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THE BEST POSSIBLE CONSTANTS APPROACH
FOR WILKER-CUSA-HUYGENS INEQUALITIES

VIA STRATIFICATION

Bojan Banjac, Branko Malešević, Miloš Mićović ∗,
Bojana Mihailović and Milica Savatović

In this paper, we generalize Cristinel Mortici’s results on Wilker-Cusa-
Huygens inequalities using stratified families of functions and SimTheP –
a system for automated proving of MTP inequalities.

1. INTRODUCTION

The basis of this research is well-known C. Mortici’s paper [1] in which the
following theorems were proved:

Theorem 1. For every x ∈ (0, π/2), we have:

− 1

15
x4 < cosx−

(
sinx

x

)3

< − 1

15
x4 +

23

1890
x6 .

Theorem 2. For every x ∈ (0, π/2), we have:

− 1

180
x4 <

sinx

x
− cosx+ 2

3
< − 1

180
x4 +

1

3780
x6 .

Theorem 3. For every x ∈ (0, π/2), we have:
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x6

)
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x
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Theorem 4. For every x ∈ (0, π/2), we have:

2 +

(
8

45
x4 − 4

105
x6

)
1

cosx
<

(
sinx

x

)2

+
tanx

x
< 2 +

8

45 cosx
x4 .

Theorem 5. For every x ∈ (0, π/2), we have:( x

sinx

)2

+
x

tanx
> 2 +

2

45
x4 .

Theorem 6. For every x ∈ (0, π/2), we have:

3
x

sinx
+ cosx > 4 +

1

10
x4 +

1

210
x6 .

Using a method based on the stratified families of functions described in the
paper [2], we show that it is possible to enhance inequalities presented in Theorems
1-6 up to the level of the best possible constants. Also, we show that from some
of the introduced families of functions, it is possible to single out corresponding
minimax approximations.

In Section 2, preliminaries on stratified families of functions and a method for
proving MTP inequalities are presented. This method for proving MTP inequalities
forms the basis of SimTheP – automated theorem prover for MTP inequalities.
The main results of the paper are provided in Section 3. Section 4 presents the
conclusion. At the end of the paper, an Appendix is included, which contains proofs
obtained using SimTheP.

2. PRELIMINARIES

In this section, we present assertions from the paper [2] and a method from
the paper [3] on the basis of which our main results will be obtained.

2.1. STRATIFIED FAMILIES OF FUNCTIONS

Let
φp(x) : (a, b) −→ R

be a family of functions with a variable x ∈ (a, b) and a parameter p ∈ R+.

A family of functions φp(x) is increasingly stratified if

(∀p1, p2 ∈ R+) p1<p2 ⇐⇒ φp1
(x)<φp2

(x)

holds for any x∈(a, b) and, conversely, it is decreasingly stratified if

(∀p1, p2∈R+) p1<p2 ⇐⇒ φp1
(x)>φp2

(x)

holds for any x∈(a, b).



246 B. Banjac, B. Malešević, M. Mićović, B. Mihailović and M. Savatović

In this paper, we call sup
x∈(a,b)

|φp(x)| an error and denote it by d(p).

In [2], the conditions for the existence of a unique value p0 of the parameter
p ∈ R+, for which an infimum of the error is attained, are considered. Such infimum
is denoted by

d0 = inf
p∈R+

sup
x∈(a,b)

|φp(x)|.

For such a value p0, the function φp0(x) is called the minimax approximant on (a, b).

Theorem 7. (Theorem 1 [2]) Let φp(x) be a family of functions that are continuous
with respect to x∈ (a, b) for each p∈R+ and increasingly stratified for p∈R+, and
let c, d be in R+ such that c < d. If :

(a) φc(x) < 0 and φd(x) > 0 for all x ∈ (a, b), and at the endpoints φc(a+) =
φc(b−) = φd(a+) = 0 and φd(b−)∈R+ hold;

(b) the functions φp(x) are continuous with respect to p∈(c, d) for each x∈(a, b)
and φp(b−) is continuous with respect to p∈(c, d) too;

(c) for all p ∈ (c, d), there exists a right neighbourhood of the point a in which
φp(x)<0 holds;

(d) for all p∈ (c, d) the function φp(x) has exactly one extremum t(p) on (a, b),
which is minimum;

then there exists exactly one solution p0, for p∈R+, of the following equation

|φp(t
(p))| = φp(b−)

and for d0 = |φp0
(t(p0))| = φp0

(b−) we have

d0 = inf
p∈R+

sup
x∈(a, b)

|φp(x)| .

The analogous theorem can be stated for decreasingly stratified families of
functions.

Theorem 7’ (Theorem 1’ [2]) Let φp(x) be a family of functions that are contin-
uous with respect to x∈(a, b) for each p∈R+ and decreasingly stratified for p∈R+,
and let c, d be in R+ such that c < d. If :

(a) φc(x) > 0 and φd(x) < 0 for all x ∈ (a, b), and at the endpoints φc(a+) =
φd(b−) = φd(a+) = 0 and φc(b−)∈R+ hold;

(b) the functions φp(x) are continuous with respect to p∈(c, d) for each x∈(a, b)
and φp(b−) is continuous with respect to p∈(c, d) too;

(c) for all p ∈ (c, d), there exists a right neighbourhood of the point a in which
φp(x)<0 holds;
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(d) for all p∈ (c, d) the function φp(x) has exactly one extremum t(p) on (a, b),
which is minimum;

then there exists exactly one solution p0, for p∈R+, of the following equation

|φp(t
(p))| = φp(b−)

and for d0 = |φp0
(t(p0))| = φp0

(b−) we have

d0 = inf
p∈R+

sup
x∈(a, b)

|φp(x)| .

Theorem 8. (Nike theorem, Theorem 3 [2], Theorem 2.1. [4]) Let f : (0, c) −→ R
be m times differentiable function (for some m≥2, m∈N) satisfying the following
conditions:

(a) f (m)(x)>0 for x∈(0, c);

(b) there is a right neighbourhood of zero in which the following inequalities are
true:

f < 0, f ′ < 0, . . . , f (m−1) < 0;

(c) there is a left neighbourhood of c in which the following inequalities are true:

f > 0, f ′ > 0, . . . , f (m−1) > 0.

Then the function f has exactly one zero x0 ∈ (0, c), and f(x)< 0 for x ∈ (0, x0)
and f(x)> 0 for x ∈ (x0, c). Also, the function f has exactly one local minimum
on the interval (0, c). More precisely, there is exactly one point t ∈ (0, c)

(
in fact

t∈(0, x0)
)
such that f(t)<0 is the smallest value of the function f on the interval

(0, c) and particularly on (0, x0).

In a case when it is not possible to apply the Nike theorem, the following
theorem is applied, which gives sufficient conditions that the function on the interval
has exactly one zero and exactly one minimum (see section 3).

Theorem 9. (The Second Nike theorem, Theorem 4 [2]) Let f : (0, c) −→ R be
m times differentiable function

(
for some m≥2, m∈N

)
satisfying the following

conditions:

(a) f (m) has exactly one zero xm on (0, c) such that f (m)>0 on (0, xm) and
f (m) < 0 on (xm, c);

(b) there is a right neighbourhood of zero in which the following inequalities
are true:

f < 0, f ′ < 0, ..., f (m−1) < 0;

(c) there is a left neighbourhood of c in which the following inequalities are
true:

f > 0, f ′ > 0, ..., f (m−1) > 0.



248 B. Banjac, B. Malešević, M. Mićović, B. Mihailović and M. Savatović

Then the function f has exactly one zero x0∈(0, c) and f(x)<0 for x∈(0, x0) and
f(x)> 0 for x∈ (x0, c). The function f has exactly one minimum on the interval
(0, c), i.e. there is exactly one point t∈ (0, c)

(
in fact t∈ (0, x0)

)
such that f(t)<0

is the smallest value of the function f on the interval (0, c) and particularly on
(0, x0).

Remark 1. Let us emphasize that the previous two forms of the Nike theorem
ensure the existence of a minimax approximant. Also, these two theorems claim
that the local minimum at t is the only extremum of the function f on (0, c), which
is shown in their proofs (see [2]).

The topic of stratification appears in the recently published papers [5]-[8].

2.2. A METHOD FOR PROVING MTP INEQUALITIES

MTP – Mixed Trigonometric Polynomial function is determined by:

f(x) =

n∑
i=1

αix
pi cosqix sinrix ,

where x ∈ S ⊆ R (S is an open or closed interval), αi ∈ R\{0}, pi, qi, ri ∈ N0 and
n∈N. The corresponding inequality

f(x) > 0 ,

where x ∈ S, is called an MTP inequality.

MTP functions were originally considered through MTP systems of such func-
tions involving multiple variables, see [9]. In the article [3], the previous definitions
of MTP function and MTP inequality were introduced. Moreover, in that article,
a method for proving MTP inequalities on the base interval (0, π/2) was presented.
The method is based on Maclaurin approximations of the sine and cosine func-
tions. Let us emphasize that in [10], a method for proving MTP inequalities on
the base interval, based on the universal trigonometric substitution and Maclaurin
approximations, was presented, see also [11]. It is noteworthy that both methods
have been applied earlier in numerous papers and monographs, see, for example,
[1], [12], [13]. The topic of MTP functions and stratified families of functions has
been the subject of recently defended doctoral dissertations [14], [15], [16].

In further consideration, let f(x) be an MTP function with rational coef-
ficients. The method for proving MTP inequalities from the paper [3] has been
computationally implemented through the doctoral dissertation [15]. For methods
for proving inequalities by computer, see also the papers [17] and [18]. The com-
puter implementation from [15], called SimTheP, proves MTP inequalities on the
interval S⊆ [0, π/2], providing users with the proof in four stages. Therefore, we
will outline the method through a brief description of each of these stages based on
the papers [3], [7], [19].
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I Recognition of possible case

In the first phase, the hypothesis f(x) > 0 on S is tested based on the values
of the function at the boundary points of the interval.

II Transformation of angles

In this phase, each addend of the MTP function f(x) undergoes the sub-
stitution of the expression cosnx sinmx (n,m ∈N0) into a sum of sine and cosine
functions of multiple angles according to Table 1. These substitutions were proven
in the paper [3].

