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ASYMPTOTIC EXPANSIONS OF STABLE,
STABILIZABLE AND STABILIZED MEANS WITH

APPLICATIONS

Lenka Mihoković

In this paper we present a complete asymptotic expansion of a symmetric

homogeneous stable (balanced), stabilizable and stabilized mean. By includ-

ing known asymptotic expansions of parametric means it is shown how the

obtained coefficients are used to solve the problem of identifying stable means

within classes of parametric means under consideration, how to disprove some

mean is stabilizable or stabilized and how to obtain best possible parameters

such that given mean is sub-stabilizable with a pair of parametric means.

1. INTRODUCTION

Consider bivariate mean M , i.e. function M : R+ × R+ → R+ such that

(1) min(s, t) ≤ M(s, t) ≤ max(s, t),

where (s, t) 7→ min(s, t) and (s, t) 7→ max(s, t) are considered as trivial means.
With symmetry and homogeneity defined in usual way, let M , N , K, be three
homogeneous symmetric means and let

R(K,N,M)(s, t) = K
(
N
(
s,M(s, t)

)
, N

(
M(s, t), t

))
.

R is also called the resultant mean–map of K, N and M ([30]). Observe the
following functional equation

(2) M(s, t) = R(M,M,M)(s, t) = M
(
M

(
s,M(s, t)

)
,M

(
M(s, t), t

))
,

2020 Mathematics Subject Classification. 26E60; 41A60; 39B22.
Keywords and Phrases. Complete asymptotic expansion, Composite means, Recursive relation,
Power means, Asymptotic inequalities.

116



Asymptotic expansions of stable, stabilizable and stabilized means 117

which has been examined by many authors in various settings.

G. Aumann ([2]) studied constructions of means of several arguments and
corresponding iterative algorithms, more precisely, augmentation of mean to n +
1 arguments with mean of n arguments given. He called such mean the upper
mean. While studying the opposite procedure, i.e. the reduction process ([3]), he
introduced the lower mean. While trying to determine when these two processes
are inverse to each other, for n = 2 composite functional equation (2) appeared. G.
Aumann proved that this functional equation in class of analytic means on C2 is
characteristic to the analytic quasi-arithmetic means. L. R. Berrone ([4]) presented
key results from Aumann’s two papers pointing out non-equivalence of complex
methods within class of real variable means and also analyzed generalizations of
Aumann functional equation which involves general weighting operators.

T. Kiss ([19]), calling the equation (2) balancing property, solved it without
differentiability assumptions in the class of two-variable means, which contains the
class of Matkowski means.

In this paper we follow definitions introduced by M. Räıssouli who, relying
on equation (2), also introduced a notion of stabilizable and stabilized mean.

Definition 1 ([30]). A symmetric mean M is said to be:

1. Stable (balanced), if R(M,M,M) = M , that is, (2) holds.

2. (K,N)-stabilizable, if for two nontrivial stable means K and N the following
relation is satisfied:

(3) M(s, t) = R(K,M,N)(s, t) = K
(
M

(
s,N(s, t)

)
,M

(
N(s, t), t

))
.

3. (K,N)-stabilized, if for two nontrivial stable means K and N the following
relation is satisfied:

(4) M(s, t) = R(K,N,M)(s, t) = K
(
N
(
s,M(s, t)

)
, N

(
M(s, t), t

))
.

It can easily be seen that the arithmetic A mean is stable, the (binomial)
power mean Bp is also stable for all real numbers p and more general, every cross
mean is stable ([30]). The logarithmic and identric means are known not to be
stable. Stabilizable or stabilized mean does not need to be stable by itself. Further-
more, geometric mean G is simultaneously (A,H)-stabilized and (H,A)-stabilized,
while the Heron mean He is (A,G)-stabilized. The power logarithmic mean Lp, also
known as generalized logarithmic mean, is (Bp, A)-stabilizable, the power difference
mean Dp, i.e. Stolarsky mean Ep,p+1, is (A,Bp)-stabilizable, the power exponential
mean Ip, i.e. Stolarsky mean Ep,p, is (G,Bp)-stabilizable and the second power
logarithmic mean lp, i.e. Stolarsky mean Ep,0, is (Bp, G)-stabilizable ([30]). For all
real numbers p and q, Stolarsky mean Ep,q is (Bq−p, Bp)-stabilizable ([32]). Precise
definitions of those means will be given in Section 5.

A given mean can be stabilizable with respect to two distinct couples of
means. For instance, logarithmic mean L is simultaneously (A,G)-stabilizable and
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(H,A)-stabilizable. On the other side, for two given stable means M1 and M2,
such that M1 ≤ M2 and M1 is strict and cross mean, there exists one and only one
(M1,M2)-stabilizable mean M such that M1 ≤ M ≤ M2 ([33]).

There are various applications of the stability and stabilizability. As an ex-
tension of the stabilizability concept, A. Gasmi and M. Räıssouli ([15]) introduced
the generalized stabilizability for means. Regarding mean inequalities which have
been studied extensively, M. Räıssouli ([31]) presented an approach for obtaining
refinements in a convenient manner. He has shown how to obtain in a recursive
way an infinite number of lower and upper bounds starting from an arbitrary lower
and upper bounds of a stabilizable mean.

For two nontrivial stable comparable means the (strict) sub-stabilizability
and super-stabilizability concept can be introduced with the appropriate inequality
sign in (3).

Definition 2 ([34]). Let K, N be two nontrivial stable comparable means. Mean
M is called

1. (K,N)-sub-stabilizable, if R(K,M,N) ≤ M and M is between K and N ,

2. (K,N)-super-stabilizable, if M ≤ R(K,M,N) and M is between K and N .

For example, geometric mean G is (G,A)-super-stabilizable (but not strictly),
arithmetic mean A is (G,A)-sub-stabilizable, logarithmic mean L is strictly (G,A)
- super-stabilizable and strictly (A,H)-sub-stabilizable, identric mean I is strictly
(A,G)-sub-stabilizable ([34]). The first Seiffert mean is strictly (G,A) - super-
stabilizable ([1]).

In the above mentioned papers some open problems appeared from which we
shall single out the following.

a. Find all pairs (p, q) such that Gini means Gp,q and Stolarsky means Ep,q are
stable ([30]).

b. Prove or disprove that the first Seiffert mean P is not stabilizable ([30]).

c. Find the best real numbers p > 0 and q > 0 for which the first Seiffert means
P is strictly (Bp, Bq)-sub-stabilizable ([34]).

d. Ascertain if the second Seiffert mean T and the Neuman-Sándor mean NS are
strictly (Bp, Bq)-sub-stabilizable for some real numbers p > 0, q > 0 ([34]).

Throughout this paper, whenever we consider (K,N)-sub/super-stabilizable
or stabilized mean it will be assumed that K and N are nontrivial stable means.

The aim of this paper is to apply the previously developed techniques of
asymptotic expansions on the equations (2), (3) and (4) in order to obtain the
asymptotic expansion of stable, stabilizable and stabilized mean.

The (formal) series
∑∞

n=0 anφn(x) is said to be an asymptotic expansion of a
function f(x) as x → x0, with respect to asymptotic sequence (φn(x))n∈N0 , if for
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each N ∈ N0

f(x) ∼
N∑

n=0

anφn(x) + o(φN (x)).

Approximation of the function to a given accuracy is achieved by approaching the
variable to a certain fixed point or a point at infinity. A small number of members
of this series ensures a good approximation. Taylor series can also be seen as an
asymptotic as x → 0. Asymptotic series may be convergent or divergent. For
a given asymptotic sequence, asymptotic representation is unique. Conversely,
asymptotic series represents a class of asymptotically equal functions. Theoretical
background from theory of asymptotic expansions can be found in [14].

For a symmetric homogeneous stable mean we find coefficients an in the
asymptotic power series expansion of the form

(5) M(x− t, x+ t) ∼
∞∑

n=0

ant
2nx−2n+1, as x → ∞,

which will be given by a recursive relation. It will be shown that the asymptotic
representation (5) is sufficient to obtain the general form

(6) M(x+ s, x+ t) ∼
∞∑

n=0

an(s, t)x
−n+1, as x → ∞,

where an ≡ a2n(−t, t).

Based on the asymptotic expansions, more precisely, on positivity of the first
non-zero coefficient, a notion of asymptotic inequality can be introduced. Recall
its definition.

