1

(n− k + 1)!

)jn−k+1

,

where the sum is taken over all non-negative integers j1, j2, j3, · · · , jn−k+1 such
that

j1 + j2 + · · ·+ jn−k+1 = k and j1 + 2j2 + · · ·+ (n− k + 1)jn−k+1 = n.

The following sum:

Bn(x1, x2, x3, · · · , xn) =
n∑

k=1

Bn,k(x1, x2, x3, · · · , xn−k+1)

is sometimes called the nth complete Bell polynomial. These complete Bell poly-
nomials satisfy the following identity:

Bn(x1, x2, x3, · · · , xn)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x1
(
n−1
1

)
x2

(
n−1
2

)
x3

(
n−1
3

)
x4

(
n−1
4

)
x5 · · · · · · xn

−1 x1
(
n−2
1

)
x2

(
n−2
2

)
x3

(
n−2
3

)
x4 · · · · · · xn−1

0 −1 x1
(
n−3
1

)
x2

(
n−3
2

)
x3 · · · · · · xn−2

0 0 −1 x1
(
n−4
1

)
x2 · · · · · · xn−3

0 0 0 −1 x1 · · · · · · xn−4

0 0 0 0 −1 · · · · · · xn−5

...
...

...
...

...
. . .

. . .
...

0 0 0 0 0 · · · −1 x1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.
(15)

In order to contrast them with complete Bell polynomials, the polynomials Bn,k

defined above are sometimes called partial Bell polynomials. The complete Bell
polynomials appear in the exponential of a formal power series:

(16) exp

( ∞∑
n=1

xn
n!
un

)
=

∞∑
n=0

Bn(x1, · · · , xn)
n!

un.
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The Bell polynomials are quite general polynomials and they have been found
in many applications in combinatorics. In his monograph, Comtet [8] devoted much
to a thorough presentation of the Bell polynomials in the chapter on identities and
expansions. For more results, see the works by Charalambides [7, Chapter 11] and
Riordan [18, Chapter 5].

We now state and prove the asymptotic expansion of the sequence Gn defined
by (5)

Theorem 3. The sequence Gn, defined in (5), has the following asymptotic expansion:

Gn =

∞∑
j=0

bj
nj

= 1 +
π2

12n2
+
ζ(3)

4n3
+

π4

160n4
+

(
3ζ(5)

16
+
π2ζ(3)

48

)
1

n5

+

(
61π6

120960
+
ζ(3)2

32

)
1

n6
+ · · · (n→ ∞),(17)

with the coefficients bj given by the recursive formula:

b0 = 1, b1 = 0, bj =

j−1∑
ℓ=0

(
1− ℓ

j

)
J (j−ℓ)(0)

(j − ℓ)!
bℓ (j ≧ 2),(18)

where

J(0) = 0, J ′(0) = 0, J (k)(0) =
1

2k

[
(−1)k + (2k − 1)

]
(k − 1)! ζ(k) (k ≧ 2)

and ζ(s) denotes the Riemann zeta function given by (see, for example, [19])

ζ (s) :=



∞∑
n=1

1

ns
=

1

1− 2−s

∞∑
n=1

1

(2n− 1)
s

(
ℜ (s) > 1

)
1

1− 21−s

∞∑
n=1

(−1)
n−1

ns
(
ℜ (s) > 0; s ̸= 1

)
Proof. First of all, we define the functions I(x) and J(x) by

I(x) =
Γ(1 + x

2 )Γ(
1
2 − x

2 )

2x
√
π

and J(x) = ln I(x)

for 0 < x < 1. We thus find that

J(x) = lnΓ
(
1 +

x

2

)
+ lnΓ

(
1

2
− x

2

)
− x ln 2− ln(

√
π).

Elementary calculations would show that

J ′(x) =
1

2

[
ψ
(
1 +

x

2

)
− ψ

(
1

2
− x

2

)]
− ln 2,
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J (j)(x) =
1

2j

[
ψ(j−1)

(
1 +

x

2

)
− (−1)j−1ψ(j−1)

(
1

2
− x

2

)]
(j ≧ 2),

where the Psi (or the Digamma) function ψ(x) is defined by

ψ(x) :=
Γ′(x)

Γ(x)
=

d

dx
ln Γ(x)

and ψ(j)(x) (j ≧ 1) are called the Polygamma functions. We then obtain

J(0) = 0, J ′(0) =
1

2

[
ψ (1)− ψ

(
1

2

)]
− ln 2 = 0,

J (j)(0) =
1

2j

[
ψ(j−1) (1)− (−1)j−1ψ(j−1)

(
1

2

)]
(j ≧ 2).