Table 1: Substitutions of terms xpi cosqix sinrix, see Table 1 from [19]

cosnx sinmx
n = qi m = ri Substitution

even even

n
2 +m

2 −1∑
k=0

k∑
j=0

(−1)
m
2 +k+j

(
n
j

)(
m

k−j

)
cos ((n+m− 2k)x)

2n+m−1

+

n
2 +m

2∑
j=0

(−1)m+n
2 +j

(
n
j

)(
m

n
2 +m

2 −j

)
2n+m

odd even

n
2 +m

2 − 1
2∑

k=0

k∑
j=0

(−1)
m
2 +k+j

(
n
j

)(
m

k−j

)
cos ((n+m− 2k)x)

2n+m−1

even odd

n
2 +m

2 − 1
2∑

k=0

k∑
j=0

(−1)
m
2 +k+j− 1

2

(
n
j

)(
m

k−j

)
sin ((n+m− 2k)x)

2n+m−1

odd odd

n
2 +m

2 −1∑
k=0

k∑
j=0

(−1)
m
2 +k+j− 1

2

(
n
j

)(
m

k−j

)
sin ((n+m− 2k)x)

2n+m−1

The initial MTP function is transformed into the equivalent form:

(1) f(x) =

n∑
i=1

αi x
pi

 mi∑
k=0

θk trig
(qi,ri)
k

(
(qi − ri − 2k)x︸ ︷︷ ︸

(=t)

) ,

where

trig
(qi,ri)
k =

{
cos : qi-odd, ri-even or qi-even, ri-even

sin : qi-odd, ri-odd or qi-even, ri-odd

and

mi = mi(qi, ri) =

⌈
qi + ri

2

⌉
− 1.
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III Determination of downward rational polynomial approximation

During this phase, it is necessary to determine a downward polynomial ap-
proximation with rational coefficients of the MTP function (1).

Let us specify the general concept of downward/upward polynomial approx-
imation of a function. Let ϕ(x) : A −→ R be any function defined over A ⊆ R.
The downward polynomial approximation of the function ϕ(x) over B ⊆ A is a
polynomial P (x) such that

(∀x ∈ B)ϕ(x) ≥ P (x) ,

denoted by P (x). Similarly, the upward polynomial approximation of the function
ϕ(x) over B ⊆ A is a polynomial P (x) such that

(∀x ∈ B)ϕ(x) ≤ P (x) ,

denoted by P (x).

In the following Lemma from the paper [7], we provide some upward and
downward polynomial approximations of the sine and cosine functions. These as-
sertions were proven in the paper [3].

Lemma 1. (Lemma 1 [7]) It holds:

(a) For the polynomial

Tn(t) =

(n−1)/2∑
i=0

(−1)it2i+1

(2i+ 1)!
,

where n = 4k + 1, k∈N0 , it holds:(
∀t ∈

[
0,
√
(n+ 3)(n+ 4)

])
Tn(t) ≥ Tn+4(t) ≥ sin t ,(

∀t ∈
[
−
√
(n+ 3)(n+ 4), 0

])
Tn(t) ≤ Tn+4(t) ≤ sin t .

For t = 0, the inequalities turn into equalities. For t = ±
√

(n+ 3)(n+ 4), the
equalities Tn(t) = Tn+4(t) and Tn(t) = Tn+4(t) hold, respectively.

(b) For the polynomial

Tn(t) =

(n−1)/2∑
i=0

(−1)it2i+1

(2i+ 1)!
,

where n = 4k + 3, k∈N0 , it holds:(
∀t ∈

[
0,
√
(n+ 3)(n+ 4)

])
Tn(t) ≤ Tn+4(t) ≤ sin t ,(

∀t ∈
[
−
√
(n+ 3)(n+ 4), 0

])
Tn(t) ≥ Tn+4(t) ≥ sin t .
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For t = 0, the inequalities turn into equalities. For t = ±
√
(n+ 3)(n+ 4), the

equalities Tn(t) = Tn+4(t) and Tn(t) = Tn+4(t) hold, respectively.

(c) For the polynomial

Tn(t) =

n/2∑
i=0

(−1)it2i

(2i)!
,

where n = 4k, k∈N0 , it holds:(
∀t ∈

[
−
√

(n+ 3)(n+ 4),
√
(n+ 3)(n+ 4)

])
Tn(t) ≥ Tn+4(t) ≥ cos t .

For t = 0, the inequalities turn into equalities. For t = ±
√

(n+ 3)(n+ 4), the
equality Tn(t) = Tn+4(t) holds.

(d) For the polynomial

Tn(t) =

n/2∑
i=0

(−1)it2i

(2i)!
,

where n = 4k + 2, k∈N0 , it holds:(
∀t ∈

[
−
√

(n+ 3)(n+ 4),
√
(n+ 3)(n+ 4)

])
Tn(t) ≤ Tn+4(t) ≤ cos t .

For t = 0, the inequalities turn into equalities. For t = ±
√

(n+ 3)(n+ 4), the
equality Tn(t) = Tn+4(t) holds.

Let Tϕ,a
n (x) denote the Taylor expansion of order n of some analytic function

ϕ in the neighbourhood of some point a.

With the aim of obtaining a downward polynomial approximation P (x) of
the MTP function f(x), we approximate each addend of the function (1) by a
Maclaurin polynomial using the following estimates:

(∗)



αiθk > 0 : cos t > T cos,0
4ℓ1+2(x),

αiθk < 0 : cos t < T cos,0
4ℓ2

(x),

αiθk > 0 : sin t > T sin,0
4ℓ3+3(x),

αiθk < 0 : sin t < T sin,0
4ℓ4+1(x);

where t = (qi − ri − 2k)x and ℓ1,2,3,4∈N0.

By applying (∗), we determine a polynomial P (x) such that

f(x) > P (x)

for x∈S. If there exists a polynomial P (x) with rational coefficients such that

P (x) > 0

for x∈S, then
f(x) > 0

for x∈S.
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If the coefficients of the MTP function f(x) are not rational numbers but
computable real numbers, then we could determine a downward polynomial ap-
proximation with rational numbers, see the paper [20].

IV The final part

For real polynomials defined over a segment with endpoints where the poly-
nomial does not have zero, Sturm’s theorem provides the number of roots on such
a segment, see, for example, Theorem 4.1 [21] or originally [22]. It is particularly
noteworthy that for polynomial functions with rational coefficients defined over a
segment with rational endpoints, according to Theorem 4.2 [21], the problem of
determining the number of roots over that segment is an algorithmically decidable
problem. For such polynomial functions, if we obtain a proof of positivity using
Sturm’s theorem, we can consider it as an effective proof by finite procedures that
can be manually verified.

In the third part, P (x) is determined as a polynomial with rational coeffi-
cients. If S is not a segment with rational endpoints or the polynomial P (x) has a
root at the boundary points of the segment S, we consider the polynomial over an
extended segment with rational endpoints, see [23]. It is always possible to choose
such a segment with rational endpoints that the polynomial P (x) does not have
a root at the boundary points of that segment. If the number of roots does not
increase over such an extended segment, and we know whether the polynomial has
a root at the boundary points of the segment S, then we also have an effective proof
of the polynomial inequality P (x) > 0 over S by applying Sturm’s theorem.

Let us emphasize that proofs based on the Sturm algorithm are absolutely
theoretically rigorous, as pointed out in the paper [24], see also [25]-[27].

In Appendix sections A1 and A4 - A7, we prove MTP inequalities f(x) > 0
over the base interval (0, π/2), while in section A2, we prove MTP inequality over
the interval (0, 1] and in A3 over the interval [1, π/2].

3. MAIN RESULTS

According to the paper [2], the following statements, which are improvements
of Theorems 1–6 from the paper [1], are proved. Note that the automatic prover
SimTheP was utilized for proving the MTP inequalities. The results obtained by
this prover are provided in the Appendix.

Improvement of Theorem 1

Lemma 2. The family of functions

φp(x) = − cosx +

(
sinx

x

)3

− 1

15
x4 + p x6

(
for x ∈

(
0,

π

2

))
is increasingly stratified with respect to parameter p∈R+.
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Let us introduce the function g(x) so that the equivalence

φp(x) = 0 ⇐⇒ p = g(x), x ∈
(
0,

π

2

)
, p ∈ R+

holds. Then

g(x) =
x7 + 15x3 cosx− 15 sin3 x

15x9
, x ∈

(
0,

π

2

)
.

Note that

φp(x) =
(
p− g(x)

)
x6 .

Lemma 3. The function g(x) is strictly decreasing for x ∈ (0, π/2).

Proof. Let us notice that the derivative g′ is

g′(x)=
45x cos3x−135 cos2x sinx−

(
90x3+45x

)
cosx−15x4 sinx+135 sinx−2x7

15x10
.

It holds

g′(x) < 0, x ∈
(
0,

π

2

)
⇐⇒ f(x) > 0, x ∈

(
0,

π

2

)
,

where

f(x) = 2x7−45x cos3x+135 cos2x sinx+
(
90x3+45x

)
cosx+15x4 sinx−135 sinx.

According to [3], there exists proof that the MTP function f is positive for x ∈
(0, π/2). The proof is given in Appendix A1.

Statement 1. Let

A =
4π7 − 7680

15π9
= 0.0098430 . . . and B =

23

1890
= 0.012169 . . . .

Then, it holds:

(i) If p ∈ (0, A], then

x ∈
(
0,

π

2

)
=⇒ − 1

15
x4 + px6 ≤ − 1

15
x4 +Ax6 < cosx−

(
sinx

x

)3

.

(ii) If p ∈ (A,B), then φp(x) has exactly one zero x
(p)
0 on (0, π/2). Also,

x ∈
(
0, x

(p)
0

)
=⇒ − 1

15
x4 + p x6 < cosx−

(
sinx

x

)3

and
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x ∈
(
x
(p)
0 ,

π

2

)
=⇒ cosx−

(
sinx

x

)3

< − 1

15
x4 + p x6

hold.

(iii) If p ∈ [B,∞), then

x ∈
(
0,

π

2

)
=⇒ cosx−

(
sinx

x

)3

< − 1

15
x4 +Bx6 ≤ − 1

15
x4 + px6.

(iv) There is exactly one solution to the following equation∣∣∣φp

(
t(p)

)∣∣∣ = φp

(π
2
−
)
,

where t(p) is a minimum of φp(x) on (0, π/2), with respect to parameter p∈(A,B),
which is numerically determined as

p0 = 0.010004 . . . .

For the value

d0 =
∣∣∣φp0

(
t(p0)

)∣∣∣ = φp0

(π
2
−
)
= 0.0024209 . . . ,

the following holds

d0 = inf
p∈R+

sup
x∈(0,π/2)

|φp(x)|.

(v) For the value p0 = 0.010004 . . . , the minimax approximant of the family is
determined as

φp0(x) = − cosx+

(
sinx

x

)3

− 1

15
x4 + 0.010004 . . . x6

and it determines the corresponding minimax approximation

cosx−
(
sinx

x

)3

≈ − 1

15
x4 + 0.010004 . . . x6 .

Proof. This statement is based on the results of the paper [1] and the fact that

A = lim
x→π/2−

g(x) and B = lim
x→0+

g(x) .

The function g(x) is continuous and, according to Lemma 3, strictly decreasing on
(0, π/2).
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(i) If p ∈ (0, A], then

g(x) > A ⇐⇒ (A− g(x))x6 < 0 ⇐⇒ φA(x) < 0

and, therefore, we can conclude that

x ∈
(
0,

π

2

)
=⇒ − 1

15
x4 + px6 ≤ − 1

15
x4 +Ax6 < cosx−

(
sinx

x

)3

.