Definition 3 ([38]). Let F (s, t) be any homogeneous function such that

F (x+ s, x+ t) = ck(t, s)x
−k+1 +O(x−k).

If ck(s, t) > 0 for all s and t, then we say F is asymptotically greater than zero,
and write

F ≻ 0.

Asymptotic inequality is considered as necessary relation between compara-
ble means. Namely, if F ≥ 0, then F ≻ 0, which has been proved in the same
paper. Furthermore, for the asymptotic inequalities it is sufficient to observe the
case s = −t as explained in [8]. Asymptotic inequalities were used to obtain the
best possible parameters in convex combinations of means which include Seiffert
([38]) and Neuman-Sándor ([13]) means and to obtain the best possible parameters
such that inequality between some parametric means holds ([11]). In this paper
asymptotic inequalities will be used to treat the case of sub-stabilizability with
power means.
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This paper is organized as follows. In Section 2 we state some fundamental
results regarding operations with asymptotic expansions and show the auxiliary re-
sult which will be used afterwards. In Section 3 we obtain asymptotic expansion of
the resultant mean-map provided that all three means involved possess asymptotic
expansion. Using this result in order, we obtained the asymptotic expansion of sta-
ble, stabilizable and stabilized mean. In Section 4 we obtain necessary conditions
for mean N to be simultaneously (K,M) and (M,K)-stabilizable, for meanM to be
simultaneously (K,N) and (N,K)-stabilized and for mean M to be simultaneously
(K,N)-stabilizable and (K,N)-stabilized. With respect to known asymptotic ex-
pansions of parametric means derived in [11] and [38], in Section 5 it will be shown
how the obtained coefficients are used to solve the problem of identifying stable
means within classes of parametric means under consideration, how to disprove a
mean is stabilizable or stabilized and how to obtain best possible parameters such
that given mean is sub-stabilizable with a pair of parametric means. Recursive
formulas were evaluated using computer algebra system Mathematica. In Section 6
we sum up all the results, emphasize our contribution to the open questions from
cited papers and state new conjectures which arose from this paper.

2. PRELIMINARIES

Suppose that all means involved here have the asymptotic expansions as
x → ∞ of the following type

M(x− t, x+ t) ∼
∞∑

n=0

aMn t2nx−2n+1,(7)

N(x− t, x+ t) ∼
∞∑

n=0

aNn t2nx−2n+1,(8)

K(x− t, x+ t) ∼
∞∑

n=0

aKn t2nx−2n+1.(9)

Operations with asymptotic power series are conducted in very intuitive man-
ner. Asymptotic expansion of a linear combination corresponds to expansion with
the same linear combination done term-wise. Coefficients in product of two asymp-
totic power series are defined by convolution. Also, two asymptotic power series
can be divided with the result given in a form of asymptotic series as described in
[11, Lemma 1.1.]. The composition has asymptotic expansion whose coefficients
can be obtained by formal substitution and rearrangement of terms ([14, p. 20]).
Under some reasonable assumptions, asymptotic power series can be differentiated
and integrated term by term ([14, p. 21]). In the sequel we state the funda-
mental result on transformations which is about power of an asymptotic series.
Coefficients of the new series, which depend on the power r and initial sequence
a = (an)n∈N0 = (a0, a1, a2, . . .), will be denoted here as P [n, r,a]. We assume all
sequences are enumerated from 0.



Asymptotic expansions of stable, stabilizable and stabilized means 121

Lemma 4 ([7, 17]). Let

g(x) ∼
∞∑

n=0

anx
−n

be a given asymptotic expansion (for x → ∞) of g(x) with a0 ̸= 0. Then for all
real r it holds

[g(x)]r ∼
∞∑

n=0

P [n, r,a]x−n,

where P [0, r,a] = ar0 and

P [n, r,a] =
1

na0

n∑
k=1

[k(1 + r)− n]akP [n− k, r,a], n ∈ N.

Remark 5. It may be useful to consider P [n, r,a] as the coefficient by the x−n in
the r-th power of series assigned to sequence a, especially when r is a nonnegative
integer, wherefrom following useful relations follow easily.

1. P [n, 0,a] = δn, n ∈ N0, where δn stands for a single-argument Kronecker
delta function.

2. P [n, 1,a] = an, n ∈ N0.

3. P [0, r,a] = ar0, r ∈ R.

The following auxiliary sequences will be used to express main results. Let

(10)
g := (1, a1, 0, a2, 0, a3, . . .)

h := (2,−1, a1, 0, a2, 0, a3, . . .).

and also
g̃ := (1,−a1, 0,−a2, 0,−a3, . . .)

h̃ := (2, 1, a1, 0, a2, 0, a3, . . .).

Let us denote by D(m,n, k) and S(m,n, k) terms which will appear within
the inner sums later in proof of Theorem 7:

D(m,n, k) = P [k, 2n, g̃]P [m− 2n− k,−2n+ 1, h̃](11)

− P [k, 2n,g]P [m− 2n− k,−2n+ 1,h],

S(m,n, k) = P [k, 2n, g̃]P [m− 2n− k,−2n+ 1, h̃](12)

+ P [k, 2n,g]P [m− 2n− k,−2n+ 1,h].

Some of the coefficients D(m,n, k) and S(m,n, k) are equal to zero because of the
relations between sequences g and g̃ and also h and h̃.
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Lemma 6. For m ∈ N0, n ∈ {0, 1, . . . , ⌊m
2 ⌋}, k ∈ {0, 1, . . . ,m− 2n}, it holds

(13) D(m,n, k) =

{
0, m even,

−2P [k, 2n,g]P [m− 2n− k,−2n+ 1,h], m odd,

and

(14) S(m,n, k) =

{
2P [k, 2n,g]P [m− 2n− k,−2n+ 1,h], m even,

0, m odd.

Proof. Let us define (generating) functions

G(x) =

∞∑
k=0

gkx
−k, G̃(x) =

∞∑
k=0

g̃kx
−k,

whose r-th power can be expressed as

[G(x)]r =

∞∑
j=0

P [j, r,g]x−j , [G̃(x)]r =

∞∑
j=0

P [j, r, g̃]x−j .

Connection between coefficients in the expansion of the power of functions G and G̃
can be established using underlying series A1, the generating function of a sequence
a = (a1, 0, a2, 0, . . .):

A1(x) =

∞∑
k=0

ak+1x
−2k.

It holds

[G(x)]r = (1 + x−1A1(x))
r =

∞∑
k=0

(
r

k

)
x−kA1(x)

k

=

∞∑
k=0

(
r

k

)
x−k

∞∑
l=0

P [l, k,a]x−2l =

∞∑
j=0

⌊ j
2 ⌋∑

l=0

(
r

j − 2l

)
P [l, j − 2l,a]x−j

and

[G̃(x)]r = (1− x−1A1(x))
r =

∞∑
k=0

(
r

k

)
(−1)kx−kA1(x)

k

=

∞∑
k=0

(
r

k

)
(−1)kx−k

∞∑
l=0

P [l, k,a]x−2l =

∞∑
j=0

(−1)j
⌊ j
2 ⌋∑

l=0

(
r

j − 2l

)
P [l, j − 2l,a]x−j

wherefrom it follows that

(15) P [j, r,g] = (−1)jP [j, r, g̃].
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Furthermore, let

H(x) =

∞∑
k=0

hkx
−k, H̃(x) =

∞∑
k=0

h̃kx
−k,

and also

[H(x)]r =

∞∑
j=0

P [j, r,h]x−j , [H̃(x)]r =

∞∑
j=0

P [j, r, h̃]x−j .

If A2 denotes the generating function of a sequence ã = (2, 0, a1, 0, a2, . . .):

A2(x) = 2 +
∞∑
k=1

akx
−2k,

then the r-th power of functions H and H̃ can be written as

[H(x)]r = (A2(x)− x−1)r = A2(x)
r(1− x−1A2(x)

−1)r

=

∞∑
k=0

(
r

k

)
(−1)kx−kA2(x)

r−k =

∞∑
k=0

(
r

k

)
(−1)kx−k

∞∑
l=0

P [l, r − k, ã]x−2l

=

∞∑
j=0

(−1)j
⌊ j
2 ⌋∑

l=0

(
r

j − 2l

)
P [l, r + 2l − j, ã]x−j

and similarly

[H̃(x)]r = A2(x)
r(1 + x−1A2(x)

−1)r =

∞∑
k=0

(
r

k

)
x−kA2(x)

r−k

=

∞∑
k=0

(
r

k

)
x−k

∞∑
l=0

P [l, r − k, ã]x−2l =

∞∑
j=0

⌊ j
2 ⌋∑

l=0

(
r

j − 2l

)
P [l, r + 2l − j, ã]x−j

wherefrom it follows that

(16) P [j, r,h] = (−1)jP [j, r, h̃].