Noting that (see [21, p. 34])

ψ(j) (1) = (−1)j+1 j! ζ(j + 1) and ψ(j)

(
1

2

)
= (−1)j+1 j! (2j+1 − 1) ζ(j + 1),

we get

J(0) = 0, J ′(0) = 0, J (j)(0) =
1

2j

[
(−1)j + 2j − 1

]
(j − 1)! ζ(j) (j ≧ 2).

We are thus led to the following power series:

J(x) =

∞∑
j=2

J (j)(0)

j!
xj

=
π2

12
x2 +

ζ(3)

4
x3 +

π4

360
x4 +

3ζ(5)

16
x5 +

π6

5670
x6 +

9ζ(7)

64
x7 +

π8

75600
x8 + · · · .

(19)

Also, in linght of the following limit formula:

lim
j→∞

∣∣∣∣∣
J(j+1)(0)
(j+1)! x

j+1

J(j)(0)
j! xj

∣∣∣∣∣ = lim
j→∞

2j+1 − 1 + (−1)j+1

2j+1 − 2 + 2(−1)j
j

j + 1

ζ(j + 1)

ζ(j)
|x| = |x|,

we see that the power series (19) converges absolutely on (−1, 1).

We now let

a0 = J(0) = 0, a1 = J ′(0) = 0, aj =
J (j)(0)

j!
(j ≧ 2).

The equation (19) can then be written as follows:

J(x) =

∞∑
j=1

ajx
j .
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By using (16), we find that

I(x) = exp(J(x)) = exp

 ∞∑
j=1

j! aj
j!

xj

 =

∞∑
j=0

bjx
j ,

where

(20) bj =
Bj

(
1! a1, 2! a2, · · · , j! aj

)
j!

.

Bulò et al. [5, Theorem 1] proved that the complete Bell polynomials can be
expressed by using the following recursive relation:

(21) Bn(x1, x2, · · · , xn) =


n−1∑
ℓ=0

(
n−1
ℓ

)
xn−ℓBℓ(x1, x2, · · · , xℓ) (n > 0)

1 (otherwise).

Therefore, by employing (21), the formula (20) can be rewritten as follows:

b0 = 1 and

bj =
1

j!

j−1∑
ℓ=0

(
j − 1

ℓ

)
(j − ℓ)! aj−ℓBℓ

(
1! a1, 2! a2 · · · , ℓ! aℓ

)

=
1

j!

j−1∑
ℓ=0

(
j − 1

ℓ

)
(j − ℓ)! aj−ℓℓ!bℓ

=

j−1∑
ℓ=0

j − ℓ

j
aj−ℓbℓ =

j−1∑
ℓ=0

(
1− ℓ

j

)
J (j−ℓ)(0)

(j − ℓ)!
bℓ (j ∈ N).

We then obtain the following asymptotic expansion:

Gn = I

(
1

n

)
=

∞∑
j=0

bj
nj

= 1 +
π2

12n2
+
ζ(3)

4n3
+

π4

160n4
+

(
3ζ(5)

16
+
π2ζ(3)

48

)
1

n5

+

(
61π6

120960
+
ζ(3)2

32

)
1

n6
+ · · · (n→ ∞).

This completes the proof of Theorem 3.

Remark 4. We can calculate the coefficients bj in (17) by using the formulas (20)
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and (15). We thus find that

bn =
1

n!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1! a1
(
n−1
1

)
2! a2

(
n−1
2

)
3! a3

(
n−1
3

)
4! a4 · · · · · · n! an

−1 1! a1
(
n−2
1

)
2! a2

(
n−2
2

)
3! a3 · · · · · · (n− 1)! an−1

0 −1 1! a1
(
n−3
1

)
2! a2 · · · · · · (n− 2)! an−2

0 0 −1 1! a1 · · · · · · (n− 3)! an−3

0 0 0 −1 · · · · · · (n− 4)! an−4

...
...

...
...

. . .
. . .

...
0 0 0 0 · · · −1 1! a1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

(22)

The representation using a recursive algorithm for the coefficients bj in (18) is more
practical for numerical evaluation than the expression in (22).