(ii) If p ∈ (A,B), based on Lemma 3, the equation

g(x) = p

has a unique solution x
(p)
0 and it holds

x ∈
(
0, x

(p)
0

)
=⇒ g(x) > p ⇐⇒ φp(x) < 0

⇐⇒ − 1

15
x4 + p x6 < cosx−

(
sinx

x

)3

and

x ∈
(
x
(p)
0 ,

π

2

)
=⇒ g(x) < p ⇐⇒ φp(x) > 0

⇐⇒ cosx−
(
sinx

x

)3

< − 1

15
x4 + p x6.

(iii) If p ∈ [B,∞), then

g(x) < B ⇐⇒ (B − g(x))x6 > 0 ⇐⇒ φB(x) > 0

and, therefore, we can conclude that

x ∈
(
0,

π

2

)
=⇒ cosx−

(
sinx

x

)3

< − 1

15
x4 +Bx6 ≤ − 1

15
x4 + px6.

(iv), (v) Let p ∈ (A,B). For the family φp(x), the Taylor’s expansions are:

(2) φp(x) =

(
− 23

1890
+ p

)
x6 +

41

37800
x8 + o(x8)
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and

(3)

φp(x) =

(
8

π3
− π4

240
+

π6

64
p

)
+

+

(
−48

π4
+ 1− π3

30
+

3π5

16
p

)(
x− π

2

)
+

+

(
192

π5
− 12

π3
− π2

10
+

15π4

16
p

)(
x− π

2

)2
+

+

(
−640

π6
+

72

π4
− 1

6
− 2π

15
+

5π3

2
p

)(
x− π

2

)3
+

+

(
1920

π7
− 288

π5
+

7

π3
− 1

15
+

15π2

4
p

)(
x− π

2

)4
+

+

(
−5376

π8
+

960

π6
− 42

π4
+

1

120
+ 3π p

)(
x− π

2

)5
+

+

(
14336

π9
− 2880

π7
+

168

π5
− 61

30π3
+ p

)(
x− π

2

)6
+

+

(
−36864

π10
+

8064

π8
− 560

π6
+

61

5π4
− 1

5040

)(
x− π

2

)7
+

+ o

((
x− π

2

)7)
.

For p∈ (A,B), functions φp(x) don’t satisfy all of the conditions of the Nike theo-
rem. In consequence, we use the Second Nike theorem. Now we check the fulfillment
of the Second Nike theorem:

(a) Let us observe the seventh derivative

φ
(7)
p (x) =

1

x10

( (
2187x7 − 61236x5 + 340200x3 − 423360x

)
cos3 x+

+
(
−15309x6 + 170100x4 − 476280x2 + 181440

)
sinx cos2 x+

+
(
−1641x7 + 46116x5 − 264600x3 + 423360x

)
cosx+

+
(
−x10 + 3843x6 − 44100x4 + 158760x2 − 181440

)
sinx

)
,

for x ∈ (0, π/2). Now we prove that function φ
(7)
p (x) has exactly one zero c on

(0, π/2) such that φ
(7)
p (x) > 0 for x ∈ (0, c), and φ

(7)
p (x) < 0 for x ∈ (c, π/2).

Function φ
(7)
p (x) is positive for x ∈ [0, 1] because, according to [3], there exists

proof that the numerator of φ
(7)
p (x) is positive on [0, 1]. The proof is given in
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Appendix A2. Furthermore, let us observe the eighth derivative

φ
(8)
p (x) =

1

x11

( (
−52488x7 + 816480x5 − 3810240x3 + 4354560x

)
cos3 x+

+
(
−6561x8+244944x6−2041200x4+5080320x2−1814400

)
sinx cos2 x+

+
(
−x11 + 39384x7 − 614880x5 + 2963520x3 − 4354560x

)
cosx+

+
(
1641x8 − 61488x6 + 529200x4 − 1693440x2 + 1814400

)
sinx

)
,

for x∈ (0, π/2). According to [3], there exists proof that the numerator of φ
(8)
p (x)

is negative on [1, π/2]. It is enough to prove that φ
(8)
p (x) is negative on [1, π/2]

using MacLaurin polynomials. The proof is given in Appendix A3. Finally,

φ(7)
p

(π
2

)
=
−π10+61488π6−2822400π4+40642560π2−185794560

π10
=−6.14789 . . .<0 .

Therefore, there exists exactly one zero c ∈ (0, π/2) of function φ
(7)
p (x) such that

φ
(7)
p (x) > 0 for x ∈ (0, c) and φ

(7)
p (x) < 0 for x ∈ (c, π/2), where c is numerically

determined as c = 1.40749 . . .. It is hereby shown that for m = 7, the first condition
of the Second Nike theorem is satisfied.

(b) According to (2), there is a right neighbourhood U0 of zero in which

φp(x) < 0 , φ′
p(x) < 0 , . . . , φ(6)

p (x) < 0
(
x∈U0

)
hold.

(c) According to (3), there is a left neighbourhood Uπ/2 of π/2 in which

φp(x) > 0 , φ′
p(x) > 0 , . . . , φ(6)

p (x) > 0
(
x∈Uπ/2

)
hold. Then, for every function φp(x), on the interval (0, π/2), there exists exactly
one extremum t, which is minimum, and there exists exactly one zero x0. Hence, for
the family of functions φp(x), conditions of the Second Nike theorem are satisfied,
as well as conditions of Theorem 7, which implies the existence of a minimax
approximant. Minimax approximant and error can be numerically determined via
Maple software in the following way: let f(x, p) :=φp(x) and F (x, p) :=φ′

p(x), then
using the command

fsolve
(
{F (x, p) = 0, abs

(
f(x, p)

)
= f(π/2, p)}, {x = 0..π/2, p = A..B}

)
;

we get
{p = 0.01000418287, x = 1.299862713}

and, for p0 = 0.010004 . . . , we get

f(x, p0) = − cosx+

(
sinx

x

)3

− 1

15
x4 + 0.010004 . . . x6
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and
d0 = f

(π
2
, p0

)
= 0.0024209 . . . .

Based on the previous considerations, enhancement of Theorem 1 has been
obtained in the following form:

Proposition 1. For every 0 < x < π/2, the following inequalities hold

− 1

15
x4 +

4π7 − 7680

15π9
x6 < cosx−

(
sinx

x

)3

< − 1

15
x4 +

23

1890
x6,

and the constants A =
4π7 − 7680

15π9
= 0.0098430 . . . and B =

23

1890
= 0.012169 . . .

are the best possible.

Improvement of Theorem 2

Lemma 4. The family of functions

φp(x) = − sinx

x
+

cosx+ 2

3
− 1

180
x4 + p x6

(
for x ∈

(
0,

π

2

))
is increasingly stratified with respect to parameter p∈R+.

Let us introduce the function g(x) so that the equivalence

φp(x) = 0 ⇐⇒ p = g(x), x ∈
(
0,

π

2

)
, p ∈ R+

holds. Then

g(x) =
x5 − 60x cosx+ 180 sinx− 120x

180x7
, x ∈

(
0,

π

2

)
.

Note that
φp(x) =

(
p− g(x)

)
x6 .

Lemma 5. The function g(x) is strictly decreasing for x ∈ (0, π/2).

Proof. Let us notice that the derivative g′ is

g′(x)=
270x cosx+ 30x2 sinx− 630 sinx− x5 + 360x

90x8
.

It holds
g′(x) < 0, x ∈

(
0,

π

2

)
⇐⇒ f(x) > 0, x ∈

(
0,

π

2

)
,

where
f(x) = x5 − 360x− 270x cosx− 30x2 sinx+ 630 sinx.

According to [3], there exists proof that the MTP function f is positive for x ∈
(0, π/2). The proof is given in Appendix A4.
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Statement 2. Let

A =
π5−1920π+5760

45π7
= 0.00025135 . . . and B =

1

3780
= 0.00026455 . . . .

Then, it holds:

(i) If p ∈ (0, A], then

x ∈
(
0,

π

2

)
=⇒ − 1

180
x4 + p x6 ≤ − 1

180
x4 +Ax6 <

sinx

x
− cosx+ 2

3
.

(ii) If p ∈ (A,B), then φp(x) has exactly one zero x
(p)
0 on (0, π/2). Also,

x ∈
(
0, x

(p)
0

)
=⇒ − 1

180
x4 + p x6 <

sinx

x
− cosx+ 2

3

and

x ∈
(
x
(p)
0 ,

π

2

)
=⇒ sinx

x
− cosx+ 2

3
< − 1

180
x4 + p x6

hold.

(iii) If p ∈ [B,∞), then

x ∈
(
0,

π

2

)
=⇒ sinx

x
− cosx+ 2

3
< − 1

180
x4 +B x6 ≤ − 1

180
x4 + p x6.

(iv) There is exactly one solution to the following equation∣∣∣φp

(
t(p)

)∣∣∣ = φp

(π
2
−
)
,

where t(p) is a minimum of φp(x) on (0, π/2), with respect to parameter p∈(A,B),
which is numerically determined as

p0 = 0.00025234 . . . .

For the value

d0 =
∣∣∣φp0

(
t(p0)

)∣∣∣ = φp0

(π
2
−
)
= 0.000014887 . . . ,

the following holds
d0 = inf

p∈R+
sup

x∈(0,π/2)

|φp(x)|.

(v) For the value p0 = 0.00025234 . . . , the minimax approximant of the family is
determined as

φp0
(x) = − sinx

x
+

cosx+ 2

3
− 1

180
x4 + 0.00025234 . . . x6

and it determines the corresponding minimax approximation

sinx

x
− cosx+ 2

3
≈ − 1

180
x4 + 0.00025234 . . . x6 .
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Proof. This statement is based on the results of the paper [1] and the fact that

A = lim
x→π/2−

g(x) and B = lim
x→0+

g(x) .

The function g(x) is continuous and, according to Lemma 5, strictly decreasing on
(0, π/2).

(i) If p ∈ (0, A], then

g(x) > A ⇐⇒ (A− g(x))x6 < 0 ⇐⇒ φA(x) < 0

and, therefore, we can conclude that

x ∈
(
0,

π

2

)
=⇒ − 1

180
x4 + p x6 ≤ − 1

180
x4 +Ax6 <

sinx

x
− cosx+ 2

3
.

(ii) If p ∈ (A,B), based on Lemma 5, the equation

g(x) = p

has a unique solution x
(p)
0 and it holds

x ∈
(
0, x

(p)
0

)
=⇒ g(x) > p ⇐⇒ φp(x) < 0

⇐⇒ − 1

180
x4 + p x6 <

sinx

x
− cosx+ 2

3

and

x ∈
(
x
(p)
0 ,

π

2

)
=⇒ g(x) < p ⇐⇒ φp(x) > 0

⇐⇒ sinx

x
− cosx+ 2

3
< − 1

180
x4 + p x6.