Combining relations (15) and (16) with the definitions of D and S ((11) and (12))
gives the relations (13) and (14).
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3. MAIN RESULTS

In all three notions, stable, stabilizable and stabilized, the similar composi-
tion appears. The following theorem establishes the asymptotic expansion of the
resultant mean–map of K, N and M :

(17) R(x− t, x+ t) := R(K,N,M)(x− t, x+ t) ∼
∞∑

m=0

aRmt2mx−2m+1.

Afterwards, this composition will be used with R = K = N = M to obtain
the asymptotic expansion of stable mean M , with R = N to obtain the asymp-
totic expansion of (K,M)-stabilizable mean N , and with R = M to obtain the
asymptotic expansion of (K,N)-stabilized mean M .

Theorem 7. Let homogeneous symmetric means M , N and K have the asymptotic
expansions (7), (8) and (9). Then the coefficients (aRm)m∈N0 in the asymptotic
expansion (17) are given by the formula:

aRm =

m∑
n=0

aKn

m−n∑
k=0

P [k, 2n,d]P [m− n− k,−2n+ 1, s], m ∈ N0,(18)

where d = (dm)m∈N0
, s = (sm)m∈N0

, with

dm = −1

2

m∑
n=0

aNn

2m+1−2n∑
k=0

P [k, 2n,gM ]P [2m+ 1− 2n− k,−2n+ 1,hM ], m ∈ N0,

(19)

sm =
1

2

m∑
n=0

aNn

2m−2n∑
k=0

P [k, 2n,gM ]P [2m− 2n− k,−2n+ 1,hM ], m ∈ N0,

(20)

and gM and hM are defined as in (10) with am = aMm .

Proof. First, we shall start from the composition N
(
x − t,M(x − t, x + t)

)
. We

write arguments x − t and M = M(x − t, x + t) in form of difference and sum of
terms 1

2 (M −x+ t) and 1
2 (M +x− t). Then we apply expansion (8), substitute M

with its asymptotic expansion (7), use Lemma 4 and rearrange sums to obtain the
following:

N
(
x− t,M(x− t, x+ t)

)(21)

= N
(

1
2 (M + x− t)− 1

2 (M − x+ t), 1
2 (M + x− t) + 1

2 (M − x+ t)
)
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∼
∞∑

n=0

aNn

(
1
2 (M − x+ t)

)2n(
1
2 (M + x− t)

)−2n+1

∼ 1

2

∞∑
n=0

aNn

(
1 +

∞∑
k=1

aMk t2k−1x−2k+1

)2n(
2− t

x
+

∞∑
j=1

aMj t2jx−2j

)−2n+1

t2nx−2n+1

∼ 1

2

∞∑
n=0

aNn

∞∑
k=0

P [k, 2n,gM ]tkx−k
∞∑
j=0

P [j,−2n+ 1,hM ]tjx−jt2nx−2n+1

∼ 1

2

∞∑
m=0

⌊m
2 ⌋∑

n=0

aNn

m−2n∑
k=0

P [k, 2n,gM ]P [m− 2n− k,−2n+ 1,hM ]tmx−m+1.

With similar procedure, we have

N
(
M(x− t, x+ t), x+ t

)
∼

∞∑
n=0

aNn

(
1
2 (x+ t−M)

)2n(
1
2 (x+ t+M)

)−2n+1

(22)

∼ 1

2

∞∑
n=0

aNn

(
1−

∞∑
k=1

aMk t2k−1x−2k+1

)2n(
2 +

t

x
+

∞∑
j=1

aMj t2jx−2j

)−2n+1

t2nx−2n+1

∼ 1

2

∞∑
n=0

aNn

∞∑
k=0

P [k, 2n, g̃M ]tkx−k
∞∑
j=0

P [j,−2n+ 1, h̃M ]tjx−jt2nx−2n+1

∼ 1

2

∞∑
m=0

⌊m
2 ⌋∑

n=0

aNn

m−2n∑
k=0

P [k, 2n, g̃M ]P [m− 2n− k,−2n+ 1, h̃M ]tmx−m+1.

Now the left hand side in (17) can be written as

(23) K(X − T,X + T ) =

∞∑
n=0

aKn T 2nX−2n+1,

where X and T are such that their difference equals N(x − t,M) and their sum
equals N(M,x+ t), with M = M(x− t, x+ t). We may further analyze T and X.
With use of (21), (22), (11), (13) and (19) we obtain the following

T =
1

2

(
N(M(x− t, x+ t), x+ t)−N(x− t,M(x− t, x+ t))

)(24)

∼ 1

4

∞∑
m=0

⌊m
2 ⌋∑

n=0

aNn

m−2n∑
k=0

(
P [k, 2n, g̃M ]P [m− 2n− k,−2n+ 1, h̃M ]

− P [k, 2n,gM ]P [m− 2n− k,−2n+ 1,hM ]
)
tmx−m+1

∼ 1

4

∞∑
m=0

⌊m
2 ⌋∑

n=0

aNn

m−2n∑
k=0

D(m,n, k)tmx−m+1
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∼ 1

4

∞∑
m=0

m∑
n=0

aNn

2m+1−2n∑
k=0

D(2m+ 1, n, k)t2m+1x−2m

∼ −1

2

∞∑
m=0

m∑
n=0

aNn

2m+1−2n∑
k=0

P [k, 2n,gM ]P [2m+ 1− 2n− k,−2n+ 1,hM ]t2m+1x−2m

∼
∞∑

m=0

dmt2m+1x−2m

and similarly, with use of (21), (22), (12), (14) and (20) we obtain the following

X =
1

2

(
N
(
M(x− t, x+ t), x+ t

)
+N

(
x− t,M(x− t, x+ t)

))(25)

∼ 1

4

∞∑
m=0

⌊m
2 ⌋∑

n=0

aNn

m−2n∑
k=0

(
P [k, 2n, g̃M ]P [m− 2n− k,−2n+ 1, h̃M ]

+ P [k, 2n,gM ]P [m− 2n− k,−2n+ 1,hM ]
)
tmx−m+1

∼ 1

4

∞∑
m=0

⌊m
2 ⌋∑

n=0

aNn

m−2n∑
k=0

S(m,n, k)tmx−m+1

∼ 1

4

∞∑
m=0

m∑
n=0

aNn

2m−2n∑
k=0

S(2m,n, k)t2mx−2m+1

∼ 1

2

∞∑
m=0

m∑
n=0

aNn

2m−2n∑
k=0

P [k, 2n,gM ]P [2m− 2n− k,−2n+ 1,hM ]t2mx−2m+1

∼
∞∑

m=0

smt2mx−2m+1.

Finally, from (17), by including expansions of K (9), T (24) and X (25) in
(23), then using Lemma 4 and rearranging sums we obtain:

R = K(X − T,X + T )

∼
∞∑

n=0

aKn

( ∞∑
k=0

dkt
2k+1x−2k

)2n( ∞∑
j=0

sjt
2jx−2j+1

)−2n+1

∼
∞∑

n=0

aKn

( ∞∑
k=0

dkt
2kx−2k

)2n( ∞∑
j=0

sjt
2jx−2j

)−2n+1

t2nx−2n+1

∼
∞∑

n=0

aKn

∞∑
k=0

P [k, 2n,d]t2kx−2k
∞∑
j=0

P [j,−2n+ 1, s]t2jx−2jt2nx−2n+1
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∼
∞∑

m=0

m∑
n=0

aKn

m−n∑
k=0

P [k, 2n,d]P [m− n− k,−2n+ 1, s]t2mx−2m+1.

Remark 8. Asymptotic expansion of the composite mean K(N1, N2) has been de-
rived by Burić and Elezović ([6]) for two types of asymptotic power series, general
(
∑∞

n=0 γnt
nx−n+1) in Theorem 2.1. and symmetric (

∑∞
n=0 γnt

2nx−2n+1) in Theo-
rem 2.2. In our case means N1(s, t) = N(s,M(s, t)) and N2(s, t) = N(M(s, t), t)
are not symmetric and would require non-symmetric treatment. But due to the
specificity of the means N1 and N2, which is that while their difference is antisym-
metric, their sum is symmetric, in the end the composition K(N1, N2) is symmetric
for symmetric means K, N and M . Symmetric form of the asymptotic expansion
of K(N1, N2) would be difficult to deduce just by applying Theorem 2.1. from the
above mentioned paper so we needed to conduct the similar procedure starting
from the beginning in order to obtain the desired result.