We next state and prove the asymptotic expansion of the sequence gn defined
by (6)

Theorem 5. The sequence gn, defined in (6), has the following asymptotic expansion:

gn =

∞∑
j=0

βj
nj

= 2

{
1− π2

24n2
+
ζ(3)

4n3
− π4

640n4
+

(
3ζ(5)

16
− π2ζ(3)

96

)
1

n5

+

(
− 79π6

967680
+
ζ(3)2

32

)
1

n6
+ · · ·

}
(n→ ∞),

with the coefficients βj given by the following recursive formula:

β0 = 1, β1 = 0, βj =

j−1∑
ℓ=0

(
1− ℓ

j

)
V (j−ℓ)(0)

(j − ℓ)!
βℓ (j ≧ 2),

where

V (0) = ln 2, V ′(0) = 0, V (k)(0) =
(−1)k−1(2k−1 − 1) (k − 1)! ζ(k)

2k−1
(k ≧ 2).

Proof. We begin by defining the functions U(x) and V (x) by

U(x) =
21−x

√
πΓ
(
1 + x

2

)
Γ
(
1
2 + x

2

) and V (x) = lnU(x).

We thus find that

V (x) = lnΓ
(
1 +

x

2

)
− ln Γ

(
1

2
+
x

2

)
+ (1− x) ln 2 + ln(

√
π).
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Elementary calculations would show that

V ′(x) =
1

2

[
ψ
(
1 +

x

2

)
− ψ

(
1

2
+
x

2

)]
− ln 2,

V (j)(x) =
1

2j

[
ψ(j−1)

(
1 +

x

2

)
− ψ(j−1)

(
1

2
+
x

2

)]
(j ≧ 2).

We then find that

V (0) = ln 2, V ′(0) =
1

2

[
ψ (1)− ψ

(
1

2

)]
− ln 2 = 0,

V (j)(0) =
1

2j

[
ψ(j−1) (1)− ψ(j−1)

(
1

2

)]
=

(−1)j−1(2j−1 − 1) (j − 1)! ζ(j)

2j−1
(j ≧ 2).

We are thus led to the following power series:

V (x) = ln 2 +

∞∑
j=2

V (j)(0)

j!
xj

= ln 2− π2

24
x2 +

ζ(3)

4
x3 − 7π4

2880
x4 +

3ζ(5)

16
x5

− 31π6

181440
x6 +

9ζ(7)

64
x7 − 127π8

9676800
x8 + · · · .(23)

Also, by noting that

lim
j→∞

∣∣∣∣∣
V (j+1)(0)
(j+1)! xj+1

V (j)(0)
j! xj

∣∣∣∣∣ = lim
j→∞

2j − 1

2j − 2

j

j + 1

ζ(j + 1)

ζ(j)
|x| = |x|,

we see that the power series (23) converges absolutely on (−1, 1).

We now let

α0 = V (0) = ln 2, α1 = V ′(0) = 0, αj =
V (j)(0)

j!
(j ≧ 2).

The equation (23) can then be written as follows:

V (x) = α0 +

∞∑
j=1

αjx
j .

Furthermore, by using (16), we find that

U(x) = exp(V (x)) = 2 exp

 ∞∑
j=1

j! αj

j!
xj

 = 2

∞∑
j=0

βjx
j ,
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where

(24) βj =
Bj

(
1! α1, 2! α2, · · · , j! αj

)
j!

.

By means of (21), the formula (24) can be rewritten as follows:

β0 = 1 and

βj =
1

j!

j−1∑
ℓ=0

(
j − 1

ℓ

)
(j − ℓ)! αj−ℓBℓ

(
1!α1, 2!α2 · · · , ℓ!αℓ

)

=
1

j!

j−1∑
ℓ=0

(
j − 1

ℓ

)
(j − ℓ)! αj−ℓℓ! βℓ

=

j−1∑
ℓ=0

j − ℓ

j
αj−ℓβℓ =

j−1∑
ℓ=0

(
1− ℓ

j

)
V (j−ℓ)(0)

(j − ℓ)!
βℓ (j ∈ N).

Thus, finally, we obtain

gn = U

(
1

n

)
= 2

∞∑
j=0

βj
nj

= 2

{
1− π2

24n2
+
ζ(3)

4n3
− π4

640n4
+

(
3ζ(5)

16
− π2ζ(3)

96

)
1

n5

+

(
− 79π6

967680
+
ζ(3)2

32

)
1

n6
+ · · ·

}
. (n→ ∞).

The proof of Theorem 5 is thus completed.
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