(iii) If p ∈ [B,∞), then

g(x) < B ⇐⇒ (B − g(x))x6 > 0 ⇐⇒ φB(x) > 0

and, therefore, we can conclude that

x ∈
(
0,

π

2

)
=⇒ sinx

x
− cosx+ 2

3
< − 1

180
x4 +B x6 ≤ − 1

180
x4 + p x6.

(iv), (v) Let p ∈ (A,B). For the family φp(x), the Taylor’s expansions are:

(4) φp(x) =

(
− 1

3780
+ p

)
x6 +

1

181440
x8 + o(x8)
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and

(5)

φp(x) =

(
− 2

π
+

2

3
− π4

2880
+

π6

64
p

)
+

+

(
4

π2
− 1

3
− π3

360
+

3π5

16
p

)(
x− π

2

)
+

+

(
− 8

π3
+

1

π
− π2

120
+

15π4

16
p

)(
x− π

2

)2
+

+

(
16

π4
− 2

π2
+

1

18
− π

90
+

5π3

2
p

)(
x− π

2

)3
+

+

(
−32

π5
+

4

π3
− 1

12π
− 1

180
+

15π2

4
p

)(
x− π

2

)4
+

+

(
64

π6
− 8

π4
+

1

6π2
− 1

360
+ 3π p

)(
x− π

2

)5
+

+

(
−128

π7
+

16

π5
− 1

3π3
+

1

360π
+ p

)(
x− π

2

)6
+

+

(
256

π8
− 32

π6
+

2

3π4
− 1

180π2
+

1

15120

)(
x− π

2

)7
+

+ o

((
x− π

2

)7)
.

For p ∈ (A,B), functions φp(x) satisfy all of the conditions of the Nike theorem.
Now we check the fulfillment of the Nike theorem:

(a) Let us observe the seventh derivative

φ
(7)
p (x) =

1

3x8

( (
x8 − 21x6 + 630x4 − 7560x2 + 15120

)
sinx+

+3x
(
x6 − 42x4 + 840x2 − 5040

)
cosx

)
for x∈ (0, π/2). According to [3], there exists proof that the numerator of φ

(7)
p (x)

is positive on [0, π/2]. The proof is given in Appendix A5. Thus, for m = 7, the
first condition of the Nike theorem is satisfied.

(b) According to (4), there is a right neighbourhood U0 of zero in which

φp(x) < 0 , φ′
p(x) < 0 , . . . , φ(6)

p (x) < 0
(
x∈U0

)
hold.

(c) According to (5), there is a left neighbourhood Uπ/2 of π/2 in which

φp(x) > 0 , φ′
p(x) > 0 , . . . , φ(6)

p (x) > 0
(
x∈Uπ/2

)
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hold. Then, for every function φp(x), on the interval (0, π/2), there exists exactly
one extremum t, which is minimum, and there exists exactly one zero x0. Hence, for
the family of functions φp(x), conditions of the Nike theorem are satisfied, as well
as conditions of Theorem 7, which implies the existence of a minimax approximant.
Minimax approximant and error can be numerically determined via Maple software
in the following way: f(x, p) :=φp(x) and F (x, p) :=φ′

p(x), then using the command

fsolve
(
{F (x, p) = 0, abs

(
f(x, p)

)
= f(π/2, p)}, {x = 0..π/2, p = A..B}

)
;

we get
{p = 0.000252341144, x = 1.305655179}

and, for p0 = 0.00025234 . . . , we get

f(x, p0) = − sinx

x
+

cosx+ 2

3
− 1

180
x4 + 0.00025234 . . . x6

and
d0 = f

(π
2
, p0

)
= 0.000014887 . . . .

Based on the previous considerations, enhancement of Theorem 2 has been
obtained in the following form:

Proposition 2. For every 0 < x < π/2, the following inequalities hold

− 1

180
x4 +

π5 − 1920π + 5760

45π7
x6 <

sinx

x
− cosx+ 2

3
< − 1

180
x4 +

1

3780
x6,

and the constants A =
π5 − 1920π + 5760

45π7
= 0.00025135 . . . and B =

1

3780
=

0.00026455 . . . are the best possible.

Improvement of Theorem 3

Lemma 6. The family of functions

φp(x) = 2
sinx

x
+

tanx

x
− 3− 3

20
x4 1

cosx
+ p x6 1

cosx

(
for x ∈

(
0,

π

2

))
is increasingly stratified with respect to parameter p∈R+.

Let us introduce the function g(x) so that the equivalence

φp(x) = 0 ⇐⇒ p = g(x), x ∈
(
0,

π

2

)
, p ∈ R+

holds. Then

g(x) =
3x5 − 40 sinx cosx+ 60x cosx− 20 sinx

20x7
, x ∈

(
0,

π

2

)
.

Note that

φp(x) =
(
p− g(x)

) x6

cosx
.
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Lemma 7. The function g(x) is strictly decreasing for x ∈ (0, π/2).

Proof. Let us notice that the derivative g′ is

g′(x)=
−40x cos2x− 190x cosx+ 140 sinx cosx−

(
30x2 − 70

)
sinx− 3x5 + 20x

10x8
.

It holds

g′(x) < 0, x ∈
(
0,

π

2

)
⇐⇒ f(x) > 0, x ∈

(
0,

π

2

)
,

where

f(x) = 40x cos2x+ 190x cosx− 140 sinx cosx+
(
30x2 − 70

)
sinx+ 3x5 − 20x.

According to [3], there exists proof that the MTP function f is positive for x ∈
(0, π/2). The proof is given in Appendix A6.

Statement 3. Let

A =
3π5 − 640

5π7
= 0.018412 . . . and B =

3

140
= 0.021428 . . . .

Then, it holds:

(i) If p ∈ (0, A], then

x ∈
(
0,

π

2

)
=⇒ 2

sinx

x
+

tanx

x
< 3 +

3

20
x4 1

cosx
−Ax6 1

cosx
≤

≤ 3 +
3

20
x4 1

cosx
− p x6 1

cosx
.

(ii) If p ∈ (A,B), then φp(x) has exactly one zero x
(p)
0 on (0, π/2). Also,

x ∈
(
0, x

(p)
0

)
=⇒ 2

sinx

x
+

tanx

x
< 3 +

3

20
x4 1

cosx
− p x6 1

cosx

and

x ∈
(
x
(p)
0 ,

π

2

)
=⇒ 3 +

3

20
x4 1

cosx
− p x6 1

cosx
< 2

sinx

x
+

tanx

x

hold.

(iii) If p ∈ [B,∞), then

x ∈
(
0,

π

2

)
=⇒ 3 +

3

20
x4 1

cosx
− p x6 1

cosx
≤ 3 +

3

20
x4 1

cosx
−B x6 1

cosx

< 2
sinx

x
+

tanx

x
.
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Proof. This statement is based on the results of the paper [1] and the fact that

A = lim
x→π/2−

g(x) and B = lim
x→0+

g(x) .

The function g(x) is continuous and, according to Lemma 7, strictly decreasing on
(0, π/2).

(i) If p ∈ (0, A], then

g(x) > A ⇐⇒ (A− g(x))
x6

cosx
< 0 ⇐⇒ φA(x) < 0

and, therefore, we can conclude that

x ∈
(
0,

π

2

)
=⇒ 2

sinx

x
+

tanx

x
< 3 +

3

20
x4 1

cosx
−Ax6 1

cosx
≤

≤ 3 +
3

20
x4 1

cosx
− p x6 1

cosx
.

(ii) If p ∈ (A,B), based on Lemma 7, the equation

g(x) = p

has a unique solution x
(p)
0 and it holds

x ∈
(
0, x

(p)
0

)
=⇒ g(x) > p ⇐⇒ φp(x) < 0

⇐⇒ 2
sinx

x
+

tanx

x
< 3 +

3

20
x4 1

cosx
− p x6 1

cosx

and

x ∈
(
x
(p)
0 ,

π

2

)
=⇒ g(x) < p ⇐⇒ φp(x) > 0

⇐⇒ 3 +
3

20
x4 1

cosx
− p x6 1

cosx
< 2

sinx

x
+

tanx

x
.

(iii) If p ∈ [B,∞), then

g(x) < B ⇐⇒ (B − g(x))
x6

cosx
> 0 ⇐⇒ φB(x) > 0

and, therefore, we can conclude that

x ∈
(
0,

π

2

)
=⇒ 3 +

3

20
x4 1

cosx
− p x6 1

cosx
≤ 3 +

3

20
x4 1

cosx
−B x6 1

cosx

< 2
sinx

x
+

tanx

x
.
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Let us notice that φB(π/2−) = +∞. Hence, one of the conditions of Theorem
7 is not satisfied, thus, the minimax approximant is not considered.

Based on the previous considerations, enhancement of Theorem 3 has been
obtained in the following form:

Proposition 3. For every 0 < x < π/2, the following inequalities hold

3 +

(
3x4

20
− 3x6

140

)
1

cosx
< 2

sinx

x
+

tanx

x
< 3 +

(
3x4

20
− (3π5 − 640)x6

5π7

)
1

cosx
,

and the constants A =
3π5 − 640

5π7
= 0.018412 . . . and B =

3

140
= 0.021428 . . . are

the best possible.

Improvement of Theorem 4

Lemma 8. The family of functions

φp(x) =

(
sinx

x

)2

+
tanx

x
− 2− 8

45
x4 1

cosx
+ p x6 1

cosx

(
for x ∈

(
0,

π

2

))
is increasingly stratified with respect to parameter p∈R+.

Let us introduce the function g(x) so that the equivalence

φp(x) = 0 ⇐⇒ p = g(x), x ∈
(
0,

π

2

)
, p ∈ R+

holds. Then

g(x) =
8x6 + 90x2 cosx− 45 sin2 x cosx− 45x sinx

45x8
, x ∈

(
0,

π

2

)
.

Note that

φp(x) =
(
p− g(x)

) x6

cosx
.

Lemma 9. The function g(x) is strictly decreasing for x ∈ (0, π/2).

Proof. Let us notice that the derivative g′ is

g′(x)=
−360 cos3x−135x sinx cos2x−

(
585x2−360

)
cosx−

(
90x3−360x

)
sinx−16x6

45x9
.

It holds
g′(x) < 0, x ∈

(
0,

π

2

)
⇐⇒ f(x) > 0, x ∈

(
0,

π

2

)
,

where

f(x)=360 cos3x+135x sinx cos2x+
(
585x2 − 360

)
cosx+

(
90x3 − 360x

)
sinx+16x6.

According to [3], there exists proof that the MTP function f is positive for x ∈
(0, π/2). The proof is given in Appendix A7.
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Statement 4. Let

A =
32π5 − 5760

45π7
= 0.029670 . . . and B =

4

105
= 0.038095 . . . .

Then, it holds:

(i) If p ∈ (0, A], then

x ∈
(
0,

π

2

)
=⇒

(
sinx

x

)2

+
tanx

x
< 2 +

8

45
x4 1

cosx
−Ax6 1

cosx
≤

≤ 2 +
8

45
x4 1

cosx
− p x6 1

cosx
.