According to Theorem 7, first few coefficients aRm are as follows:
(26)
aR0 = 1,

aR1 = 1
4

(
aK1 + 2aM1 + aN1

)
,

aR2 = 1
16

(
aK2 + 8aM2 + aN1 + 2aM1 (1 + 2aM1 )aN1 − aK1

(
3aN1 + aM1 (2 + 8aN1 )

)
+ aN2

)
,

aR3 = 1
64

(
aK3 + 32aM3 +

(
1− 2aM1 (1 + 2aM1 )2 + 8aM2 + 32aM1 aM2

)
aN1

− aK2
(
7aN1 + 2aM1 (3 + 8aN1 )

)
+ aK1

(
aN1 (−3 + 4aN1 )− 8aM2 (1 + 4aN1 )

+ 4(aM1 )2(1 + aN1 )(1 + 4aN1 ) + 2aM1 (aN1 (3 + 8aN1 )− 8aN2 )− 7aN2
)

+ 6aN2 + 6aM1 (3 + 4aM1 )aN2 + aN3

)
.

3.1 Stable means

In order to obtain asymptotic expansion of stable mean M we need to use Theorem
7 with R = N = K = M . The idea is to express coefficient am = aMm using lower
terms, i.e. in form of recursive relation.

Theorem 9. Let homogeneous symmetric stable mean M have the asymptotic ex-
pansion (5) with am = aMm . Then a0 = 1, a1 ∈ R and for m ≥ 2 coefficients am
are given by the recursive formula:

(27)

am =
22m−1

22m−2 − 1

(
1

2

m−1∑
n=1

an

2m−2n∑
k=0

P [k, 2n,g]P [2m− 2n− k,−2n+ 1,h]

+

m−1∑
n=1

an

m−n∑
k=0

P [k, 2n,d]P [m− n− k,−2n+ 1, s]

)
, m ≥ 2,
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where g and h are defined in (10) and d and s are defined by (19) and (20).

Proof. Proof is based on definition formula (2) with variables x− t and x+ t:

(28) M(x− t, x+ t) = M
(
M

(
x− t,M(x− t, x+ t)

)
,M

(
M(x− t, x+ t), x+ t

))
.

Proof is divided into three parts. The asymptotic expansion of the left hand side
has the form (5) while the coefficients in the asymptotic expansion of the right
hand side will be obtained as a consequence of Theorem 7. Then term am with
the highest index will be identified. The corresponding coefficients will be equated
wherefrom the recursive formula (27) will be deduced.
I. Asymptotic expansion of the right-hand side of (28). From Theorem 7, with
am = aMm = aNm = aKm, we have

(29) aRm =

m∑
n=0

an

m−n∑
k=0

P [k, 2n,d]P [m− n− k,−2n+ 1, s], m ∈ N0,

where

(30) dm = −1

2

m∑
n=0

an

2m+1−2n∑
k=0

P [k, 2n,g]P [2m+1−2n−k,−2n+1,h], m ∈ N0,

and

(31) sm =
1

2

m∑
n=0

an

2m−2n∑
k=0

P [k, 2n,g]P [2m− 2n− k,−2n+ 1,h], m ∈ N0.

II. Extracting higher indexed term am. In this step of the proof we shall detect
the higher indexed term of the sequence a contained in aRm. Simple computations
reveal that aR0 = 1 and aR1 = a1 as can also be seen from the list of coefficients
(26). For m ≥ 2 we may divide the sum on the right hand side of (29) into three
parts, n = 0, n ∈ {1, . . . ,m− 1} and n = m:

aRm = a0

m∑
k=0

P [k, 0,d]P [m− k, 1, s]

+

m−1∑
n=1

an

m−n∑
k=0

P [k, 2n,d]P [m− n− k,−2n+ 1, s]

+ amP [0, 2m,d]P [0,−2m+ 1, s].

According to Remark 5, P [k, 0,d] = δk, P [m, 1, s] = sm, P [0, 2m,d] = d2m0 and
P [0,−2m+ 1, s] = s−2m+1

0 and hence

aRm = a0sm +

m−1∑
n=1

an

m−n∑
k=0

P [k, 2n,d]P [m− n− k,−2n+ 1, s] + amd2m0 s−2m+1
0 .
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Using formula (31) for sm and substituting a0, d0 and s0 with 1, 1
2 and 1 respec-

tively, we obtain

aRm =
1

2

m∑
n=0

an

2m−2n∑
k=0

P [k, 2n,g]P [2m− 2n− k,−2n+ 1,h]

+

m−1∑
n=1

an

m−n∑
k=0

P [k, 2n,d]P [m− n− k,−2n+ 1, s] + 2−2mam.

We will divide the first sum into three parts, n = 0, n ∈ {1, . . . ,m− 1} and n = m,
where for n = 0 we have

1

2
a0

2m∑
k=0

P [k, 0,g]P [2m− k, 1,h] =
1

2
a0

2m∑
k=0

h2mδk =
1

2
a0

2m∑
k=0

amδk =
1

2
am,

and for n = m we have

1

2
amP [0, 2m,g]P [0,−2m+ 1,h] =

1

2
amg2m0 h−2m+1

0 = am2−2m.

Now we continue to analyze aRm with that information included and terms with am
grouped together:

(32)

aRm = (2−1 + 2−2m+1)am

+
1

2

m−1∑
n=1

an

2m−2n∑
k=0

P [k, 2n,g]P [2m− 2n− k,−2n+ 1,h]

+

m−1∑
n=1

an

m−n∑
k=0

P [k, 2n,d]P [m− n− k,−2n+ 1, s].

Let imax(·) denote the highest index i such that ai appears within term inside
the parenthesis. That is,

imax(gk) = ⌊k + 1

2
⌋, imax(hk) = ⌊k

2
⌋.

In (32), P [k, 2n,g] according to Lemma 4 depends only on finite sequence
(g0, . . . , gk) and hence

imax(P [k, 2n,g]) = max
j∈{0,...,k}

(imax(gj)) = ⌊k + 1

2
⌋.

Also P [2m − 2n − k,−2n + 1,h] from the same formula depends only on finite
sequence (h0, . . . , h2m−2n−k) and hence

imax(P [2m− 2n− k,−2n+ 1,h]) = max
j∈{0,...,2m−2n−k}

(imax(hj)) = ⌊m− n− k

2
⌋.
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The highest index that appears in sum in the second row of (32) is

imax

(m−1∑
n=1

an

2m−2n∑
k=0

P [k, 2n,g]P [2m− 2n− k,−2n+ 1,h]

)
≤ max

n∈{1,...,m−1}
k∈{0,...,2m−2n}

(m− 1, imax(P [k, 2n,g]), imax(P [2m− 2n− k,−2n+ 1,h])

= max
n∈{1,...,m−1}

k∈{0,...,2m−2n}

(
m− 1, ⌊k + 1

2
⌋, ⌊m− n− k

2
⌋
)

= m− 1.

Regarding the third row of (32) first we observe dm. From formula (30) we
have

−2dm = a0

2m+1∑
k=0

P [k, 0,g]P [2m+ 1− k, 1,h]

+

m∑
n=1

an

2m+1−2n∑
k=0

P [k, 2n,g]P [2m+ 1− 2n− k,−2n+ 1,h]

= h2m+1 +

m∑
n=1

an

2m+1−2n∑
k=0

P [k, 2n,g]P [2m+ 1− 2n− k,−2n+ 1,h],

and hence

imax(dm) ≤ max(imax(h2m+1),m, imax(g2m−1), imax(h2m−1)) = m.

From the discussion before we may also see that

imax(sm) = m.

Combining derived relations finally gives

imax

(m−1∑
n=1

an

m−n∑
k=0

P [k, 2n,d]P [m− n− k,−2n+ 1, s]

)
≤ max

n∈{1,...,m−1}
k∈{0,...,m−n}

(m− 1, imax(dk), imax(sm−n−k))

≤ max
n∈{1,...,m−1}
k∈{0,...,m−n}

(m− 1, k,m− n− k)

= m− 1.

III. Equating coefficients from the left-hand and the right-hand side of (28). For a
stable mean M , the expansions of the left and right side in (28) must be equal, that
is, am = aRm for m ∈ N0. Coefficient aR0 = 1 which is in agreement with property
(1). Next, we have free coefficient a1. Furthermore, the connection between aRm
and am for m ≥ 2 in (32) is also linear so equating those coefficients (32) finally
gives the relation (27) which completes the proof.
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For convenience, we give here the first few coefficients aRm:

(33)

aR0 = 1,

aR1 = a1,

aR2 = 1
16a1(1 + a1)(1− 4a1) +

5
8a2,

aR3 = 1
64 (1 + a1)

(
a1
(
1 + 2a1(−3 + 6a1 + 8a21)− 8a2

)
+ 6a2

)
+ 17

32a3,

aR4 = 1
256

(
−56a51 − 48a61 + 33a22 + 24a41(1 + 10a2)

+ a31(22 + 300a2) + 15(a2 + a3) + 3a21(−3 + 8a2 + 4a3)

+ a1
(
1 + 3a2(−7 + 32a2) + 18a3

))
+ 65

128a4.

For a stable mean coefficients aRm must be equal to am. Using (27) we obtain
asymptotic expansion of a stable mean. With successive substitutions done, all
the subsequent coefficients can be seen as polynomials in variable a1. Asymptotic
expansion up to five terms of a symmetric, homogeneous stable mean in variables
(x− t, x+ t) has the form:

(34)

M(x− t, x+ t) = x+ a1t
2x−1 + 1

6a1(1 + a1)(1− 4a1)t
4x−3

+ 1
90a1(1 + a1)

(
6− 31a1 + 36a21 + 64a31

)
t6x−5

+ 1
2520a1(1 + a1)

(
90− 531a1 + 937a21 + 568a31 − 3088a41 − 2176a51

)
t8x−7

+O(x−9).

Proposition 10. Bi-variate homogeneous symmetric mean M with asymptotic ex-
pansion (5) has the asymptotic expansion (6) where for s ̸= ±t

am(s, t) = 2−m

⌊m
2 ⌋∑

n=0

an

(
1− 2n

m− 2n

)
(t− s)

2n
(t+ s)

m−2n
, m ∈ N0.

Proof. Let α = t+s
2 and β = t−s

2 . Then

M(x+ s, x+ t) = M (x+ α− β, x+ α+ β)

=

∞∑
n=0

anβ
2n (x+ α)

−2n+1

=

∞∑
n=0

anβ
2nx−2n+1

∞∑
k=0

(
−2n+ 1

k

)
αkx−k

=

∞∑
m=0

⌊m
2 ⌋∑

n=0

an

(
1− 2n

m− 2n

)
β2nαm−2nx−m+1

and the proof is complete.
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Combining Proposition 10 with asymptotic expansion (34) we get the follow-
ing result.

Corollary 11. For a homogeneous symmetric stable mean M with asymptotic
expansion (5) holds

M(x+ s, x+ t) = x+ 1
2 (s+ t) + 1

4 (s− t)2a1x
−1 − 1

8 (s− t)2(s+ t)a1x
−2

+ 1
16

(
a1

(
s2 − t2

)2 − 1
6a1(a1 + 1)(4a1 − 1)(s− t)4

)
x−3

+ 1
64a1(s− t)2(s+ t)

(
(a1 + 1)(4a1 − 1)(s− t)2 − 2(s+ t)2

)
x−4

+ 1
64

(
(s− t)2(s+ t)4a1 − (s− t)4(s+ t)2a1(1 + a1)(−1 + 4a1)

+ 1
90 (s− t)6a1(1 + a1)(6 + a1(−31 + 4a1(9 + 16a1)))

)
x−5 +O(x−6).

3.2 Stabilizable means

Theorem 12. Let homogeneous symmetric means M , N and K have the asymp-
totic expansions (7), (8) and (9). Suppose K and M are stable means. Then the
coefficients (aNm)m∈N0 in the asymptotic expansion (8) of (K,M)-stabilizable mean
N are given by:

(35)

aN0 = 1,

aNm =
22m

22m − 1

[
1

2

m−1∑
n=0

aNn

2m−2n∑
k=0

P [k, 2n,gM ]P [2m− 2n− k,−2n+ 1,hM ]

+

m∑
n=1

aKn

m−n∑
k=0

P [k, 2n,d]P [m− n− k,−2n+ 1, s]

]
, m ∈ N,

where gM and hM are defined in (10) with am = aMm and d and s are defined by
(19) and (20).

Proof. From Theorem 7, with R = N and thereby aRm = aNm, m ∈ N0, we have

(36) aNm =

m∑
n=0

aKn

m−n∑
k=0

P [k, 2n,d]P [m− n− k,−2n+ 1, s], m ∈ N0.

For m = 0 in equation (36) we obtain that aN0 = 1 as expected. Now let m > 0.
First, we divide the sum into two parts, for n = 0 and n ∈ {1, . . . ,m}:

aNm = aK0

m∑
k=0

P [k, 0,d]P [m−k, 1, s]+

m∑
n=1

aKn

m−n∑
k=0

P [k, 2n,d]P [m−n−k,−2n+1, s].

According to Remark 5, the first part reduces and we have

aNm = sm +

m∑
n=1

aKn

m−n∑
k=0

P [k, 2n,d]P [m− n− k,−2n+ 1, s].
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Now we use formula (20) for sm

aNm =
1

2

m∑
n=0

aNn

2m−2n∑
k=0

P [k, 2n,gM ]P [2m− 2n− k,−2n+ 1,hM ]

+

m∑
n=1

aKn

m−n∑
k=0

P [k, 2n,d]P [m− n− k,−2n+ 1, s],

then divide the sum into two parts, for n = m and n ∈ {0, . . . ,m − 1}, and apply
conclusions from Remark 5. That is,

aNm =
1

2
aNmP [0, 2m,gM ]P [0,−2m+ 1,hM ]

+
1

2

m−1∑
n=0

aNn

2m−2n∑
k=0

P [k, 2n,gM ]P [2m− 2n− k,−2n+ 1,hM ]

+

m∑
n=1

aKn

m−n∑
k=0

P [k, 2n,d]P [m− n− k,−2n+ 1, s],

which with g0 = 1 and h0 = 2 reads as

aNm = 2−2maNm +
1

2

m−1∑
n=0

aNn

2m−2n∑
k=0

P [k, 2n,gM ]P [2m− 2n− k,−2n+ 1,hM ]

+

m∑
n=1

aKn

m−n∑
k=0

P [k, 2n,d]P [m− n− k,−2n+ 1, s]

wherefrom (35) follows easily.

Using formula (35) from Theorem 12 we obtain the coefficients of a mean N
such that (3) holds for given means K and M . Here is a list of the first few such
coefficients:

aN0 = 1,

aN1 = 1
3

(
aK1 + 2aM1

)
,

aN2 = 1
45

(
−2aK1 (6aM1 + 5)aM1 − (aK1 )2(8aM1 + 3) + aK1 + 3aK2

+ 8(aM1 )3 + 4(aM1 )2 + 2aM1 + 24aM2

)
aN3 = 1

2835

(
(aK1 )3

(
8aM1 (26aM1 + 23) + 41

)
+ 2(aK1 )2

(
aM1 (4aM1 (40aM1 + 81) + 61)− 5(48aM2 + 7)

)
− aK1

(
18aK2 (16aM1 + 7) + 408aM2 + 16aM1 (2aM1 (aM1 (3aM1 − 7)− 1)

+ 54aM2 + 11)− 21
)
− 6aK2

(
aM1 (68aM1 + 71)− 3

)
+ 45aK3
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+ 6aM1
(
32(aM1 )4 − 12(aM1 )2 + 16(16aM1 + 7)aM2 + 7

)
+ 144(aM2 + 10aM3 )

)
.

If we require that mean N is (K,M)-stabilizable then we must take into
account stability of K and M . When means K and M are stable, coefficients
aKm and aMm , m ≥ 2, can be expressed as polynomials in variables aK1 and aM1
respectively. From expansion (34) used with coefficients aKm and aMm we obtain
coefficients aNm with K and M stable:

(37)

aN0 = 1,

aN1 = 1
3

(
aK1 + 2aM1

)
,

aN2 = 1
90

(
−(aK1 )2(16aM1 + 9) + aK1

(
3− 4aM1 (6aM1 + 5)

)
− 4(aK1 )3 − 4aM1

(
4aM1 (aM1 + 1)− 3

))
aN3 = 1

5670

(
64(aK1 )5 + 4(aK1 )4(67 + 96aM1 )

+ 12aM1 (−1 + 2aM1 )(3 + 2aM1 )
(
−9 + 8aM1 (1 + aM1 )

)
+ 3(aK1 )3

(
63 + 8aM1 (51 + 40aM1 )

)
+ (aK1 )2

(
−225 + 2aM1 (207 + 4aM1 (273 + 160aM1 ))

)
+ 2aK1

(
27 + aM1

(
−315 + 8aM1

(
3 + 4aM1 (29 + 15aM1 )

))))
.