(ii) If p ∈ (A,B), then φp(x) has exactly one zero x
(p)
0 on (0, π/2). Also,

x ∈
(
0, x

(p)
0

)
=⇒

( sinx
x

)2

+
tanx

x
< 2 +

8

45
x4 1

cosx
− p x6 1

cosx

and

x ∈
(
x
(p)
0 ,

π

2

)
=⇒ 2 +

8

45
x4 1

cosx
− p x6 1

cosx
<

( sinx
x

)2

+
tanx

x

hold.

(iii) If p ∈ [B,∞), then

x ∈
(
0,

π

2

)
=⇒ 2 +

8

45
x4 1

cosx
− p x6 1

cosx
≤ 2 +

8

45
x4 1

cosx
−B x6 1

cosx

<
( sinx

x

)2

+
tanx

x
.

Proof. This statement is based on the results of the paper [1] and the fact that

A = lim
x→π/2−

g(x) and B = lim
x→0+

g(x) .

The function g(x) is continuous and, according to Lemma 9, strictly decreasing on
(0, π/2).

(i) If p ∈ (0, A], then

g(x) > A ⇐⇒ (A− g(x))
x6

cosx
< 0 ⇐⇒ φA(x) < 0

and, therefore, we can conclude that

x ∈
(
0,

π

2

)
=⇒

(
sinx

x

)2

+
tanx

x
< 2 +

8

45
x4 1

cosx
−Ax6 1

cosx
≤

≤ 2 +
8

45
x4 1

cosx
− p x6 1

cosx
.
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(ii) If p ∈ (A,B), based on Lemma 9, the equation

g(x) = p

has a unique solution x
(p)
0 and it holds

x ∈
(
0, x

(p)
0

)
=⇒ g(x) > p ⇐⇒ φp(x) < 0

⇐⇒
( sinx

x

)2

+
tanx

x
< 2 +

8

45
x4 1

cosx
− p x6 1

cosx

and

x ∈
(
x
(p)
0 ,

π

2

)
=⇒ g(x) < p ⇐⇒ φp(x) > 0

⇐⇒ 2 +
8

45
x4 1

cosx
− p x6 1

cosx
<

( sinx
x

)2

+
tanx

x
.

(iii) If p ∈ [B,∞), then

g(x) < B ⇐⇒ (B − g(x)) =
x6

cosx
> 0 ⇐⇒ φB(x) > 0

and, therefore, we can conclude that

x ∈
(
0,

π

2

)
=⇒ 2 +

8

45
x4 1

cosx
− p x6 1

cosx
≤ 2 +

8

45
x4 1

cosx
−B x6 1

cosx

<
( sinx

x

)2

+
tanx

x
.

Let us notice that φB(π/2−) = +∞. Hence, one of the conditions of Theorem
7 is not satisfied, thus, the minimax approximant is not considered.

Based on the previous considerations, enhancement of Theorem 4 has been
obtained in the following form:

Proposition 4. For every 0 < x < π/2, the following inequalities hold

2+

(
8x4

45
− 4x6

105

)
1

cosx
<

(
sinx

x

)2

+
tanx

x
< 2+

(
8x4

45
− (32π5 − 5760)x6

45π7

)
1

cosx
,

and the constants A =
32π5 − 5760

45π7
= 0.029670 . . . and B =

4

105
= 0.038095 . . .

are the best possible.
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Analogously to Statement 1 and Statement 2, the following statements can
be proved:

Improvement of Theorem 5

Lemma 10. The family of functions

φp(x) =
( x

sinx

)2

+
x

tanx
−2− p x4

(
for x ∈

(
0,

π

2

))
is decreasingly stratified with respect to parameter p∈R+.

Statement 5. Let

A =
2

45
= 0.044444 . . . and B =

4π2 − 32

π4
= 0.076773 . . . .

Then, it holds:

(i) If p ∈ (0, A], then

x ∈
(
0,

π

2

)
=⇒ 2 + px4 ≤ 2 +Ax4 <

( x

sinx

)2

+
x

tanx
.

(ii) If p ∈ (A,B), then φp(x) has exactly one zero x
(p)
0 on (0, π/2). Also,

x ∈
(
0, x

(p)
0

)
=⇒

( x

sinx

)2

+
x

tanx
< 2 + p x4

and

x ∈
(
x
(p)
0 ,

π

2

)
=⇒ 2 + p x4 <

( x

sinx

)2

+
x

tanx

hold.

(iii) If p ∈ [B,∞), then

x ∈
(
0,

π

2

)
=⇒

( x

sinx

)2

+
x

tanx
< 2 +Bx4 ≤ 2 + px4.

(iv) There is exactly one solution to the following equation∣∣∣φp

(
t(p)

)∣∣∣ = φp

(π
2
−
)
,

where t(p) is a minimum of φp(x) on (0, π/2), with respect to parameter p∈(A,B),
which is numerically determined as

p0 = 0.072425 . . . .

For the value
d0 =

∣∣∣φp0

(
t(p0)

)∣∣∣ = φp0

(π
2
−
)
= 0.026471 . . . ,
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the following holds
d0 = inf

p∈R+
sup

x∈(0,π/2)

|φp(x)|.

(v) For the value p0 = 0.072425 . . . , the minimax approximant of the family is
determined as

φp0
(x) =

( x

sinx

)2

+
x

tanx
− 2− 0.072425 . . . x4

and it determines the corresponding minimax approximation( x

sinx

)2

+
x

tanx
≈ 2 + 0.072425 . . . x4 .

Based on the previous considerations, enhancement of Theorem 5 has been
obtained in the following form:

Proposition 5. For every 0 < x < π/2, the following inequalities hold

2 +
2

45
x4 <

( x

sinx

)2

+
x

tanx
< 2 +

4π2 − 32

π4
x4,

and the constants A =
2

45
= 0.044444 . . . and B =

4π2 − 32

π4
= 0.076773 . . . are the

best possible.

Improvement of Theorem 6

Lemma 11. The family of functions

φp(x) = 3
x

sinx
+ cosx − 4 − 1

10
x4 − p x6

(
for x ∈

(
0,

π

2

))
is decreasingly stratified with respect to parameter p∈R+.

Statement 6. Let

A =
1

210
= 0.0047619 . . . and B =

480π−2π4−1280

5π6
= 0.0068954 . . . .

Then, it holds:

(i) If p ∈ (0, A], then

x ∈
(
0,

π

2

)
=⇒ 4 +

1

10
x4 + px6 ≤ 4 +

1

10
x4 +Ax6 < 3

x

sinx
+ cosx.

(ii) If p ∈ (A,B), then φp(x) has exactly one zero x
(p)
0 on (0, π/2). Also,

x ∈
(
0, x

(p)
0

)
=⇒ 3

x

sinx
+ cosx < 4 +

1

10
x4 + px6
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and

x ∈
(
x
(p)
0 ,

π

2

)
=⇒ 4 +

1

10
x4 + px6 < 3

x

sinx
+ cosx

hold.

(iii) If p ∈ [B,∞), then

x ∈
(
0,

π

2

)
=⇒ 3

x

sinx
+ cosx < 4 +

1

10
x4 +Bx6 ≤ 4 +

1

10
x4 + px6.

(iv) There is exactly one solution to the following equation∣∣∣φp

(
t(p)

)∣∣∣ = φp

(π
2
−
)
,

where t(p) is a minimum of φp(x) on (0, π/2), with respect to parameter p∈(A,B),
which is numerically determined as

p0 = 0.0066982 . . . .

For the value

d0 =
∣∣∣φp0

(
t(p0)

)∣∣∣ = φp0

(π
2
−
)
= 0.0029637 . . . ,

the following holds
d0 = inf

p∈R+
sup

x∈(0,π/2)

|φp(x)|.

(v) For the value p0 = 0.0066982 . . . , the minimax approximant of the family is
determined as

φp0
(x) = 3

x

sinx
+ cosx− 4− 1

10
x4 − 0.0066982 . . . x6

and it determines the corresponding minimax approximation

3
x

sinx
+ cosx ≈ 4 +

1

10
x4 + 0.0066982 . . . x6.

Based on the previous considerations, enhancement of Theorem 6 has been
obtained in the following form:

Proposition 6. For every 0 < x < π/2, the following inequalities hold

4 +
1

10
x4 +

1

210
x6 < 3

x

sinx
+ cosx < 4 +

1

10
x4 +

480π − 2π4 − 1280

5π6
x6,

and the constants A =
1

210
= 0.0047619 . . . and B =

480π − 2π4 − 1280

5π6
=

0.0068954 . . . are the best possible.

The existence of minimax approximant in Statement 5 and Statement 6 is a
consequence of Theorem 7’ and Theorem 8.
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4. CONCLUSION

This paper specifies the results of C. Mortici [1] using the method described
in [2]. The mentioned method could be applied for possible improvements of ex-
isting results from the Theory of analytic inequalities [12], [13], [28] in terms of
determining the corresponding minimax approximants for various inequalities. In
the previous section, examples of minimax approximations are presented where
they exist. It is important to note that through minimax approximants, the error
in approximations is minimized in the considered sense.

The main aim of this paper is to promote SimTheP, an automated theorem
prover for MTP inequalities, developed through the doctoral dissertation [15]. All
the essential proofs of MTP inequalities in this paper are given in the Appendix
and derived using the prover SimTheP. For any given MTP inequality f(x) > 0,
for x ∈ S ⊆ [0, π/2], SimTheP provides a structured proof divided into parts I-
IV. Each part is designed to allow manual step-by-step verification, demonstrating
SimTheP’s capability to replicate the human way of proving inequalities.

Many results within the Theory of analytic inequalities, for example, results
from [2], [3], [6]-[8], [10]-[13], [18], [24], [26]-[75], could be proved using the prover
SimTheP, see the link https://simthep.etf.bg.ac.rs/.

It is crucial to highlight that through Statements 1–6, all Theorems 1–6 have
been improved and minimax approximations have been determined wherever fea-
sible. As a result, Propositions 1–6 were obtained, where for the inequalities con-
sidered in Theorems 1–6, the best possible constants were identified. Such an
approach to Theorems 1–6 was enabled by the utilization of the concept of strat-
ification. Moreover, this paper presents the first paper in which the automated
theorem prover SimTheP was utilized to deliver proofs for the MTP inequalities,
marking a significant advancement in the field.
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18. B. Banjac, M. Makragić, B. Malešević: Some Notes on a Method for Proving
Inequalities by Computer, Results. Math. 69 (2016), 161–176.
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20. B. Malešević, B. Banjac: One method for proving polynomial inequalities with real
coefficients, Proceedings of 28th TELFOR conference, Serbia, Belgrade, November 24-
25, 2020.

21. N. Cutland: Computalibity - an introduction to recursive funtion theory, Cambridge
University Press 1980.
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37. T. Lutovac, B. Malešević, C. Mortici: The natural algorithmic approach of mixed
trigonometric-polynomial problems, J. Inequal. Appl. 2017:116 (2017), 1–16.
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APPENDIX

This Appendix was created using the automated prover SimTheP, which for the
MTP function and the interval gives as output TeX/PDF files that were directly trans-
ferred to the Appendix.

APPENDIX A1

The initial MTP function is

f(x) = 2 · x7 + 135 · sinx · cos2 x+
(
15 · x4 − 135

)
· sinx

−45 · x · cos3 x+
(
90 · x3 + 45 · x

)
· cosx

and the initial interval is S =
(
0, π

2

)
.

Automated proof that f(x) > 0 for x∈
(
0, π

2

)
:

I (Recognition of possible case) Facts f (0) = 0 and f
(
π
2

)
̸= 0 are correct. The MTP

function f is positive at boundary point π
2

(
f
(
π
2

)
= 3.51310 . . . > 0

)
. Therefore, it is

possible that f(x) > 0 over
(
0, π

2

)
.

II (Transformation of angles) After the transformation of terms cosm x · sinn x (m,n∈N0)
into the sum of sine and cosine functions of multiple angles, in the MTP function f , we
obtain

f(x) = − 45
4
· x · cos 3x+

(
15 · x4 − 405

4

)
· sinx

+
(
90 · x3 + 45

4
· x

)
· cosx+ 2 · x7 + 135

4
· sin 3x .

Then, we consider the previous expression as two separate expressions, the first with
positive and the second with negative terms next to sine and cosine functions

f+(x) = 135
4

· sin 3x+
(
90 · x3 + 45

4
· x

)
· cosx+ 15 · x4 · sinx+ 2 · x7 ,

f−(x) = − 405
4

· sinx− 45
4
· x · cos 3x .

III (Determination of downward rational polynomial approximation) After substitution
of sine and cosine functions by appropriate (downward or upward) polynomial approxima-
tions, we obtain downward polynomial approximations of f+(x) and f−(x) respectively

P+
i0,i1,i2

(x) = 135
4

· T sin,0
4·i0+3(3x) +

(
90 · x3 + 45

4
· x

)
· T cos,0

4·i1+2(x)

+15 · x4 · T sin,0
4·i2+3(x) + 2 · x7 ,

P−
i3,i4

(x) = − 405
4

· T sin,0
4·i3+1(x)− 45

4
· x · T cos,0

4·i4 (3x) .

For concrete indices (i0, i1, i2, i3, i4) = (2, 2, 1, 2, 3), we obtain

P+
2,2,1(x) = 135

4
· T sin,0

4·2+3(3x) +
(
90 · x3 + 45

4
· x

)
· T cos,0

4·2+2(x)

+15 · x4 · T sin,0
4·1+3(x) + 2 · x7 ,

P+
2,2,1(x) = − 1

40320
· x13 − 133523

887040
· x11 + 3281

1792
· x9

− 639
56

· x7 + 621
16

· x5 − 135
2

· x3 + 225
2

· x
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and
P−
2,3(x) = − 405

4
· T sin,0

4·2+1(x)− 45
4
· x · T cos,0

4·3 (3x) ,

P−
2,3(x) = − 19683

1576960
· x13 + 6561

35840
· x11 − 3281

1792
· x9

+ 639
56

· x7 − 621
16

· x5 + 135
2

· x3 − 225
2

· x .

Finally, for the MTP function

f(x) = f+(x) + f−(x)

we obtain the concrete downward polynomial approximation

P (x) = P+
2,2,1(x) + P−

2,3(x)

= − 25357
2027520

· x13 + 115447
3548160

· x11

over
(
0, π

2

)
, i.e. it holds that

f(x) > P (x)

over
(
0, π

2

)
.

IV (The final part) Based on the Sturm theorem, the following inequality

P (x) > 0

is true over
(
0, π

2

)
. The stated conclusion for the polynomial function P is correct based

on the following facts:
1. We can conclude, by Sturm theorem, that the polynomial function P (x) has only one
zero over the concrete extended segment [−0.1, 1.58] of the initial interval

(
0, π

2

)
.

2. Facts P (−0.1) ̸= 0, P (0) = 0 and P (1.58) ̸= 0 are correct.
3. The polynomial P is positive at boundary point π

2

(
P
(
π
2

)
= 0.24116 . . . > 0

)
.

Therefore, the following inequality

f(x) > 0

is true over
(
0, π

2

)
. □

APPENDIX A2

The initial MTP function is

f(x) =
(
−15309 · x6 + 170100 · x4 − 476280 · x2 + 181440

)
· sinx · cos2 x

+
(
−x10 + 3843 · x6 − 44100 · x4 + 158760 · x2 − 181440

)
· sinx

+
(
2187 · x7 − 61236 · x5 + 340200 · x3 − 423360 · x

)
· cos3 x

+
(
−1641 · x7 + 46116 · x5 − 264600 · x3 + 423360 · x

)
· cosx

and the initial interval is S = (0, 1].

Automated proof that f(x) > 0 for x∈(0, 1]:

I (Recognition of possible case) Facts f (0) = 0 and f (1) ̸= 0 are correct. The MTP
function f is positive at boundary point 1

(
f (1) = 14.68957 . . . > 0

)
. Therefore, it is

possible that f(x) > 0 over (0, 1].
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II (Transformation of angles) After the transformation of terms cosm x · sinn x (m,n∈N0)
into the sum of sine and cosine functions of multiple angles, in the MTP function f , we
obtain

f(x) =
(
− 15309

4
· x6 + 42525 · x4 − 119070 · x2 + 45360

)
· sin 3x

+
(
2187
4

· x7 − 15309 · x5 + 85050 · x3 − 105840 · x
)
· cos 3x

+
(
−x10 + 63

4
· x6 − 1575 · x4 + 39690 · x2 − 136080

)
· sinx

+
(
− 3

4
· x7 + 189 · x5 − 9450 · x3 + 105840 · x

)
· cosx .

Then, we consider the previous expression as two separate expressions, the first with
positive and the second with negative terms next to sine and cosine functions

f+(x) =
(
42525 · x4 + 45360

)
· sin 3x+

(
189 · x5 + 105840 · x

)
· cosx

+
(
63
4
· x6 + 39690 · x2

)
· sinx+

(
2187
4

· x7 + 85050 · x3
)
· cos 3x ,

f−(x) =
(
−x10 − 1575 · x4 − 136080

)
· sinx+

(
−15309 · x5 − 105840 · x

)
· cos 3x

+
(
− 15309

4
· x6 − 119070 · x2

)
· sin 3x+

(
− 3

4
· x7 − 9450 · x3

)
· cosx .

III (Determination of downward rational polynomial approximation) After substitution
of sine and cosine functions by appropriate (downward or upward) polynomial approxima-
tions, we obtain downward polynomial approximations of f+(x) and f−(x) respectively

P+
i0,i1,i2,i3

(x) =
(
42525 · x4 + 45360

)
· T sin,0

4·i0+3(3x)

+
(
189 · x5 + 105840 · x

)
· T cos,0

4·i1+2(x)

+
(
63
4
· x6 + 39690 · x2

)
· T sin,0

4·i2+3(x)

+
(
2187
4

· x7 + 85050 · x3
)
· T cos,0

4·i3+2(3x) ,

P−
i4,i5,i6,i7

(x) =
(
−x10 − 1575 · x4 − 136080

)
· T sin,0

4·i4+1(x)

+
(
−15309 · x5 − 105840 · x

)
· T cos,0

4·i5 (3x)

+
(
− 15309

4
· x6 − 119070 · x2

)
· T sin,0

4·i6+1(3x)

+
(
− 3

4
· x7 − 9450 · x3

)
· T cos,0

4·i7 (x) .

For concrete indices (i0, i1, i2, i3, i4, i5, i6, i7) = (3, 3, 3, 3, 3, 3, 3, 3), we obtain

P+
3,3,3,3(x) =

(
42525 · x4 + 45360

)
· T sin,0

4·3+3(3x)

+
(
189 · x5 + 105840 · x

)
· T cos,0

4·3+2(x)

+
(
63
4
· x6 + 39690 · x2

)
· T sin,0

4·3+3(x)

+
(
2187
4

· x7 + 85050 · x3
)
· T cos,0

4·3+2(3x) ,

P+
3,3,3,3(x) = − 335267731

11176704000
· x21 + 38742049

276756480
· x19 − 602542

225225
· x17

− 169795501
28828800

· x15 + 7838771
20592

· x13 − 15677779
5280

· x11

+76650 · x7 − 165312 · x5 − 132300 · x3 + 241920 · x
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and

P−
3,3,3,3(x) =

(
−x10 − 1575 · x4 − 136080

)
· T sin,0

4·3+1(x)(
−15309 · x5 − 105840 · x

)
· T cos,0

4·3 (3x)

+
(
− 15309

4
· x6 − 119070 · x2

)
· T sin,0

4·3+1(3x)

+
(
− 3

4
· x7 − 9450 · x3

)
· T cos,0

4·3 (x) ,

P−
3,3,3,3(x) = − 1

6227020800
· x23 + 1

39916800
· x21 − 1355975527

1383782400
· x19

+ 4289
21621600

· x17 + 317827231
28828800

· x15 − 8632499
20592

· x13 + 5302897
1760

· x11

−76650 · x7 + 165312 · x5 + 132300 · x3 − 241920 · x .

Finally, for the MTP function

f(x) = f+(x) + f−(x)

we obtain the concrete downward polynomial approximation

P (x) = P+
3,3,3,3(x) + P−

3,3,3,3(x)

= − 1
6227020800

· x23 − 12417313
413952000

· x21 − 581132641
691891200

· x19

− 4449211
1663200

· x17 + 21361
4160

· x15 − 424
11

· x13 + 656
15

· x11

over (0, 1], i.e. it holds that
f(x) > P (x)

over (0, 1].

IV (The final part) Based on the Sturm theorem, the following inequality

P (x) > 0

is true over (0, 1]. The stated conclusion for the polynomial function P is correct based
on the following facts:
1. We can conclude, by Sturm theorem, that the polynomial function P (x) has only one
zero over the concrete extended segment [−0.1, 1] of the initial interval (0, 1].
2. Facts P (−0.1) ̸= 0, P (0) = 0 and P (1) ̸= 0 are correct.
3. The polynomial P is positive at boundary point 1

(
P (1) = 6.77772 . . . > 0

)
.

Therefore, the following inequality
f(x) > 0

is true over (0, 1]. □

APPENDIX A3

The initial MTP function is

h(x) =
(
−52488 · x7 + 816480 · x5 − 3810240 · x3 + 4354560 · x

)
· cos3 x

+
(
−6561·x8+244944·x6−2041200·x4+5080320·x2−1814400

)
·sinx·cos2 x

+
(
−x11 + 39384 · x7 − 614880 · x5 + 2963520 · x3 − 4354560 · x

)
· cosx

+
(
1641 · x8 − 61488 · x6 + 529200 · x4 − 1693440 · x2 + 1814400

)
· sinx

and the initial interval is S =
[
1, π

2

]
.
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After the multiplication by −1, we obtain the MTP function

f(x) =
(
52488 · x7 − 816480 · x5 + 3810240 · x3 − 4354560 · x

)
· cos3 x

+
(
6561·x8−244944·x6+2041200·x4−5080320·x2+1814400

)
·sinx·cos2 x

+
(
x11 − 39384 · x7 + 614880 · x5 − 2963520 · x3 + 4354560 · x

)
· cosx

+
(
−1641 · x8 + 61488 · x6 − 529200 · x4 + 1693440 · x2 − 1814400

)
· sinx .