3.3 Stabilized means

Theorem 13. Let homogeneous symmetric means M , N and K have the asymp-
totic expansions (7), (8) and (9). Suppose K and N are stable means. Then the
coefficients (aMm )m∈N0

in the asymptotic expansion (7) of (K,N)-stabilized mean
M are given by:

(38)

aM0 = 1,

aMm =

m∑
n=1

aNn

2m−2n∑
k=0

P [k, 2n,gM ]P [2m− 2n− k,−2n+ 1,hM ]

+ 2

m∑
n=1

aKn

m−n∑
k=0

P [k, 2n,d]P [m− n− k,−2n+ 1, s], m ∈ N,

where gM and hM are given by (10) with am = aMm and d and s are defined by
(19) and (20).

Proof. Using formula (18) from Theorem 7, with R = M and thereby aRm = aMm ,
m ∈ N0, we obtain

aMm =

m∑
n=0

aKn

m−n∑
k=0

P [k, 2n,d]P [m− n− k,−2n+ 1, s].
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For m = 0 we obtain aM0 = 1 as expected. Now let m > 0. On the right hand side
for n = 0 we have aK0

∑m
k=0 P [k, 0,d]P [m − k, 1, s] where aK0 = 1, P [k, 0,d] = δk

and P [m, 1, s] = sm. Hence, the sum can be written as

aMm = sm +

m∑
n=1

aKn

m−n∑
k=0

P [k, 2n,d]P [m− n− k,−2n+ 1, s].

After replacing sm according to definition (20) and dividing it into two parts, for
n = 0 and n ≥ 1, we obtain

aMm =
1

2

m∑
n=0

aNn

2m−2n∑
k=0

P [k, 2n,gM ]P [2m− 2n− k,−2n+ 1,hM ]

+

m∑
n=1

aKn

m−n∑
k=0

P [k, 2n,d]P [m− n− k,−2n+ 1, s]

=
1

2
aMm +

1

2

m∑
n=1

aNn

2m−2n∑
k=0

P [k, 2n,gM ]P [2m− 2n− k,−2n+ 1,hM ]

+

m∑
n=1

aKn

m−n∑
k=0

P [k, 2n,d]P [m− n− k,−2n+ 1, s]

which after subtracting 1
2a

M
m and multiplying by 2 gives the desired result (38).

Using formula (38) from Theorem 13 we obtain coefficients in the asymptotic
expansion of a mean M such that equation (4) holds for a given means K and N .
Here are the first few of them:

aM0 = 1,

aM1 = 1
2

(
aK1 + aN1 ),

aM2 = 1
8

(
aK2 + aN1 + (aN1 )2 + (aN1 )3 − aK1 aN1 (3 + 2aN1 )− (aK1 )2(1 + 3aN1 ) + aN2

)
,

aM3 = 1
32

(
aK3 + (aK1 )3(1 + 2aN1 )(2 + 5aN1 ) + (aK1 )2

(
aN1

(
5 + 6aN1 (3 + aN1 )

)
− 2aN2

)
− aK1

(
2aK2 (2 + 5aN1 ) + aN1

(
5 + aN1

(
2 + aN1 + 2(aN1 )2

)
− 2aN2

)
− aN2

)
+ 6aN2

+ aN1
(
1− 3aK2 (3 + 2aN1 ) + 10aN2 + aN1

(
aN1 + 2(aN1 )2(1 + aN1 ) + 8aN2

))
+ aN3

)
.

In order for M to be (K,N)-stabilized, means K and N need to be stable
and therefore their coefficients obey the rule of stable means coefficients (34) and
can be expressed through aK1 and aN1 . Here are the first few coefficients in the
asymptotic expansion of (K,N)-stabilized mean M :
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(39)

aM0 = 1,

aM1 = 1
2 (a

K
1 + aN1 ),

aM2 = 1
48

(
−4(aK1 )3 − 9(aK1 )2(1 + 2aN1 )

+ aK1
(
1− 6aN1 (3 + 2aN1 )

)
+ aN1

(
7 + aN1 (3 + 2aN1 )

))
,

aM3 = 1
2880

(
64(aK1 )5 + 20(aK1 )4(17 + 30aN1 )

+ 5(aK1 )3
(
73 + 36aN1 (10 + 7aN1 )

)
+ 5(aK1 )2

(
−17 + 3aN1

(
45 + 44aN1 (3 + aN1 )

))
− 3aK1

(
−2 + 5aN1

(
38 + aN1

(
19 + 4aN1 (4 + 5aN1 )

)))
− aN1

(
−186 + aN1

(
145 + aN1

(
595 + 4aN1 (170 + 59aN1 )

))))
.

4. SIMULTANEOUSLY STABILIZABLE AND STABILIZED

In this section we will show how Theorems from Section 3 may be used to
derive some necessary conditions in the following interesting cases.

4.1 Simultaneously (K,M)-stabilizable and (M,K)-stabilizable

Let K and M be two stable means. If N is (K,M)-stabilizable and (M,K)-
stabilizable, then

1
3 (a

K
1 + 2aM1 ) = aN1 = 1

3 (a
M
1 + 2aK1 )

wherefrom it follows that aN1 = aM1 = aK1 and, because asymptotic expansion of
stable mean is completely determined by the coefficient with index 1, it holds that
aMm = aKm for all m ∈ N0. Calculating the next coefficients from the list (37) reveals
that

aN2 = 1
6a

N
1 (1 + aN1 )(1− 4aN1 ),

aN3 = 1
90a

N
1 (1 + aN1 )

(
6− 31aN1 + 36(aN1 )2 + 64(aN1 )3

)
,

which have the form of stable mean coefficients (34) suggesting N should also be
stable.

4.2 Simultaneously (K,N)-stabilized and (N,K)-stabilized

Let K and N be two stable means. Assume mean M is simultaneously (K,N)-
stabilized and (N,K)-stabilized. Observe the list of coefficients (39). Coefficient
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aM1 = 1
2 (a

K
1 +aN1 ) is symmetric in K and N . Furthermore, for m = 2 the following

equality must hold

aM2 = 1
48

(
−4(aK1 )3 − 9(aK1 )2(1 + 2aN1 ) + aK1

(
1− 6aN1 (3 + 2aN1 )

)
+ aN1

(
7 + aN1 (3 + 2aN1 )

))
= 1

48

(
−4(aN1 )3 − 9(aN1 )2(1 + 2aK1 ) + aN1

(
1− 6aK1 (3 + 2aK1 )

)
+ aK1

(
7 + aK1 (3 + 2aK1 )

))
wherefrom it follows

(aK1 − aN1 )(1 + aK1 + aN1 )2 = 0.

We have two possibilities. If aK1 = aN1 , then aM1 = aN1 = aK1 and aM2 has the
form of stable mean coefficient from (34) which suggests that M should be stable
and therefore (asymptotically) equal to K and N . If aK1 + aN1 = −1, then simple
computation yields

aM2 = − 1
2 , aM2 = − 1

8 , aM3 = − 1
16 , aM4 = − 5

128 , aM5 = − 7
256 .

These coefficients correspond to the first coefficients in the asymptotic expansion
of geometric mean which can be found in [12]. This correspondence suggests that
geometric mean is the only simultaneously (K,N)-stabilized and (N,K)-stabilized
mean for different stable means K and N . In that case an interesting equation
appears. If G is (K,N)-stabilized, using homogeneity of N and K

G(s, t) = K
(
N(s,

√
st), N(

√
st, t)

)
= K

(√
sN(

√
s,
√
t),

√
tN(

√
s,
√
t)
)

= N(
√
s,
√
t)K(

√
s,
√
t),

which implies that G is also (N,K)-stabilized. Additionally, by including s2 and
t2 instead of s and t, for s, t > 0, we obtain

st = G(s2, t2) = N(s, t)K(s, t)

and taking the square root the following equation follows

G = G(N,K)

which is also known as Gauss functional equation which defines compound mean
obtained with Gauss iterative procedure ([5, Ch.VI.3]) indicating that geometric
mean G is also compound mean of N and K, denoted by G = N ⊗K.