Automated proof that f(x) > 0 for x∈
[
1, π

2

]
:

I (Recognition of possible case) Facts f (1) ̸= 0 and f
(
π
2

)
̸= 0 are correct. The MTP

function f is positive at boundary point 1
(
f (1) = 27.02986 . . . > 0

)
and at boundary

point π
2

(
f
(
π
2

)
= 5021.73462 . . . > 0

)
. Therefore, it is possible that f(x) > 0 over

[
1, π

2

]
.

II (Transformation of angles) After the transformation of terms cosm x · sinn x (m,n∈N0)
into the sum of sine and cosine functions of multiple angles, in the MTP function f , we
obtain

f(x) =
(
6561
4

· x8 − 61236 · x6 + 510300 · x4 − 1270080 · x2 + 453600
)
· sin 3x

+
(
13122 · x7 − 204120 · x5 + 952560 · x3 − 1088640 · x

)
· cos 3x

+
(
− 3

4
· x8 + 252 · x6 − 18900 · x4 + 423360 · x2 − 1360800

)
· sinx

+
(
x11 − 18 · x7 + 2520 · x5 − 105840 · x3 + 1088640 · x

)
· cosx .

Then, we consider the previous expression as two separate expressions, the first with
positive and the second with negative terms next to sine and cosine functions

f+(x) =
(
6561
4

· x8 + 510300 · x4 + 453600
)
· sin 3x

+
(
13122 · x7 + 952560 · x3

)
· cos 3x

+
(
252 · x6 + 423360 · x2

)
· sinx

+
(
x11 + 2520 · x5 + 1088640 · x

)
· cosx ,

f−(x) =
(
−61236 · x6 − 1270080 · x2

)
· sin 3x

+
(
−204120 · x5 − 1088640 · x

)
· cos 3x

+
(
− 3

4
· x8 − 18900 · x4 − 1360800

)
· sinx

+
(
−18 · x7 − 105840 · x3

)
· cosx .

III (Determination of downward rational polynomial approximation) After substitution
of sine and cosine functions by appropriate (downward or upward) polynomial approxima-
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tions, we obtain downward polynomial approximations of f+(x) and f−(x) respectively

P+
i0,i1,i2,i3

(x) =
(
6561
4

· x8 + 510300 · x4 + 453600
)
· T sin,0

4·i0+3(3x)

+
(
13122 · x7 + 952560 · x3

)
· T cos,0

4·i1+2(3x)

+
(
252 · x6 + 423360 · x2

)
· T sin,0

4·i2+3(x)

+
(
x11 + 2520 · x5 + 1088640 · x

)
· T cos,0

4·i3+2(x) ,

P−
i4,i5,i6,i7

(x) =
(
−61236 · x6 − 1270080 · x2

)
· T sin,0

4·i4+1(3x)

+
(
−204120 · x5 − 1088640 · x

)
· T cos,0

4·i5 (3x)

+
(
− 3

4
· x8 − 18900 · x4 − 1360800

)
· T sin,0

4·i6+1(x)

+
(
−18 · x7 − 105840 · x3

)
· T cos,0

4·i7 (x) .

For concrete indices (i0, i1, i2, i3, i4, i5, i6, i7) = (3, 4, 1, 2, 4, 4, 2, 2), we obtain

P+
3,4,1,2(x) =

(
6561
4

· x8 + 510300 · x4 + 453600
)
· T sin,0

4·3+3(3x)

+
(
13122 · x7 + 952560 · x3

)
· T cos,0

4·4+2(3x)

+
(
252 · x6 + 423360 · x2

)
· T sin,0

4·1+3(x)

+
(
x11 + 2520 · x5 + 1088640 · x

)
· T cos,0

4·2+2(x) ,

P+
3,4,1,2(x) = − 387420489

487911424000
· x25 + 129140163

14350336000
· x23 − 2208298489

6175128960
· x21

+ 129141043
35481600

· x19 − 760514951
16473600

· x17 + 607555181
2882880

· x15

+ 53310093
22880

· x13 − 13876823
440

· x11 + 39372 · x9 + 735840 · x7

−1859760 · x5 − 1209600 · x3 + 2449440 · x

and

P−
4,4,2,2(x) =

(
−61236 · x6 − 1270080 · x2

)
· T sin,0

4·4+1(3x)

+
(
−204120 · x5 − 1088640 · x

)
· T cos,0

4·4 (3x)

+
(
− 3

4
· x8 − 18900 · x4 − 1360800

)
· T sin,0

4·2+1(x)

+
(
−18 · x7 − 105840 · x3

)
· T cos,0

4·2 (x) ,

P−
4,4,2,2(x) = − 387420489

17425408000
· x23 + 129140163

512512000
· x21 − 43046721

8712704
· x19

+ 19715397503
345945600

· x17 − 127545983
480480

· x15 − 531449
240

· x13

+ 314933
10

· x11 − 39372 · x9 − 735840 · x7

+1859760 · x5 + 1209600 · x3 − 2449440 · x .

Finally, for the MTP function

f(x) = f+(x) + f−(x)
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we obtain the concrete downward polynomial approximation

P (x) = P+
3,4,1,2(x) + P−

4,4,2,2(x)

= − 387420489
487911424000

· x25 − 129140163
9758228480

· x23 − 521856760043
4940103168000

· x21

− 10201878397
7841433600

· x19 + 936145883
86486400

· x17 − 2048321
37440

· x15

+ 1587173
13728

· x13 − 19771
440

· x11

over
[
1, π

2

]
, i.e. it holds that

f(x) > P (x)

over
[
1, π

2

]
.

IV (The final part) Based on the Sturm theorem, the following inequality

P (x) > 0

is true over
[
1, π

2

]
. The stated conclusion for the polynomial function P is correct based

on the following facts:
1. We can conclude, by Sturm theorem, that the polynomial function P (x) does not have
zero over the concrete extended segment [1, 1.58] of the initial interval

[
1, π

2

]
.

2. Facts P (1) ̸= 0 and P (1.58) ̸= 0 are correct.
3. The polynomial P is positive at boundary point π

2

(
P
(
π
2

)
= 1228.02881 . . . > 0

)
.

Therefore, the following inequality

f(x) > 0

is true over
[
1, π

2

]
. □

APPENDIX A4

The initial MTP function is

f(x) = x5 − 360 · x+
(
−30 · x2 + 630

)
· sinx− 270 · x · cosx

and the initial interval is S =
(
0, π

2

)
.

Automated proof that f(x) > 0 for x∈
(
0, π

2

)
:

I (Recognition of possible case) Facts f (0) = 0 and f
(
π
2

)
̸= 0 are correct. The MTP

function f is positive at boundary point π
2

(
f
(
π
2

)
= 0.054404 . . . > 0

)
. Therefore, it is

possible that f(x) > 0 over
(
0, π

2

)
.

II (Transformation of angles) After the transformation of terms cosm x · sinn x (m,n∈N0)
into the sum of sine and cosine functions of multiple angles, in the MTP function f , we
obtain

f(x) =
(
−30 · x2 + 630

)
· sinx− 270 · x · cosx+ x5 − 360 · x .

Then, we consider the previous expression as two separate expressions, the first with
positive and the second with negative terms next to sine and cosine functions

f+(x) = 630 · sinx+ x5 ,

f−(x) = −360 · x− 270 · x · cosx− 30 · x2 · sinx .
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III (Determination of downward rational polynomial approximation) After substitution
of sine and cosine functions by appropriate (downward or upward) polynomial approxima-
tions, we obtain downward polynomial approximations of f+(x) and f−(x) respectively

P+
i0
(x) = 630 · T sin,0

4·i0+3(x) + x5 ,

P−
i1,i2

(x) = −360 · x− 270 · x · T cos,0
4·i1 (x)− 30 · x2 · T sin,0

4·i2+1(x) .

For concrete indices (i0, i1, i2) = (2, 2, 2), we obtain

P+
2 (x) = 630 · T sin,0

4·2+3(x) + x5 ,

P+
2 (x) = − 1

63360
· x11 + 1

576
· x9 − 1

8
· x7 + 25

4
· x5 − 105 · x3 + 630 · x

and

P−
2,2(x) = −360 · x− 270 · x · T cos,0

4·2 (x)− 30 · x2 · T sin,0
4·2+1(x) ,

P−
2,2(x) = − 1

12096
· x11 − 1

1344
· x9 + 1

8
· x7 − 25

4
· x5 + 105 · x3 − 630 · x .

Finally, for the MTP function

f(x) = f+(x) + f−(x)

we obtain the concrete downward polynomial approximation

P (x) = P+
2 (x) + P−

2,2(x)

= − 131
1330560

· x11 + 1
1008

· x9

over
(
0, π

2

)
, i.e. it holds that

f(x) > P (x)

over
(
0, π

2

)
.

IV (The final part) Based on the Sturm theorem, the following inequality

P (x) > 0

is true over
(
0, π

2

)
. The stated conclusion for the polynomial function P is correct based

on the following facts:
1. We can conclude, by Sturm theorem, that the polynomial function P (x) has only one
zero over the concrete extended segment [−0.1, 1.58] of the initial interval

(
0, π

2

)
.

2. Facts P (−0.1) ̸= 0, P (0) = 0 and P (1.58) ̸= 0 are correct.
3. The polynomial P is positive at boundary point π

2

(
P
(
π
2

)
= 0.043615 . . . > 0

)
.

Therefore, the following inequality
f(x) > 0

is true over
(
0, π

2

)
. □

APPENDIX A5

The initial MTP function is

f(x) =
(
x8 − 21 · x6 + 630 · x4 − 7560 · x2 + 15120

)
· sinx

+
(
3 · x7 − 126 · x5 + 2520 · x3 − 15120 · x

)
· cosx

and the initial interval is S =
(
0, π

2

)
.
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Automated proof that f(x) > 0 for x∈
(
0, π

2

)
:

I (Recognition of possible case) Facts f (0) = 0 and f
(
π
2

)
̸= 0 are correct. The MTP

function f is positive at boundary point π
2

(
f
(
π
2

)
= 23.53938 . . . > 0

)
. Therefore, it is

possible that f(x) > 0 over
(
0, π

2

)
.

II (Transformation of angles) After the transformation of terms cosm x · sinn x (m,n∈N0)
into the sum of sine and cosine functions of multiple angles, in the MTP function f , we
obtain

f(x) =
(
x8 − 21 · x6 + 630 · x4 − 7560 · x2 + 15120

)
· sinx

+
(
3 · x7 − 126 · x5 + 2520 · x3 − 15120 · x

)
· cosx .

Then, we consider the previous expression as two separate expressions, the first with
positive and the second with negative terms next to sine and cosine functions

f+(x) =
(
x8 + 630 · x4 + 15120

)
· sinx+

(
3 · x7 + 2520 · x3

)
· cosx ,

f−(x) =
(
−126 · x5 − 15120 · x

)
· cosx+

(
−21 · x6 − 7560 · x2

)
· sinx .

III (Determination of downward rational polynomial approximation) After substitution
of sine and cosine functions by appropriate (downward or upward) polynomial approxima-
tions, we obtain downward polynomial approximations of f+(x) and f−(x) respectively

P+
i0,i1

(x) =
(
x8 + 630 · x4 + 15120

)
· T sin,0

4·i0+3(x) +
(
3 · x7 + 2520 · x3

)
· T cos,0

4·i1+2(x) ,

P−
i2,i3

(x) =
(
−126 · x5 − 15120 · x

)
· T cos,0

4·i2 (x) +
(
−21 · x6 − 7560 · x2

)
· T sin,0

4·i3+1(x) .

For concrete indices (i0, i1, i2, i3) = (1, 1, 2, 2), we obtain

P+
1,1(x) =

(
x8 + 630 · x4 + 15120

)
· T sin,0

4·1+3(x) +
(
3 · x7 + 2520 · x3

)
· T cos,0

4·1+2(x) ,

P+
1,1(x) = − 1

5040
· x15 + 1

240
· x13 − 1

6
· x11 + 5

4
· x9 − 504 · x5 + 15120 · x

and

P−
2,2(x) =

(
−126 · x5 − 15120 · x

)
· T cos,0

4·2 (x) +
(
−21 · x6 − 7560 · x2

)
· T sin,0

4·2+1(x) ,

P−
2,2(x) = − 1

17280
· x15 + 1

960
· x13 − 1

48
· x11 − 5

8
· x9 + 504 · x5 − 15120 · x .

Finally, for the MTP function

f(x) = f+(x) + f−(x)

we obtain the concrete downward polynomial approximation

P (x) = P+
1,1(x) + P−

2,2(x)

= − 31
120960

· x15 + 1
192

· x13 − 3
16

· x11 + 5
8
· x9

over
(
0, π

2

)
, i.e. it holds that

f(x) > P (x)

over
(
0, π

2

)
.
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IV (The final part) Based on the Sturm theorem, the following inequality

P (x) > 0

is true over
(
0, π

2

)
. The stated conclusion for the polynomial function P is correct based

on the following facts:
1. We can conclude, by Sturm theorem, that the polynomial function P (x) has only one
zero over the concrete extended segment [−0.1, 1.58] of the initial interval

(
0, π

2

)
.

2. Facts P (−0.1) ̸= 0, P (0) = 0 and P (1.58) ̸= 0 are correct.
3. The polynomial P is positive at boundary point π

2

(
P
(
π
2

)
= 11.074847 . . . > 0

)
.

Therefore, the following inequality

f(x) > 0

is true over (0, π/2). □

APPENDIX A6

The initial MTP function is

f(x) = 3 · x5 − 20 · x− 140 · sinx · cosx+
(
30 · x2 − 70

)
· sinx

+40 · x · cos2 x+ 190 · x · cosx

and the initial interval is S =
(
0, π

2

)
.

Automated proof that f(x) > 0 for x∈
(
0, π

2

)
:

I (Recognition of possible case) Facts f (0) = 0 and f
(
π
2

)
̸= 0 are correct. The MTP

function f is positive at boundary point π
2

(
f
(
π
2

)
= 1.29545 . . . > 0

)
. Therefore, it is

possible that f(x) > 0 over
(
0, π

2

)
.

II (Transformation of angles) After the transformation of terms cosm x · sinn x (m,n∈N0)
into the sum of sine and cosine functions of multiple angles, in the MTP function f , we
obtain

f(x) = −70 · sin 2x+ 20 · x · cos 2x+
(
30 · x2 − 70

)
· sinx+ 190 · x · cosx+ 3 · x5 .

Then, we consider the previous expression as two separate expressions, the first with
positive and the second with negative terms next to sine and cosine functions

f+(x) = 190 · x · cosx+ 20 · x · cos 2x+ 30 · x2 · sinx+ 3 · x5 ,

f−(x) = −70 · sinx− 70 · sin 2x .

III (Determination of downward rational polynomial approximation) After substitution
of sine and cosine functions by appropriate (downward or upward) polynomial approxima-
tions, we obtain downward polynomial approximations of f+(x) and f−(x) respectively

P+
i0,i1,i2

(x) = 190 · x · T cos,0
4·i0+2(x) + 20 · x · T cos,0

4·i1+2(2x) + 30 · x2 · T sin,0
4·i2+3(x) + 3 · x5 ,

P−
i3,i4

(x) = −70 · T sin,0
4·i3+1(x)− 70 · T sin,0

4·i4+1(2x) .
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For concrete indices (i0, i1, i2, i3, i4) = (1, 2, 1, 2, 2), we obtain

P+
1,2,1(x) = 190 · x · T cos,0

4·1+2(x) + 20 · x · T cos,0
4·2+2(2x) + 30 · x2 · T sin,0

4·1+3(x) + 3 · x5 ,

P+
1,2,1(x) = − 16

2835
· x11 + 61

504
· x9 − 43

24
· x7 + 77

4
· x5 − 105 · x3 + 210 · x

and
P−
2,2(x) = −70 · T sin,0

4·2+1(x)− 70 · T sin,0
4·2+1(2x) ,

P−
2,2(x) = − 19

192
· x9 + 43

24
· x7 − 77

4
· x5 + 105 · x3 − 210 · x .

Finally, for the MTP function

f(x) = f+(x) + f−(x)

we obtain the concrete downward polynomial approximation

P (x) = P+
1,2,1(x) + P−

2,2(x)

= − 16
2835

· x11 + 89
4032

· x9

over
(
0, π

2

)
, i.e. it holds that

f(x) > P (x)

over
(
0, π

2

)
.

IV (The final part) Based on the Sturm theorem, the following inequality

P (x) > 0

is true over
(
0, π

2

)
. The stated conclusion for the polynomial function P is correct based

on the following facts:
1. We can conclude, by Sturm theorem, that the polynomial function P (x) has only one
zero over the concrete extended segment [−0.1, 1.58] of the initial interval

(
0, π

2

)
.

2. Facts P (−0.1) ̸= 0, P (0) = 0 and P (1.58) ̸= 0 are correct.
3. The polynomial P is positive at boundary point π

2

(
P
(
π
2

)
= 0.47438 . . . > 0

)
.

Therefore, the following inequality
f(x) > 0

is true over
(
0, π

2

)
. □

APPENDIX A7

The initial MTP function is

f(x) = = 16 · x6 + 135 · x · sinx · cos2 x+
(
90 · x3 − 360 · x

)
· sinx

+360 · cos3 x+
(
585 · x2 − 360

)
· cosx

and the initial interval is S =
(
0, π

2

)
.

Automated proof that f(x) > 0 for x∈
(
0, π

2

)
:

I (Recognition of possible case) Facts f (0) = 0 and f
(
π
2

)
̸= 0 are correct. The MTP

function f is positive at boundary point π
2

(
f
(
π
2

)
= 23.68123 . . . > 0

)
. Therefore, it is

possible that f(x) > 0 over
(
0, π

2

)
.
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II (Transformation of angles) After the transformation of terms cosm x · sinn x (m,n∈N0)
into the sum of sine and cosine functions of multiple angles, in the MTP function f , we
obtain

f(x) = = 90 · cos 3x+
(
90 · x3 − 1305

4
· x

)
· sinx+

(
585 · x2 − 90

)
· cosx

+16 · x6 + 135
4

· x · sin 3x .

Then, we consider the previous expression as two separate expressions, the first with
positive and the second with negative terms next to sine and cosine functions

f+(x) = 90 · cos 3x+ 135
4

· x · sin 3x+ 585 · x2 · cosx+ 90 · x3 · sinx+ 16 · x6 ,

f−(x) = −90 · cosx− 1305
4

· x · sinx .

III (Determination of downward rational polynomial approximation) After substitution
of sine and cosine functions by appropriate (downward or upward) polynomial approxima-
tions, we obtain downward polynomial approximations of f+(x) and f−(x) respectively

P+
i0,i1,i2,i3

(x) = 90 · T cos,0
4·i0+2(3x) +

135
4

· x · T sin,0
4·i1+3(3x)

+585 · x2 · T cos,0
4·i2+2(x) + 90 · x3 · T sin,0

4·i3+3(x) + 16 · x6 ,

P−
i4,i5

(x) = −90 · T cos,0
4·i4 (x)− 1305

4
· x · T sin,0

4·i5+1(x) .

For concrete indices (i0, i1, i2, i3, i4, i5) = (2, 3, 1, 1, 2, 2), we obtain

P+
2,3,1,1(x) = 90 · T cos,0

4·2+2(3x) +
135
4

· x · T sin,0
4·3+3(3x)

+585 · x2 · T cos,0
4·1+2(x) + 90 · x3 · T sin,0

4·1+3(x) + 16 · x6 ,

P+
2,3,1,1(x) = − 531441

1435033600
· x16 + 177147

20500480
· x14 − 59049

394240
· x12 + 6241

17920
· x10

− 1
16

· x8 + 83
32

· x6 − 405
8

· x4 + 1125
4

· x2 + 90

and

P−
2,2(x) = −90 · T cos,0

4·2 (x)− 1305
4

· x · T sin,0
4·2+1(x) ,

P−
2,2(x) = − 29

32256
· x10 + 1

16
· x8 − 83

32
· x6 + 405

8
· x4 − 1125

4
· x2 − 90 .

Finally, for the MTP function

f(x) = f+(x) + f−(x)

we obtain the concrete downward polynomial approximation

P (x) = P+
2,3,1,1(x) + P−

2,2(x)

= − 531441
1435033600

· x16 + 177147
20500480

· x14 − 59049
394240

· x12 + 7003
20160

· x10

over
(
0, π

2

)
, i.e. it holds that

f(x) > P (x)

over
(
0, π

2

)
.
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IV (The final part) Based on the Sturm theorem, the following inequality

P (x) > 0

is true over
(
0, π

2

)
. The stated conclusion for the polynomial function P is correct based

on the following facts:
1. We can conclude, by Sturm theorem, that the polynomial function P (x) has only one
zero over the concrete extended segment [−0.1, 1.58] of the initial interval

(
0, π

2

)
.

2. Facts P (−0.1) ̸= 0, P (0) = 0 and P (1.58) ̸= 0 are correct.
3. The polynomial P is positive at boundary point π

2

(
P
(
π
2

)
= 2.27261 . . . > 0

)
.

Therefore, the following inequality
f(x) > 0

is true over
(
0, π

2

)
. □
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