4.3 Simultaneously (K,N)-stabilizable and (K,N)-stabilized

Modifying formula (3) by interchanging M and N , from the list (37) we read
the first few coefficients of (K,N)-stabilizable mean M and by comparison with
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coefficients from the list (39) we obtain the necessary conditions for mean M to be
(K,N)-stabilizable and also (K,N)-stabilized. For m = 1 we have

1
3

(
aK1 + 2aN1

)
= aM1 = 1

2

(
aK1 + aN1 )

and hence aK1 = aN1 = aM1 . Since K and N are stable means and their asymptotic
expansions are completely determined by aK1 and aN1 it follows that aKm = aNm for
all m ∈ N0. Then, either by using that M is (K,N)-stabilizable or M is (K,N)-
stabilized, after replacing aK1 and aN1 by aM1 , we obtain that coefficients aM2 and
aM3 have the form of stable mean coefficients (34) indicating that M should also be
stable and (asymptotically) equal to K and N .

5. EXAMPLES AND APPLICATIONS

Based on the results of Theorem 9, we may easily see which are the necessary
conditions for a mean to be stable. This can be useful especially in the case of
parametric means such as Stolarsky and Gini means mentioned in the Introduc-
tion. In the paper [11] we have derived asymptotic expansion of some one and
two parameter classes of means which will be used to solve the open problem of
Räıssouli and to demonstrate the application of the main Theorem. More about
the mathematical means can be found in [5].

5.1 Power means

The r-th power mean is defined for all s, t > 0 by

Br(s, t) =


(
sr + tr

2

)1/r

, r ̸= 0,
√
st, r = 0.

For example, the special cases of this mean are arithmetic mean A = B1, quadratic
mean Q = B2 and harmonic mean H = B−1. Geometric mean G = B0 is obtained
as limit case of Br as r → 0. Easy computations reveal that power mean Mr is
stable for every r.

In paper [11], with α = 0 and β = t, we find the asymptotic expansion of the
r-th power mean:

(40) Br(x− t, x+ t) = x+ 1
2 (r−1)t2x−1− 1

24 (r−1)(r+1)(2r−3)t4x−3+O(x−5).

Asymptotic behavior of n-variable power means has been studied in [9]. Since
power mean is stable these coefficients satisfy the recursive formula (27).
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5.2 Gini means

The Gini means are defined for all s, t > 0 by

Gp,r(s, t) =



(
sp + tp

sr + tr

) 1
p−r

, p ̸= r,

exp

(
sp log s+ tp log t

sp + tp

)
, p = r ̸= 0,

√
st, p = r = 0.

for parameters p and r. These means were first introduced by Gini ([16]). Power
means belong to the class of power means as G0,r = Br and also Lehmer mean
Gr+1,r is a special case of Gini mean. Gini means are increasing with respect
to both p and r, logarithmically convex with respect to both p and r if (p, r) ∈
⟨−∞, 0⟩ × ⟨−∞, 0⟩ and logarithmically concave if (p, r) ∈ ⟨0,∞⟩ × ⟨0,∞⟩ ([39]).

In paper [11], with α = 0 and β = t, we find the asymptotic expansion of
Gini means:

Gp,r(x− t, x+ t) = x+ 1
2 (p+ r − 1)t2x−1 + 1

24

[(
−3− 2p3 + p2(3− 2r)

+ 2r + (3− 2r)r2 + p
(
2− 2(−3 + r)r

))]
t4x−3 +O(x−5).

By equating known coefficients of the asymptotic expansion of Gini means with
coefficients of stable mean (34), we see that

a1 = 1
2 (p+ r − 1)

1
6a1(1 + a1)(1− 4a1) =

1
24

[(
−3− 2p3 + p2(3− 2r) + 2r

+ (3− 2r)r2 + p
(
2− 2(−3 + r)r

))]
which is equivalent to

pr(p+ r) = 0.

Since G0,r = Br, Gp,0 = Bp and Gp,−p = B0 = G, we may conclude that the only
stable Gini means are power means.

5.3 Stolarsky means

The Stolarsky means, also called the extended means or difference mean values, is a
class of two-parameter means introduced by Stolarsky in [36]. Their properties were
studied by Leach and Sholander in [20, 21] and further by Páles [25] and others.
Interesting results regarding properties, monotonicity, Schur-convexity, logarithmic
convexity and comparison of Stolarsky means can also be found in [18, 26, 27,
28, 29, 35].
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The Stolarsky mean of order p, r is defined for all s, t > 0 by

Ep,r(s, t) =



[
r(tp−sp)
p(tr−sr)

]1/(p−r)

, p ̸= r, p, r ̸= 0,

1
e1/r

(
tt

r

ssr

)1/(tr−sr)

, r = p ̸= 0,[
tr−sr

r(log t−log s)

]1/r
, p = 0, r ̸= 0,

√
st, p = r = 0.

Special cases are obtained by limit procedure. It is symmetric both on t and
s as well as on p and r. Ep,r(s, t) increases with increase in either s or t and also
with increase in either p or r ([20]).

From paper [11], with α = 0 and β = t, we have:

Ep,r(x− t, x+ t) = x+ 1
6 (p+ r − 3)t2x−1 + 1

360

[
−45− 2p3 + p2(5− 2r)

+ r
(
10 + (5− 2r)r

)
− 2p

(
−5 + (−5 + r)r

)]
t4x−3 +O(x−5).

By comparing corresponding coefficients of Stolarsky with coefficients of sta-
ble mean, we see that

a1 = 1
6 (p+ r − 3)

1
6a1(1 + a1)(1− 4a1) =

1
360

[
−45− 2p3 + p2(5− 2r)

+ r
(
10 + (5− 2r)r

)
− 2p

(
−5 + (−5 + r)r

)]
which reduces to

(p− 2r)(2r − q)(p+ r) = 0.

Since E2r,r = Br, Ep,2p = Bp and Ep,−p = B0 = G, we may conclude that the only
stable Stolarsky means are again power means.

5.4 Generalized logarithmic mean

Let r be a real number. The generalized logarithmic mean ([37]) is defined for
s, t > 0 (s ̸= t) by

Lr(s, t) =



(
tr+1−sr+1

(r+1)(t−s)

)1/r

, r ̸= −1, 0,

t−s
log t−log s , r = −1,

1
e

(
tt

ss

)1/(t−s)

, r = 0.

with L−1 being the logarithmic and L0 the identric mean. It is Schur-convex for
r > 1 and Schur-concave for r < 1 ([10]).

The beginning of the asymptotic expansion of generalized logarithmic mean
([11]) reads as

Lr(x− t, x+ t) = x+ 1
6 (r − 1)t2x−1 − 1

360 (r − 1)(2r2 + 5r − 13)t4x−3 +O(x−5).
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In order for Lr to be stable its coefficients must coincide with stable mean coeffi-
cients (34), that is, the following conditions must hold

a1 = 1
6 (r − 1),

1
6a1(1 + a1)(1− 4a1) = − 1

360 (r − 1)(2r2 + 5r − 13),

which leads to the cubic equation with solutions r = 1, r = − 1
2 and r = −2. In each

of these three cases we have one of the power means, that is, L1 = A, L− 1
2
= B 1

2

and L−2 = G which are all stable.

Remark 14. Within classes of Gini, Stolarsky and generalized logarithmic mean
only power means are stable.

5.5 Stability and stabilizability with power means

Let us find coefficients for (K,M)-stabilizable meanN , whereK = Bp andM = Bq.
Combining coefficients of stabilizable mean (37) with those from (40) we find that
coefficients in the expansion of mean N which is stabilizable with pair of power
means (Bp, Bq) are:

(41)

aN0 = 1,

aN1 = 1
6 (p+ 2q − 3),

aN2 = 1
360

(
−45− 2p3 + p2(5− 8q) + 2p

(
5 + 2(5− 3q)q

)
+ 4q

(
5 + (5− 2q)q

))
.

Observe the list of coefficients (39), where K = Bp N = Bq and whose
coefficients can be obtained from (40). Then we obtain the coefficients of mean M
which is stabilized with pair of power means (Bp, Bq):

aM0 = 1,

aM1 = 1
4 (p+ q − 2),

aM2 = 1
192

(
−24− 2p3 + p2(6− 9q) + q(2 + q)(4 + q) + p

(
8− 6(−2 + q)q

))
.

5.6 Seiffert and Neuman-Sándor means

Let s, t > 0. The first, the second Seiffert mean ([5]) and the Neuman-Sándor mean
([24]) are defined by

P (s, t) =
t− s

2 arcsin t−s
t+s

, T (s, t) =
t− s

2 arctan t−s
t+s

, NS(s, t) =
t− s

2 arcsinh t−s
t+s

.

These means have been subject of investigation by many authors who explored
properties and found various bounds such can be seen in [22, 23] and references
therein.
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Asymptotic expansions of Seiffert means can be found in [38], with α = 0
and β = t:

P (x− t, x+ t) = x− 1
6 tx

−1 − 17
360 t

4x−3 − 367
15120 t

6x−5 +O(x−7),(42)

T (x− t, x+ t) = x+ 1
3 tx

−1 − 4
45 t

4x−3 + 44
945 t

6x−5 +O(x−7),

and the asymptotic expansion of the Neuman-Sándor mean was given in [13]:

(43) NS(x− t, x+ t) = x+ 1
6 tx

−1 − 17
360 t

4x−3 + 367
15120 t

6x−5 +O(x−7).

Assume P is (K,M)-stabilizable mean. Then comparing coefficients (42) with those
from list (37) yields

− 1
6 = 1

3 (a
K
1 + 2aM1 ),

and with aK1 = − 1
2 − 2aM1 , comparison of the second coefficients yields

− 17
360 = − 1

360 (13 + 32(aM1 )2)

or equivalently aM1 = ± 1√
8
. Each of these two values leads to contradiction when

comparing the third coefficients.

By the same procedure we may obtain that the second Seiffert and the
Neuman-Sándor mean are also not stabilizable.

5.7 Asymptotic inequalities and sub-stabilizability with power
means

Let us observe the difference between the first Seiffert mean P and the resultant
mean-map R(K,N,M) with K = Bp and M = Bq. According to (26), (40) and
(42), its asymptotic expansion reads as

P (x− t, x+ t)−R(Bp, P,Bq)(x− t, x+ t) = − 1
8 (p+ 2q − 2) t2x−1

+ 1
384

(
2p3 − 3p2 + 4p(q − 3) + 4q(q − 2)(4q + 3) + 24

)
t4x−3 +O(x−5).

The best approximation is obtained when the coefficient in the first parentheses
is equal to zero, i.e. when p = 2 − 2q. For such relation between q and p the
asymptotic expansion of a difference reads as

P (x− t, x+ t)−R(Bp, P,Bq)(x− t, x+ t) = 1
96 (1− 4q + 2q2)t4x−3

+ 1
2880

(
23− q(q(20(q − 3)q + 9) + 72)

)
t6x−5 +O(x−7).

Again, from equating the first coefficient with zero, we obtain two solutions of

quadratic equation: q1,2 = 1±
√
2
2 . For either one of these solutions, the asymptotic

expansion of a difference is

P (x− t, x+ t)−R(Bp, P,Bq)(x− t, x+ t) = 1
1152 t

6x−5 +O(x−7),
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and thereby the difference is asymptotically greater than 0:

P −R(Bp, P,Bq) ≻ 0,

which means that the necessary condition for the inequality P > R(Bp, P,Bq) is

fulfilled. If P is (Bp, Bq)-sub-stabilizable for (p, q) = (±
√
2, 1 ∓

√
2
2 ), then those

parameters are optimal. Numerical experiments and plotting the graph of a differ-
ence P (s, 1− s)−R(Bp, P,Bq)(s, 1− s), s ∈ [0, 1], indicate that mean P should be
(Bp, Bq)-sub-stabilizable for these p and q.

Observe the difference between the Neuman-Sándor mean NS and the resul-
tant mean-map R(K,NS,M) with K = Bp and M = Bq. Similarly as before, using
(26), (40) and (43), its asymptotic expansion reads as

NS(x− t, x+ t)−R(Bp, NS,Bq)(x− t, x+ t) = 1
8 (4− p− 2q)t2x−1

+ 1
384

(
2p3 − 3p2 + 4p(5q − 4) + 4q(q(4q − 7)− 8) + 20

)
t4x−3 +O(x−5).

The best approximation is obtained when the coefficient in the first parentheses
is equal to zero, i.e. when p = 4 − 2q. For such relation between q and p the
asymptotic expansion of a difference reads as

NS(x− t, x+ t)−R(Bp, NS,Bq)(x− t, x+ t) = 1
96 (9− 16q + 4q2)t4x−3

+ 1
2880

(
−40q4 + 240q3 − 459q2 + 376q − 51

)
t6x−5 +O(x−7).

Again, from equating the next coefficient with zero, we obtain two solutions of

quadratic equation: q1,2 = 2±
√
7
2 . For either one of these solutions, the following

holds

NS(x− t, x+ t)−R(Bp, NS,Bq)(x− t, x+ t) = 79
3840 t

6x−5 +O(x−7),

which means that difference is asymptotically greater than 0:

NS −R(Bp, NS,Bq) ≻ 0.

The necessary condition for the inequality NS > R(Bp, NS,Bq) is fulfilled. If

NS is (Bp, Bq)-sub-stabilizable for (p, q) = (±
√
7, 2 ∓

√
7
2 ), then those parameters

are the best possible. Numerical experiments and plotting the graph of a difference
NS−R(Bp, NS,Bq) on line (s, 1−s), s ∈ [0, 1], indicate that NS should be (Bp, Bq)-
sub-stabilizable for these p and q.

Similar procedure for the second Seiffert mean T , i.e. equating two coefficients
with zero, does not give the difference that is always greater than 0. If only one
coefficient is equated with zero, or equivalently p = 5−2q, then the next coefficient
is a2 = 1

96 (5q
2 − 25q + 22). The problem of finding best parameters is reduced

to finding q which minimizes the expression a2, with |10q − 25| ≥
√
185, and that

inequality T −R(Bp, T, Bq) > 0 still holds.

Notice that this approach enables us to treat similar problems with super-
stability and with other parametric means involved as well.
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6. CONCLUSION

In this paper we have derived the complete asymptotic expansions of the re-
sultant mean-map and consequently obtained the asymptotic expansion of stable
(balanced) mean. Furthermore, we obtained the asymptotic expansion of stabiliz-
able and stabilized means. All the asymptotic expansions were given in a form of
recursive relations for their coefficients. Besides the form of Theorems presented
in Section 3, given asymptotic expansions may be used to obtain any unknown of
three means involved in stabilizability problem. Significance of the main results
has been shown by examples of various types.

Based on the asymptotic equalities and observations from Section 4 we may
state the following.

Conjecture 15. 1. If meanN is simultaneously (K,M) and (M,K)-stabilizable,
then N = K = M .

2. If mean M is simultaneously (K,N) and (N,K)-stabilized, then either M =
K = N or M = G = K ⊗N .

3. If mean M is simultaneously (K,N)-stabilizable and (K,N)-stabilized, then
M = K = N .

Notice we have proved the asymptotic equality between K and M in 1., and
between K and N in parts 2. and 3.

Regarding questions from the Introduction, based on reasoning from Section
5, we may state the following.

a. All pairs (p, q) such that Gini means are stable are {(0, q), (p, 0), (p,−p)}. All
pairs (p, q) such that Stolarsky means are stable are {(2q, q), (p, 2p), (p,−p)}.
In addition, all parameters r such that generalized logarithmic means are
stable are {−2,− 1

2 , 1}.

b. The first Seiffert mean P is not stabilizable as well as the second Seiffert mean
T and the Neuman-Sándor mean NS.

c. If P is (Bp, Bq)-sub-stabilizable for (p, q) = (±
√
2, 1 ∓

√
2
2 ), then those pa-

rameters are the best possible.

d. If NS is (Bp, Bq)-sub-stabilizable for (p, q) = (±
√
7, 2 ∓

√
7
2 ), then those pa-

rameters are the best possible.

Methods presented in this paper can be used to obtain valuable informa-
tion regarding means involved in other similar problems defined through functional
equations, especially when the explicit solution is not easy to find.

Acknowledgements. The author is grateful to the anonymous referees for
their valuable comments.
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8. N. Elezović Asymptotic inequalities and comparison of classical means, J. Math.
Inequal., 9(1), 177–196, 2015.
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